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Abstract

The Central Asian Orogenic Belt records the accretion and convergence
of three collage systems that were finally rotated into two major oroclines.
The Mongolia collage system was a long, N–S-oriented composite ribbon
that was rotated to its current orientation when the Mongol-Okhotsk oro-
cline was formed. The components of the Kazakhstan collage system were
welded together into a long, single composite arc that was bent to form the
Kazakhstan orocline. The cratons of Tarim and North China were united
and sutured by the Beishan orogen, which terminated with formation of
the Solonker suture in northern China. All components of the three collage
systems were generated by the Neoproterozoic and were amalgamated in
the Permo-Triassic. The Central Asian Orogenic Belt evolved by multiple
convergence and accretion of many orogenic components during multiple
phases of amalgamation, followed by two phases of orocline rotation.
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INTRODUCTION

According to the current plate tectonic paradigm, orogenesis takes place either during accretion
at a subducting continental margin (Maruyama et al. 2009, Wakita & Metcalfe 2005, Wakita et al.
2013)—variably termed Pacific-type (Maruyama 1997), Turkic-type (Şengör & Natal’in 1996b),
Altaid-type (Şengör & Natal’in 1996a), or, more widely, accretionary-type (Cawood & Buchan
2007, Jian et al. 2014, Kröner et al. 2007, Li et al. 2013, Safonova & Santosh 2014, Windley
et al. 2007, Xiao & Santosh 2014, Xu et al. 2013b)—or as a result of continent-continent collision,
which is largely a destructive process (Yin & Harrison 2000). However, the process of accretionary
orogenesis includes several unresolved questions, such as the duration and architecture of the
orogenesis. Some orogens, such as the Caledonian-Appalachian, have a short duration (Dewey
2005, van Staal et al. 1998), whereas others, such as the Central Asian Orogenic Belt and those
in South America, are long-lived (Dalziel et al. 2000, Windley et al. 2007). The architectural
framework of accretionary orogens may vary from multiple blocks (Levashova et al. 2011; van
Staal et al. 1998; Xiao et al. 2004a,b, 2008, 2010a,b,c) to long, linear belts duplicated by slicing
and bending (Şengör et al. 1993, Yakubchuk 2004).

The Altaids of Central and East Asia (Figure 1) were defined by Şengör et al. (1993) as an
accretionary orogen that extends from the southern side (present coordinates) of the Uralide
and Baykalide orogens southward to the Solonker suture in northern China (Figure 1). Much
subsequent work by the international community has established that the Uralide and Baykalide
orogens also formed by comparable accretionary processes and in fact constitute the northernmost
part of the entire orogen (Khain et al. 2002; Kheraskova et al. 2003, 2010; Sklyarov et al. 2003).
Thus, the term Altaids does not adequately describe the extent and duration of the orogen, and
for this reason the now widely used term Central Asian Orogenic Belt was coined to encompass
the extended orogen in time and space (He et al. 2013, Kheraskova et al. 2011, Seltmann & Porter
2005, Wakita et al. 2013, Windley et al. 2007, Xiao & Santosh 2014).

The Central Asian Orogenic Belt is one of the largest and longest-lived accretionary orogenic
collages in the world, with considerable Neoproterozoic and Phanerozoic crustal growth ( Jahn
et al. 2004, Zheng et al. 2013, Zhou et al. 2011). The formation of the two oroclines therefore
had a profound effect on the duration and final architecture of the Central Asian Orogenic Belt.
Although Şengör et al. (1993) and Şengör & Natal’in (1996a) outlined the two oroclines, neither
they or any subsequent studies have documented and reviewed the processes and timing of their
mutual amalgamation and their interactions with the evolving accretionary orogen. To redress this
imbalance, we summarize in this article the relevant main tectonics of the Central Asian Orogenic
Belt (Figure 1), its continuous accretion from the southern active margins of the Siberia and Baltica
cratons, and the eventual formation of and interaction between the two oroclines, culminating in
the terminal South Tianshan–Solonker suture in northern China.

GEOLOGICAL BACKGROUND AND PREVIOUS REVIEWS

The Central Asian Orogenic Belt (also known as the modified Altaids) is situated between the
Siberia and Baltica cratons to the north and the Tarim and North China cratons to the south
(Figure 1). This immense area extends from the Urals in the west through Kazakhstan, northwest
China, Mongolia, and northeast China to the Okhotsk Sea in the Russian Far East (Glorie et al.
2011, Han et al. 2011, Kröner et al. 2007, Windley et al. 2007, Xu et al. 2013a, Yakubchuk
2004, Zonenshain et al. 1990). Two contrasting models have dominated the discussion of the
tectonic evolution of the orogen: (a) oroclinal bending and slicing of a single Kipchak-Tuva-
Mongol arc (e.g., Şengör et al. 1993) and (b) accretion and collision of multiple small island arcs,
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Figure 1
Tectonic map of the main components of the Central Asian Orogenic Belt, showing the Kazakhstan, Mongolia, and Tarim–North
China collage systems, separated by a thick black dotted line, and the South Tianshan–Solonker suture. Tectonic elements are modified
and simplified from Şengör & Natal’in (1996b). Yellow stars show the distribution of the Silurian Tuvaella brachiopod fauna (data
points from Cocks & Torsvik 2007, Rong & Zhang 1982, Rong et al. 1995). The distribution of Permian flora is modified after Dewey
et al. (1988) and Zhang et al. (2014).

microcontinents, and terranes (Kröner et al. 2007, Wakita et al. 2013, Wilhem et al. 2012, Windley
et al. 2007, Yakubchuk 2004, Zonenshain et al. 1990).

Neither of these two models has been satisfactorily applied to the tectonics of the Central
Asian Orogenic Belt. Recent paleomagnetic data (Bazhenov et al. 2012) show that the paleo-
magnetic declinations in different segments of a strongly curved, single Devonian Volcanic Belt
(Figure 2a), part of the Kipchak arc in Kazakhstan, would have unanimously pointed to a similar
north direction if the curved belt was restored to a straight chain (Figure 2b), which supports the
single arc orocline hypothesis (Şengör et al. 1993). The fact that some microcontinents form the
cores of some arcs, such as Kokchetav (Dobretsov et al. 2006, Masago et al. 2010), and that some
terranes in Kazakhstan show a Gondwana affinity (Bazhenov et al. 2012) seems inconsistent with
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the single arc model in which the single Kipchak-Tuva-Mongol arc was rifted away from the joint
Baltica-Siberia continent (Şengör et al. 1993).

Furthermore, several aspects of the geology of the accretionary orogen in China have been
only partially considered. For example, the Tarim and North China cratons have been either
regarded together as an integral block (Wilhem et al. 2012, Yin & Nie 1996) or treated as separate
blocks with uncertain positions (Şengör et al. 1993). Also, in reconstruction by Cocks & Torsvik
(2007), the Junggar terrane was integrated and combined with the Tarim craton; this is inconsis-
tent with recent paleomagnetic, geological, and geochemical data, which indicate that they were
independent terranes with oceans separating them (Choulet et al. 2012, Xiao et al. 2008, Yang
et al. 2012a).

The many recent developments in fields such as structural relations, petrochemistry, and
geochronology along with paleogeographic and palinspastic reconstructions based on paleomag-
netic data on the Central Asian Orogenic Belt (de Jong et al. 2006, Domeier & Torsvik 2014, Guy
et al. 2014, Li et al. 2014, Torsvik & Cocks 2013, Torsvik & Cocks 2004) have created a need
to redefine the tectonic settings of the orogenic components. Accordingly, we can now better
constrain the tectonic framework of the southern Central Asian Orogenic Belt, particularly in
northern China and its adjacent areas.

PALEOGEOGRAPHIC FRAMEWORK OF THREE COLLAGE SYSTEMS

It is widely accepted that the southern Central Asian Orogenic Belt is made up of widespread
multiple archipelagos with arcs, microcontinents, ophiolites, subduction-accretion complexes,
seamounts, blueschists, eclogites, and gneiss-schist complexes (Volkava & Budanov 1999,
Yakubchuk 2004, Yang et al. 2012b). To facilitate description, we describe the Kazakhstan and
Mongolian collage systems (Figure 1), which are founded on the Kazakhstan and Tuva-Mongol
oroclines (Figure 1), and the Tarim–North China collage system, which incorporates the Tarim
and North China cratons and the South Tianshan–Solonker suture (Figure 1). Before coming to
the collage systems, we first present an evaluation of current paleomagnetic and flora-fauna data
in terms of the paleogeography of the Central Asian Orogenic Belt.

Neoproterozoic to Early Paleozoic Paleogeographic Framework

The outboard cratons of the Altaids are Siberia and Baltica in the north and Tarim and North
China in the south, together with the minor, southern Dunhuang and Alxa blocks (Figure 1). The
distribution of these cratons and the geological history of their margins provide key constraints
on the early and late tectonic stages of the Central Asian Orogenic Belt.

Paleomagnetic data suggest that, in the late Precambrian, Siberia faced northward on its Baikal
margin (Kheraskova et al. 2003), a paleogeography that differs from its present-day geography and
may have endured into the early Paleozoic (Figure 3). Based on the best available paleomagnetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
(a) Geological map of the Kazakhstan part of the Western Altaids, showing the Kazakhstan orocline. Panel modified after Windley
et al. (2007). (b) Diagrams illustrating the declinations ( gray arrows) of the primary Silurian and Devonian magnetizations for the
inferred Middle Devonian configuration of the Devonian Volcanic Belt before oroclinal bending began. The inset shows a
configuration prior to the distributed rotations that occurred later—i.e., in Permo-Triassic time. The distribution of the Devonian
Volcanic Belt is outlined from panel a. Panel modified after Bazhenov et al. (2012), with permission from Elsevier. Additional
abbreviations: ATB, Atbashi; WTS, Western Tianshan.
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Paleogeographic map of the Siberia craton and adjacent area during the late Silurian, at about 420 Ma.
Figure modified after Cocks & Torsvik (2007), with permission from Elsevier.

data, this configuration suggests that Siberia and Baltica were externally situated with a major
ocean of the Aegir Sea between them, which negates the possibility of a joint single Kipchak arc
rifted from these two separated continents in the earliest Cambrian (Windley et al. 2007).

The Silurian Tuvaella brachiopod fauna is widespread in the southwest Siberia craton and adja-
cent terranes in southern Siberia, Mongolia, eastern Kazakhstan, and northwest China (Domeier
& Torsvik 2014, Rong et al. 1995, Rong & Zhang 1982, Torsvik & Cocks 2013). This distri-
bution hints at the paleogeographic affinity of the terranes that host these fossils. In a recent
paleogeographic reconstruction of the Silurian period, the Tuvaella fauna is distributed around
both margins of the center of the Siberia craton as well as in the Mongolia collage system, which
was at that time north of the main Siberia craton (Figure 1). There is a boundary roughly between
the Chinese Altai and East Junggar that separates the Mongol-Okhotsk province fauna (with Tu-
vaella) to the north and the Sino-Australia province fauna (without Tuvaella) to the south (present
coordinates) (Guo 2000, Rong et al. 1995, Rong & Zhang 1982). This should be considered as
an important early Paleozoic paleogeographic boundary separating geological terranes with the
Mongol-Okhotsk province fauna from those with the Sino-Australia province fauna. The distri-
bution of the brachiopod fauna, and the fact that the Siberia craton was originally oriented with
its present-day south to the north, may suggest that the Mongolia collage system was located far
from the Kazakhstan collage system at least in the Silurian.
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Late Paleozoic Paleogeographic Framework

Sutures separate different archipelagos, each of which has a unique paleogeographic signature.
The floral, faunal, and paleomagnetic data are unique signatures for defining the paleogeography
of the Central Asian Orogenic Belt. Paleomagnetic data and other paleogeographic constraints
indicate that, since the Early Devonian, the Siberia craton and its northern arc chain formed
a huge circum-Siberia subduction system at 5–35◦N (Cocks & Torsvik 2007, Smethurst et al.
1998, Torsvik & Cocks 2013). The Kazakhstan terranes were amalgamated along a single ribbon
continental arc, located east of the Siberia craton (Domeier & Torsvik 2014). The Tarim craton
would have been close to and partially connected with the North China craton in the Northern
Hemisphere.

Much like the distributions of early Paleozoic fauna provinces, the distributions of various fauna
and flora in the middle to late Paleozoic also mark important paleogeographic affinities of the
geological terranes that host them, suggesting significant separations of these terranes. Since the
Devonian, the fauna in the Siberia craton were similar to that in western North America, whereas
the fauna in the Tarim and North China cratons belonged to the Proto-Tethys bioprovince (Guo
2000). In the Carboniferous–Permian, the Baltica craton was characterized by the Euramerian
flora. The Siberia craton and Kazakhstan terranes shared the Angaran flora (Guo 2000), which
may suggest that they were contiguous in the Carboniferous–Permian. At that time, the Tarim
craton had the Cathaysian and Euramerian floras (e), which means that the Baltica craton might
have been joined with the southern part of the Tianshan collage and the Tarim craton. The
North China craton was characterized only by the Cathaysian flora (Guo 2000). The presence of
the Cathaysian flora in the Tarim and North China cratons may indicate that there was a long
distance between the conjoined Siberia-Kazakhstan collage systems.

Detailed investigations of the flora demonstrate separation and mixture of the Permian An-
garan and Cathaysian floras in the southern Central Asian Orogenic Belt (Dewey et al. 1988,
Zhang et al. 2014). Although not a perfect match, the separation and mixture zone between the
Angaran and Cathaysian floras is distributed approximately along the South Tianshan–Solonker
suture (e) (Xiao et al. 2008). In the Beishan and Alxa areas the distributions of the Angaran and
Cathaysian floras match the main tectonic sutures in southern Mongolia and northern China
(Yue et al. 2001). The separation and mixture zone between the floras may suggest that the
Mongolian and Kazakhstan collage systems were not close to the collage system to their south
until the Permian. Therefore, the Tarim–North China collage system south of this Permian
boundary should have been separated from the Mongolia and Kazakhstan collage systems to the
north.

Accordingly, we subdivide the Central Asian Orogenic Belt into three main collage systems:
Mongolia in the north, Tarim–North China in the south, and Kazakhstan in the west (Figure 1).
Paleomagnetic data show that the Mongolia(-Okhotsk) collage system was situated as an
archipelago north of the Siberia craton with a reverse, upside-down orientation, compared
with its present-day position, inherited from its early Paleozoic paleogeography (Figure 3).
The paleomagnetic data also show that the Siberia and Mongolia collage systems underwent
large-scale clockwise rotations of ∼50◦ from the Cambrian to the end-Permian–Early Triassic
(Cocks & Torsvik 2007, Domeier & Torsvik 2014, Xiao et al. 2009). The Angaran flora and
its constituent rocks are situated only to the north of the South Tianshan–Solonker suture.
Therefore, the Siberia craton and the Mongolia collage system probably did not join the Central
Asian Orogenic Belt until the end-Permian to Early Triassic, as indicated by independent
(Lehmann et al. 2010, Tian et al. 2013), sedimentary (Heumann et al. 2012), geochemical (Tian
et al. 2015), and geochronological (Eizenhöfer et al. 2014) data.
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SOUTHERN MONGOLIAN COLLAGE SYSTEM

The Mongolia collage system developed along the southern Siberia active margin as a long,
ribbon-like archipelago composed of many island arcs. The present-day Mongolia collage system
is mostly an amalgamation of several zones. From north to south, these are the Lake, Gobi-Altai,
Trans-Altai, and South Gobi zones, which can be connected with some similar terranes in the
China-Mongolia border area to the west (Figures 4 and 5). The composition and deformation
of the Mongolia collage system were studied in a major transect (Lehmann et al. 2010); these
findings are briefly described below (Figure 5).

Along strike to the west in northern Xinjiang in northwest China, the local tectonic units can
be correlated with a fourfold subdivision in central Mongolia (Figure 4) (Xiao et al. 2004a). The
Chinese Altai is predominantly composed of variably deformed and metamorphosed sedimentary
and volcanic rocks and granitic intrusions. Systematic correlations further suggest that the Chinese
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Altai was mainly a Japan-type arc in the early Paleozoic to Devonian (Cai et al. 2011, Xiao et al.
2008).

The Siberian margin remained active after the early Paleozoic, and its accretionary wedge was
rifted from Gondwana to form the Chinese Altai arc (Long et al. 2007, Sun et al. 2007). Along
strike to the east in Inner Mongolia in northern China, the tectonic units were defined as local
units that can be correlated with the fourfold subdivision in central southern Mongolia, which is
described in a later section.

Structural analysis of tectonic components, including deformation partitioning of the strain
zones of lithoboundaries tested against published paleomagnetic data and paleogeographic re-
constructions, enabled Lehmann et al. (2010) to demonstrate that the Paleozoic evolution of the
southern Central Asian Orogenic Belt in southwest Mongolia was characterized by a long tail of
Tuva-Mongol ribbons of Devonian–Carboniferous age. Analysis of overthrust ophiolites, passive
margins sediments, and arc subduction polarity has demonstrated that in the Early Devonian,
island arc/backarc systems formed in the rear of the N–S-oriented Tuva-Mongol and Dzabkhan-
Baydrag amalgamated continental ribbons. The arcs migrated eastward in the Late Devonian–early
Carboniferous toward the Gobi-Altai zone. Later, the Tuva-Mongol ribbons became a locus of
arc activity in the South Gobi zone in the latest Carboniferous (303–299 Ma) (Figure 5a).

In the period from 280 to 225 Ma, orthogonal indentation of the undeformed Gobi-Tianshan
pluton associated with the colliding of the Tarim–North China collage system into the Tuva-
Mongol ribbons caused a 90◦ change in orientation and up to 70% NNE–SSW-directed short-
ening in the Gobi-Altai (Figure 5b). The convergence between the southern limb of the Tuva-
Mongol orocline and the Tarim–North China collage system to the south eventually terminated
the Paleo-Asian Ocean in what is now northern China.

KAZAKHSTAN COLLAGE SYSTEM

The Kazakhstan collage system is mainly composed of several orogenic components, including
the Chingiz arc, the Kokchetav microcontinent, and the North Tianshan–Yili arc (Figures 2 and
6) that were amalgamated and/or welded together to generate a long, single composite arc by
the Devonian, the evidence for which is largely derived from structural relations constrained by
zircon dating of key components (Kröner et al. 2007; Safonova et al. 2004, 2009; Safonova &
Santosh 2014; Windley et al. 2007; Zonenshain et al. 1990). There are more than 30 occurrences
of high-pressure (HP) blueschists in this collage system (Simonov et al. 2008, Volkova & Budanov
1999, Volkova & Sklyarov 2007), and some ultrahigh-pressure (UHP) rocks occur at Kokchetav
(Maruyama et al. 2009; Masago et al. 2009, 2010) and in the South Tianshan (Ai et al. 2006, Zhang
et al. 2007a). Masago et al. (2009, 2010) demonstrated that in Kokchetav continental crust was
subducted to diamond-coesite depths (Dobrzhinetskaya 2012, Faryad et al. 2013).

Several independent and short-lived arc systems in the western Paleo-Asian Ocean were welded
together through consecutive collisions, forming the Kokchetav–North Tianshan arc in the early
Paleozoic (Windley et al. 2007): Several sutures contain HP to UHP metamorphic rocks, such
as diamond-bearing rocks in the Cambrian Kumdykol suture at Kokchetav (Masago et al. 2009,
2010) and eclogites in the Makbal area west of the Early Ordovician Kirgiz-Terskey suture (Tagiri
et al. 1995).

From paleolatitudes integrated with regional geological data, Bazhenov et al. (2012) demon-
strated that an ∼E–W-trending active margin of the Kazakhstan landmass was situated at a low
(∼10◦S) latitude in the Middle to Late Ordovician (∼460 Ma) (Figure 6a) and collided with
the Baydaulet-Akbastau intraoceanic island arc and with the Aktau-Junggar microcontinent at
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approximately 440 Ma. It seems that the Kokchetav–North Tianshan region, which incorporates
a significant volume of continental crust, acted as a core around which smaller arcs amalgamated.
In the Silurian, the Kokchetav–North Tianshan arc moved northward, crossed the equator and
rotated clockwise by ∼45◦ to a NW–SE orientation, and thereafter acted as the (rectilinear)
predecessor of a Silurian volcanic arc that evolved into a composite Devonian (∼395 Ma)
Alaskan-Aleutian-type volcanic arc (Figure 6b) (Bazhenov et al. 2012). In the late Paleozoic, the
Chingiz–Kokchetav–North Tianshan composite arc probably attained its U-shaped structure
through oroclinal bending with the Kokchetav region located in the core (Figure 2), because
the present-day strongly curved outline of the Devonian Volcanic Belt resulted from oroclinal
bending of an originally rectilinear active margin that was deformed together with surrounding
older structures during the late Paleozoic. The northern limb of the Kazakhstan orocline is
composed of the Chingiz arc, which extends almost to the Erqis fault in the north, and the
southern limb is defined by the Yili arc (Figures 2 and 6c).

Paleomagnetic studies reveal the important role of block rotations around vertical axes during
oroclinal bending (Abrajevitch et al. 2007, 2008; Bazhenov et al. 2012), such as the 180◦ rotation
of the northern limb of the Kazakhstan orocline with respect to the southern limb (Figures 2
and 6) (Levashova et al. 2003, 2007). From their paleomagnetic data, Van der Voo et al. (2006)
concluded that Ordovician and Silurian rocks in the Chingiz and North Tianshan underwent
relative rotations of ∼180◦, and that about 50% of the total post-Ordovician rotations were
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pre–late Permian and the other half were late Permian–earliest Mesozoic in age. Xiao et al.
(2010b) suggested that the first half of orocline formation took place in the Carboniferous to
early Permian; this idea is in good agreement with paleomagnetic and tectonic investigations
that show that there was probably a ridge-subduction system in the late Carboniferous–early
Permian in West Junggar (Geng et al. 2011, Ma et al. 2012, Yin et al. 2010), which consumed an
oceanic basin, thereby accommodating rotation and bending of the Kazakhstan orocline (Choulet
et al. 2012, Yi et al. 2014). Formation of the second half of the Kazakhstan orocline probably
took place when the southernmost tip of the Kokchetav–North Tianshan arc system underwent
large-scale, post-Permian eastward displacements of the Yili and Junggar arcs with respect to the
Siberia craton and the Altaids to the south of the Chinese Altai (Wang et al. 2007). In summary,
the originally linear Kazakhstan composite arc was bent to form the early Kazakhstan orocline
in the Carboniferous to early Permian, which was then tightened to form the present orocline in
the late Permian to Early Triassic (Choulet et al. 2012, Yi et al. 2014).

TARIM–NORTH CHINA COLLAGE SYSTEM

To the south of the Central Asian Orogenic Belt are the Tarim and North China cratons, between
which lie the Dunhuang and Alxa blocks (Figure 1). All these cratons and blocks are included
in the Tarim–North China collage system, because their mutual collisions and their interactions
with the southernmost belts of the Central Asian Orogenic Belt gave rise to the Beishan orogen
and the South Tianshan and Solonker sutures (Figures 1 and 7).

The Dunhuang block, originally considered to be part of the Tarim craton, is composed of
metamorphosed supracrustal rocks (Dunhuang Group) and subordinate tonalite-trondhjemite-
granodiorite (TTG)-like intrusions (Mei et al. 1998). The Alxa block, originally regarded as part
of the North China craton, contains a late Archean and Paleoproterozoic metamorphic basement
along with Neoproterozoic meta-supracrustal rocks (Geng et al. 2007).
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The NE-trending Beishan orogen contains several ophiolitic mélanges that are situated in
sutures and record the convergence between the Tarim craton–Dunhuang block in the west and
the North China craton in the east (Figure 1). Between the East Tianshan and the Beishan, near
Liuyuan town, a gabbro in a Permian forearc sliver has a zircon age of 286 ± 2 Ma (Mao et al.
2012). Besides gabbros, this forearc sliver contains abundant basaltic lavas, which have high TiO2

contents, flat rare earth element patterns, and high field strength elements, similar to those of
mid-ocean ridge basalts (MORB) (Mao et al. 2012). These basalts are imbricated with Permian
tuffaceous sediments and limestones. The Liuyuan forearc complex formed part of an ophiolite
in Carboniferous–Permian time (Figure 7).

Kilometer-sized fold interference patterns in the Beishan orogen were formed by fold super-
imposition in fossiliferous Permian sedimentary rocks, which have arc-related basin geochemistry
(Tian et al. 2013). The two phases of folding are interpreted to result from a major change in plate
configuration that caused the inversion of an interarc basin during the final amalgamation of the
Beishan in the latest Permian to Early–Middle Triassic (Tian et al. 2013) (Figure 7).

Eastward in the Alxa area, several NE-trending ophiolitic mélanges include Engger Us in
the north, Quagan Qulu in the middle, and Bijiertai in the south (Figure 7) (Feng et al. 2013).
Zircons from a pillow lava in the Engger Us ophiolitic mélange have a sensitive high-resolution ion
microprobe (SHRIMP) zircon U-Pb age of 302 ± 14 Ma (e). The Engger Us ophiolitic mélange
contains late Permian radiolarian fossils (Xie et al. 2014). Massive and pillow basalts in the Engger
Us ophiolite exhibit normal MORB (N-MORB) geochemical affinities, displaying high TiO2 and
low K2O contents and tholeiitic signatures (Zheng et al. 2014); the magma of this ophiolite was
interpreted to be derived from a depleted mantle source in a mid-ocean ridge setting.

The Quagan Qulu ophiolite has gabbros with a SHRIMP zircon U-Pb age of 275 ± 3 Ma
(Zheng et al. 2014). The gabbros have high MgO and compatible element (Ni, Co, Sc, and V)
contents and high and Al2O3/TiO2 ratios but low TiO2 and SiO2 contents. They are enriched
in large ion lithophile elements and depleted in light rare earth elements and high field strength
elements, indicating that they were derived from an extremely depleted mantle source that was
infiltrated by a subduction-derived fluid or melt (Zheng et al. 2014).

In the Bijiertai mélange shown in Figure 7, laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) U-Pb zircon geochronology on gabbros yielded ages of 274 ± 3 Ma
(mean square weighted deviation = 0.35) and 262 ± 5 Ma (mean square weighted deviation = 1.2)
(Feng et al. 2013), representing the formation ages of the mafic-ultramafic rocks that formed by
south-dipping subduction—most likely with a slab window caused by ridge subduction—of the
Paleo-Asian Ocean plate beneath the Alxa block in the late Permian before the ocean completely
closed (Feng et al. 2013). These new geochemical and geochronological data suggest that sub-
duction in the Alxa block continued in the late Permian, indicating that the final closure of the
Paleo-Asian Ocean most likely took place after the late Permian.

Recent geological and paleomagnetic studies indicate that the Alxa block was not part of the
North China craton until the late Permian (Yuan & Yang 2015a). Zircons with U-Pb age spectra
of 2.4–2.7 and >3.0 Ga, and their corresponding εHf(t) values, are significantly different from those
in the North China craton, demonstrating that these detrital zircons are not from the North China
craton (Yuan & Yang 2015b). Paleomagnetic data indicate that, if the apparent polar wander path
of the Alxa block rotated counterclockwise by 32◦ around an Euler pole at 44◦N, 84◦E, then the
coeval apparent polar wander path of the Alxa block overlaps with that of the North China craton
(Yuan & Yang 2015a). This suggests that the Alxa block migrated to the North China craton after
the Early–Middle Triassic along a N–S-trending tectonic boundary located approximately along
the Helan Mountains (Figure 7).
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In summary, the formation of the Tarim–North China collage system was mostly completed
in the end-Permian to Middle Triassic.

COMPLICATED AMALGAMATION OF SEVERAL COLLAGE SYSTEMS

We need to understand the time of final formation of the three collage systems, and when they
were welded together. Judging by the triangular shape of the Kazakhstan collage system and
by the lithologies in the three systems, the northern limb (Chingiz and West Junggar arcs) of
the Kazakhstan orocline collided with the Mongolia collage system (Altai arc), and the south-
ern limb (Yili arc) collided with the Tarim craton. Therefore, the time of suturing between
the Kazakhstan and Mongolia collage systems is recorded in the ophiolitic mélanges and/or ac-
cretionary complexes along the Altai and West Junggar, and the time of suturing between the
Kazakhstan and Tarim–North China collage systems is documented in the ophiolitic mélanges
and/or accretionary complexes along the southern Tianshan. In the eastern Central Asian Oro-
genic Belt, the suturing time between the Mongolia and Tarim–North China collage systems is
recorded in the East Tianshan–Beishan–Alxa orogens and farther eastward to the Solonker suture
(Figure 8).

Suturing Processes Between the Southern Altai and Chingiz Arcs

The southernmost unit of the Mongolian collage system is the Altai orogen, which is composed
of various terranes including the southern Altai that trends NWW–SEE across the borders of
Kazakhstan, China, Russia, and Mongolia (Figure 1). Throughout the Paleozoic, the Altai was
continuously accreting on a long-lived active margin.

The Erqis fault (and subduction complex), located along the Altai range (Figure 1) and long
regarded as a strike-slip fault, is littered with ophiolitic fragments, volcanic rocks, and abundant
mylonites. The extreme thickness of metamorphic-mylonitic Erqis shear zone indicates a 1,000-
m strike-slip offset (Şengör et al. 1993). In Kazakhstan, several terranes, including the Chingiz,
Kokchetav, Baydaulet-Akbastau, and Aktau-Mointy, amalgamated to form a long continent ribbon
with arc magmatism along its margin (Figure 9a). The Erqis fault separates the Kalba-Narym
terrane to the south from the Rudny Altai terrane to the north (Figure 9b) (Buslov et al. 2004). The
fault zone reaches 50 km in width and consists of many tectonic sheets of differing composition
separated by serpentinite mélange, mylonites, blastomylonites, and greenschists.

The Kalba-Narym terrane, located between the Chara and Erqis strike-slip faults, is composed
of Late Devonian–early Carboniferous sedimentary rocks intruded by early Permian granitoids
(Buslov et al. 2004). The sedimentary rocks consist of black shales and siltstones with thin interbeds
of polymictic sandstones, which increase in thickness up section giving a total thickness of over
1,500 m; the sediments were thought by Buslov et al. (2004) to be deposited on a passive margin.
However, when compared with the along-strike sediments in China, there is no such passive margin
along the Chinese Altai. Moreover, the lithologies do not have the character of typical passive
margin sediments; we suggest they are more likely coherent units of an accretionary complex.
Accordingly, we tentatively reinterpret the Kalba-Narym terrane as part of a subduction complex
located either along the southern margin of the Mongolia collage system or along the northern
margin of the Chingiz arc.

The Erqis fault in China contains an ophiolitic mélange belt that includes mélange fragments at
Keksantao, Qiaoxiahala, and Qinghe as well as volcanic rocks and high-grade gneisses (Xiao et al.
2009). Late Carboniferous to Permian mafic-felsic volcanic and volcaniclastic rocks are mutually
imbricated with high-grade gneisses and schists. And most rocks in the Erqis fault are strongly
deformed into early Permian mylonites and/or ultramylonites.
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In addition, there is an ophiolite mélange at Tuerkubantao that includes ultramafic rocks,
gabbro, and basalt; its flat rare earth element and trace element patterns point to formation
in a mid-oceanic ridge setting. Zircons in a gabbro yielded U-Pb ages of 363 Ma, suggesting
Late Devonian mid-ocean ridge spreading, and 355 Ma zircons in a gneissic granite indicate
suprasubduction magmatism (Wang et al. 2012).

Therefore, on the northeastern margin of the Kazakhstan collage system, there is an
approximately 1,000-km-long ophiolitic mélange zone (Figure 9) that contains ophiolites, HP
rocks, and three types of tectonic mélanges (Buslov et al. 2004). The northernmost part of the
Kazakhstan collage system contains the Chingiz arc and the Chara-Zaisan subduction complex
(Figure 9c). The major Chara sinistral strike-slip fault that hosts the Chara ophiolitic belt is a
suture that separates the Altai arc to the north from the Chingiz arc to the south (Figure 9).
Southwest of the Chara fault are the Chingiz, Tarbagatai, Zharma, and Saur terranes that formed
along the Kazakhstan continental margin (Figure 9). They are composed of fragments of a
Cambrian–early Carboniferous island arc. Northeast of the Chara fault are terranes that were
rotated along strike-slip faults and associated thrusts to the south from their initial position in
the marginal zones of the Siberian continent (Buslov et al. 2004).
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Diagrams illustrating the convergence between the Altai and Chingiz arcs in the western Central Asian Orogenic Belt. (a) Middle to
Late Ordovician. (b) Late Carboniferous to early Permian. (c) Late Permian.

According to Buslov et al. (2004), there are three types of mélanges in the Chara suture.
Type I mélange contains lenses of HP gabbro, basalt, volcaniclastic rocks, greywacke, chert,
eclogite, garnet amphibolite, and glaucophane schist. Muscovites from eclogites and blueschists
have K-Ar ages of 429–444 Ma. Type II describes a 250-km-long Ordovician ophiolitic mélange
that contains blocks of peridotite, gabbro, oceanic basalt, siliceous mudstone, and chert with
radiolaria of mid-Devonian to early Carboniferous age. The lavas are high-Al and high-Ti alkali
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plagiobasalts, interpreted to have formed at a mid-ocean ridge (Buslov et al. 2004). Type III is a
late Carboniferous–early Permian mélange containing blocks of types I and II mélanges.

The Chara ophiolitic belt is surrounded by Devonian–early Carboniferous sedimentary-
volcanic rocks, which were regarded as fragments of early Carboniferous subduction complexes
and forearc troughs. The tectonic units between the Altai and Chingiz arcs are composed of two
large subduction complexes (Figure 9). The distribution of the arcs and subduction complexes
suggests that during convergence the subduction polarities were opposite (Figure 9). As men-
tioned above, the youngest units in the Chara subduction complex are early Permian, and those in
the Erqis subduction complex are Permian, both of which predate the final amalgamation event.
From the above data we conclude that the two subduction complexes amalgamated and formed a
suture zone in the late Permian, called the Erqis-Chara-Zaisan suture (Figure 9), which separates
the arcs of the Kazakhstan collage system to the south from the southern margins of the Siberian
continent that was part of the contemporaneous Mongolian collage system to the north.

In contrast, in the Chinese Altai–East Junggar area, the East Junggar arc docked to the Mongolia
collage system in the early Carboniferous, thus forming an enlarged active margin on the Altai belt.
Shu & Wang (2003) suggested that the collision between the East Junggar and Tianshan arcs took
place in the early Carboniferous, because of the presence of early Carboniferous radiolarian cherts
in ophiolitic mélanges in the suture between the East Junggar and Tianshan arcs. However, these
ages could equally have been related to docking of the East Junggar arc against the Altai active
margin (Xiao et al. 2004a). More recently, Niu et al. (2007) reported that phengites from a quartz-
magnesite rock in the Zhaheba ophiolite of East Junggar have an 40Ar/39Ar UHP metamorphic
age of 281.6 ± 5 Ma (Figure 4), suggesting that subduction in East Junggar lasted until the early
Permian. Therefore, we can reasonably conclude that the amalgamation between the East Junggar
arc (Mongolia collage system) and southerly collage systems occurred in the Permian.

Suturing Processes Between the Yili Arc and Tarim Craton

The Yili arc is on the southern limb of the Kazakhstan orocline in the southernmost part of
the Kazakhstan collage system. The convergence between the Yili arc and Tarim craton is best
recorded in the South Tianshan subduction complex (Figure 1). The Yili magmatic arc, located to
the west of Urumqi city, has a triangular shape that becomes narrower eastwards into the Chinese
Tianshan (Figure 2a). Its main components include Paleoproterozoic to Neoproterozoic high-
grade metamorphic rocks, late Neoproterozoic to early Paleozoic passive margin sediments, Late
Ordovician–Silurian granites, and Devonian to Carboniferous–early Permian volcanic and clastic
sedimentary rocks (Xiao et al. 2013). In summary, the Yili arc is an Andean-type arc built on the
margin of a Precambrian microcontinent that was mostly active in the Devonian, Carboniferous,
and early Permian.

The so-called South Tianshan unit (mainly represented by the South Tianshan ophiolitic
mélange) separates the Tarim craton from the Central or Middle Tianshan arc (Burtman 2010).
In the South Tianshan unit, high-temperature/low-pressure (HT/LP) metamorphic rocks have
an earliest Permian protolith age (298.5 ± 4.9 Ma), which predates the HT/LP metamorphism
that likely occurred later in the Permian (Li & Zhang 2004, Zhang et al. 2007a).

In the Tianshan of Kyrgyzstan, the South Tianshan unit contains the Turkestan suture with
the southern Ferghana ophiolitic mélange that has blocks of glaucophane-bearing blueschists and
HP eclogites at Atbashi (Figure 2) (Tagiri et al. 1995). Glaucophane-bearing blueschists and HP
eclogitic/mafic granulite relics occur in South Tianshan in Xinjiang, China (Figures 1 and 2).
Coesite-bearing UHP eclogites contain zircons, the rims of which have a mean age of ∼319 Ma
(Gao et al. 1995, Gao & Klemd 2003, Hegner et al. 2010, Klemd et al. 2005). The HP/UHP
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rocks have N-MORB and ocean island basalt (OIB) trace element signatures suggesting that their
protoliths formed in an ocean, and were accreted in a trench, subducted to high pressures, and now
occur in the southernmost mélange of the South Tianshan subduction complex. Some Permo-
Triassic Ar-Ar ages of large-scale ductile high-strain zones can be interpreted to indicate formation
of these associated HP/UHP rocks on a backstop of the South Tianshan subduction complex (Cai
et al. 1995). A mylonite immediately north of the HP/UHP rocks yielded an 40Ar/39Ar plateau
age of 230 ± 8 Ma (Li & Cui 1994), which might record a phase of uplift on the backstop of the
subduction complex.

The Tarim craton has a variably deformed and metamorphosed basement of Archean–
Proterozoic to early Paleozoic rocks (Lu et al. 2008), which are characterized by Archean high-
grade bimodal TTG gneisses and amphibolites and Proterozoic granitic gneisses with Nd model
ages ranging from 3.2 to 2.2 Ga (Hu et al. 2000). Sinian through Permian sedimentary rocks crop
out in the Keping and Bachu areas along the Chinese Tianshan in the west (Carroll et al. 2001).
The western part of the Tarim craton was mainly covered by passive margin sediments during
most of Paleozoic time (Biske & Seltmann 2010). However, the eastern part may have been an
active margin in the Paleozoic (Ge et al. 2014; Xiao et al. 2004b, 2010c).

The Paleozoic tectonic framework of the Chinese South Tianshan is characterized by the South
Tianshan (Kokshaal-Kumishi) subduction complex that separates the Tarim and Karakum cratons
from the Yili arc (Xiao et al. 2013). The presence of subduction-related late Carboniferous and
late Permian magmatism, late Permian radiolarian cherts, and precollisional late Carboniferous to
Triassic HP/UHP rocks in the South Tianshan subduction complex suggests that subduction was
active in the late Carboniferous to Permian or even Middle Triassic. This may be supported by
an explosion seismic reflection profile (Gao et al. 2013) across the junction between the southwest
Tianshan orogen and Tarim craton, which shows interwedging of lower crustal layers caused by
late Paleozoic compression.

Therefore, final collision between the Tarim craton and the northern accretionary systems
likely occurred in the late Carboniferous to Permian in the east and in the end-Permian to Middle
Triassic in the west, which suggests that the Paleo-Asian Ocean closed progressively westward
along the South Tianshan suture.

Suturing Processes Between the Mongolia Collage System
and North China Craton

As mentioned above, the southern margin of the Mongolian collage system and the northern
margin of the North China craton remained active during most of the Paleozoic. In Chinese Inner
Mongolia (Figure 8), convergence between the two active margins of South Mongolia and the
North China craton continued during most of the Paleozoic to give rise to the terminal Solonker
suture (Chen et al. 2009, Li et al. 2011, Xiao et al. 2003). In the north, the Uliastai (Southern
Mongolia) active continental margin extends along the northern border of Inner Mongolia from
Chagan Obo to Uliastai (Figure 8), and to the south of the margin are the Hegenshan ophiolite-
arc-accretion complex and the Baolidao arc-accretion complex. To the south of the Solonker
suture are the Ondor Sum subduction-accretion complex (de Jong et al. 2006), the Bainiaomiao
arc, and the North China craton (Figures 8 and 10a).

The Solonker suture zone contains the Erdaojing subduction complex (Xiao et al. 2003), which
comprises tectonic mélanges typical of a modern accretionary wedge and coherent turbidites that
are imbricated with ophiolitic rocks, chert, marble, and arc volcanic rocks. The mélanges are
characterized by lenses of mafic-ultramafic rocks, dolomite, quartzite, marble, and blueschist
within an argillite matrix. In the Linxi area (Figure 8) ophiolitic lenses of pyroxenite, layered
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Figure 10
Diagrams illustrating the amalgamation of two opposite-dipping subduction complexes in Inner Mongolia in the eastern Central Asian
Orogenic Belt. (a) Early to middle Permian. (b) Late Permian to Early Triassic. (c) Middle Triassic. Multiple terranes of southern limb
of the Mongol-Okhotsk orocline correspond to those in Figure 5. Abbreviations: E-MORB: enriched mid-ocean ridge basalt; OIB,
ocean island basalt.

gabbro, sheeted mafic dikes, basalt, and chert occur in lower Permian clastic sediments (Wang
& Liu 1986). Within the Erdaojing complex a cumulate gabbro from the Solon Obo ophiolite
(Figure 8), which straddles the China-Mongolia border, has a SHRIMP U-Pb age of 279 ±
10 Ma (Miao et al. 2007, 2008). Some sedimentary blocks in mélanges near Solonker contain
middle Permian radiolaria (Shang 2004). These data suggest that the ophiolites were derived
from the Permian Paleo-Asian oceanic crust/mantle and were most likely incorporated into the
Erdaojing accretion complex after the late Permian.

The poorly exposed Ondor Sum subduction complex (Figure 8) contains ophiolites, HP
rocks, and granitic gneisses. In the well-exposed Ulan Valley near Ondor Sum, ophiolitic pil-
low lavas and ocean plate stratigraphy occur in the south, folded phyllites in the center, and
thrusted mylonitic HP rocks containing glaucophane and phengite (40Ar/39Ar ages of 453.2 ±
1.8 Ma and 449.4 ± 1.8 Ma) in the north (de Jong et al. 2006, e); all these rocks were juxtaposed
in a south-directed thrust stack. Some late Permian–Early Triassic components have recently

www.annualreviews.org • A Tale of Amalgamation of Three Collage Systems 16.19

Brian
Highlight



EA43CH16-Xiao ARI 10 April 2015 18:36

been found in the Ondor Sum subduction complex; an undeformed pillow lava from the southern
ophiolite, however, has a zircon SHRIMP age of ∼260 Ma (Miao et al. 2007). Zircons from a pla-
giogranite in the Kedanshan ophiolite have a SHIRMP age of 277 ± 4 Ma ( Jian et al. 2007, 2008).
A cumulate gabbro from an ophiolitic fragment southwest of Kedanshan has a zircon SHRIMP U-
Pb age of 256 ± 3 Ma (Miao et al. 2007). Some cherts in mélanges contain late Permian radiolaria
(Wang & Fan 1997). A youngest zircon age of 246 Ma in protoliths of metabasic volcanics in the
Ondor Sum complex with an E-MORB to OIB signature (Chu et al. 2013) provides an Early Trias-
sic upper age limit for this previously defined late Permian subduction complex. These dates con-
firm that the Ondor Sum accretionary wedge was still active in the end-Permian to Early Triassic
(Figure 10b).

An important constraint on the style and timing of final closure of the Paleo-Asian Ocean in
Inner Mongolia is the presence of an Andean-type active magmatic arc on the northern continental
margin of the North China craton. Calc-alkaline hornblende-bearing I-type granitic plutons have
U-Pb zircon ages ranging from 324 ± 6 Ma to 274 ± 6 Ma, demonstrating that the ocean was
closing with southward subduction from the late Carboniferous to the mid-Permian (Figure 10a)
(Zhang et al. 2009).

Farther westward in the Langshan area (Lin et al. 2014), deformed granitic-granodioritic
porphyries (Figure 7) are characterized by geochemical features that can be ascribed to a het-
erogeneous source in a subduction-related environment. Two granitic porphyries yielded U-Pb
weighted mean ages of 284.7 ± 2.1 Ma. The geochemistry of some gabbros and dolerites also
shows a subduction-related setting signature; one dolerite has concordia ages of 256.2 ± 2.6 Ma
and 256 ± 2.5 Ma. The ages and geochemistry of the deformed porphyries indicate that in
the early Permian there was important deformation and recrystallization in a subduction-related
setting. The isotopic and geochemical signatures of all the rocks indicate that they formed un-
der subduction-related conditions (Lin et al. 2014). The Langshan area was part of a Permian
active continental margin arc built on the edge of the North China craton by southward sub-
duction, which led to closure of the ocean, concomitant formation of the Solonker suture in the
late Permian–Early Triassic, and termination of the accretion-subduction orogen of the southern
Central Asian Orogenic Belt (Lin et al. 2014).

Therefore, the final amalgamation of the Mongolian collage system and the North China
craton probably occurred in the late Permian to Middle Triassic (Figures 10c and 11) (Zhang
et al. 2007b, 2009). The suture was imaged on a deep seismic reflection profile across the Solonker
suture (Zhang et al. 2014).

In summary, the Kazakhstan collage system (Chingiz and West Junggar arcs) amalgamated with
the Mongolia collage system (Altai arc) in the Permian or even later. The southern part of the
Kazakhstan collage system collided with the Tarim craton in the late Carboniferous–end-Permian
to Middle Triassic. The suturing between the Mongolia collage system and the Tarim–North
China collage system was in the Permian to Early Triassic (Figure 11a). The termination of these
amalgamation events was likely in the Permo-Triassic (Figure 11b).

DISCUSSION AND IMPLICATIONS

Duration of the Orogenesis

It is widely accepted that the subduction-related developments of the Central Asian Orogenic
Belt started at ∼1.0 Ga (Khain et al. 2002, Kröner et al. 2007) and gradually migrated southward
(present coordinates), as recorded in the vast areas of Russia, Mongolia, and Kazakhstan and other
Central Asian countries. Northern China mainly records the youngest and terminal accretionary
events, which were in the Permo-Triassic.
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The late Paleozoic orogens of North Xinjiang and adjacent areas developed by continuous
southward accretion along the wide southern active margin of Siberia, with the formation of
an Alaska-type arc (Kokchetav–North Tianshan), some Japan-type arcs (Altai, Chinese Central
Tianshan), and Mariana-type arcs (Balkash, West Junggar, and East Junggar).

In the Mongolia collage system, the oldest accretionary event has an age of ∼1.0 Ga (Khain
et al. 2002). In West Junggar of the Kazakhstan collage system, zircons from an isotropic gabbro in
the Mayile ophiolitic mélange yield an LA-ICP-MS U-Pb age of 572 ± 9 Ma (Yang et al. 2012b).
Geochemically, basalts from the Mayile ophiolitic mélange display OIB-type alkali basalt and
E-MORB-type tholeiitic features with a within-plate affinity, and they are geochemically similar
to the Hawaii and Xigaze seamounts, suggesting an intraoceanic seamount setting. Yang et al.
(2012b) proposed a model in which subduction of the oceanic lithosphere commenced during
the late Cambrian to Early Ordovician, and finished with eventual accretion of Neoproterozoic–
early Cambrian seamounts in a forearc together with oceanic fragments, thus forming the Mayile
ophiolitic mélange.

Alaskan-type, zoned mafic-ultramafic complexes with arc-related chemical signatures intruded
in the Beishan near the Tianshan-Tarim suture in the Early Permian (Ao et al. 2010, Xiao et al.
2008b) and in the Central Tianshan in the Ordovician and late Carboniferous (Su et al. 2014).
The final amalgamation of the margin of the Tarim craton with the huge accretionary system to
the north seems to have continued to the late Permian and even to the Early–Middle Triassic
(Xiao et al. 2003, 2004a,b).

The youngest orogenic events are also indicated in the time of final formation of the oroclines
in the Central Asian Orogenic Belt. The formation and tightening of the Kazakhstan orocline,
the early-stage of formation of the Mongol-Okhotsk orocline, and the suturing of the Southern
Tianshan, Beishan, and Solonker sutures all indicate that the termination of the southern Central
Asian Orogenic Belt was in the Permo-Triassic. Combined with the earlier subduction history
of seamounts and/or ophiolitic fragments imbricated in accretionary complexes and sutures, the
accretionary orogenesis in the southern Central Asian Orogenic Belt clearly lasted from the Neo-
proterozoic to the Middle Triassic.

Architecture of the Altaids

The present-day Circum-Pacific Ocean is characterized either by archipelagos with multiple arcs
and other terranes (West Pacific) or largely by a single active margin (East Pacific). The West
Pacific active margins also began with archipelagos in their early tectonic history ( Johnston 2004).
These active margins behaved tectonically like an accordion, with episodic opening and closure
of small oceans; that was the fundamental tectonic idea of Şengör et al.’s (1993) single Kipchak
arc model. However, that work considered only the simplest single-arc situation for the tectonic
evolution of the orogens. We now know that the Central Asian Orogenic Belt clearly has a far more
complicated tectonic framework and underwent a very complex series of tectonic events to arrive

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 12
(a) 270 Ma (middle Permian) paleogeographic reconstruction, showing simplified plate boundaries and labels of some major features.
(b) 250 Ma (Early Triassic) paleogeographic reconstruction, showing simplified plate boundaries and labels of some major features.
Reconstruction of the relative position of the Alxa block and North China craton is from Yuan & Yang (2015a,b). Figure modified after
Domeier & Torsvik (2014), with permission from Elsevier. Abbreviations: A, Alxa block; AM, Amuria; B, Baltica craton; EQ, Erqis;
K, Kazakhstan; NC, North China craton; SC, South China craton; SKO, Solonker Ocean; ST, Southern Tianshan Ocean; T, Tarim
craton.
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at its present state; for example, some active margins joined together to form complicated orogenic
collages (Xiao et al. 2010a). In present-day southeast Asia there is an overall convergent tectonic
system with two large families of archipelagos. One is north of the Sumatra-Timor trench, and the
other is south of the Ontong Java and southeast of the Tonga trench; both of these archipelagos are
currently being amalgamated by convergence. The Central Asian Orogenic Belt was constructed
by three families of archipelagos, and their terminal amalgamation was in the end-Permian to
Middle Triassic (Figures 11 and 12).

The development of the southern Central Asian Orogenic Belt was characterized by multiple
periods of convergence and accretion, which in the early Paleozoic generated extensive, long oro-
genic collages that were bent into oroclines in the late Paleozoic and Early Triassic (Figure 12).
Advanced accretionary orogenesis was achieved by multiple amalgamations of several collage sys-
tems, which were accompanied by multiple phases of parallel amalgamation and orocline rotation.

Therefore, regarding the two major questions to be answered—the duration and architecture
of the accretionary orogenesis—we envisage that the construction of the Central Asian Orogenic
Belt was far more complicated than the processes responsible for collisional orogens. It is also
clear that the duration of orogenesis was longer than previously recognized.

Implications

Orogenic collages are connections of various orogenic components that generated superconti-
nents like the Central Asian Orogenic Belt in the Permian (Figures 11a and 12a) and Early
Triassic (Figures 11b and 12b). The anatomy of the Central Asian Orogenic Belt indicates
that nearly all accretionary orogeneses occurred along an active margin of the host continent,
the core of which was subsequently enlarged by lateral growth (Şengör et al. 1993, Xiao &
Santosh 2014).

Oroclines that develop in the oceans, like the New Caledonia–D’Entrecasteaux orocline
( Johnston 2004) and the Banda arc in Indonesia (Milsom et al. 1996), are well known, but those
that have already accreted into collisional and accretionary orogens are not so well understood
( Johnston et al. 2013). Large-scale orogen-parallel movements, which produce an orocline, may
take place along a linear convergent margin, as in the Alaskan and Vancouver Island oroclines
( Johnston 2001, Johnston & Acton 2003) and along the Kipchak arc (Natal’in & Şengör 2005,
Şengör et al. 1993). Because active margins tend to change their geometry with time, the inboard
components may also change their orientations as a result of rotation during oroclinal bending;
this happened in the Central Asian Orogenic Belt.

The North American Cordillera may provide a useful modern analog for the Central Asian
Orogenic Belt. A long, originally linear strip of continental crust (i.e., a continental ribbon) was
accreted and then buckled by coast-parallel northward movements into the Alaskan orocline
( Johnston 2001) and the Vancouver Island orocline ( Johnston & Acton 2003). Production of the
two oroclines may have been fundamentally similar to that of the two oroclines and their collage
systems in the Central Asian Orogenic Belt. The complicated development of orogens involving
the growth of linear arc chains and/or continental ribbons, which are then rotated and buckled
into oroclines, is undervalued and insufficiently understood.
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Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E, et al. 2007. Accretionary growth and crust-
formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Geol. Soc.
Am. Mem. 200:181–209
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Zhang S, Zhao Y, Kröner A, Liu X, Xie L. 2009. Early Permian plutons from the northern North China
Block: constraints on continental arc evolution and convergent margin magmatism related to the Central
Asian Orogenic Belt. Int. J. Earth Sci. 98:1441–67

Zhang S, Zhao Y, Song B, Yang Y. 2007b. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff
from Western Beijing: evidence for missing Late Paleozoic arc volcano eruptions at the northern margin
of the North China block. Gondwana Res. 12:157–65

Zheng R, Wu T, Zhang W, Xu C, Meng Q, Zhang Z. 2014. Late Paleozoic subduction system in the northern
margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites. Gondwana
Res. 25:842–58

Zheng YF, Xiao WJ, Zhao G. 2013. Introduction to tectonics of China. Gondwana Res. 23:1189–206
Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ. 2011. Early Paleozoic metamorphic rocks of the Erguna

block in the Great Xing’an Range, NE China: evidence for the timing of magmatic and metamorphic
events and their tectonic implications. Tectonophysics 499:105–17

Zonenshain LP, Kuzmin MI, Natapov LM. 1990. Geology of the USSR: A Plate Tectonic Synthesis. Geodyn. Ser.
21. Washington, DC: AGU

www.annualreviews.org • A Tale of Amalgamation of Three Collage Systems 16.31

View publication statsView publication stats

https://www.researchgate.net/publication/275032652

