
47

Burg, J.-P., Kaus, B.J.P., and Podladchikov, Y.Y., 2004, Dome structures in collision orogens: Mechanical investigation of the gravity/compression interplay, in 
Whitney, D.L, Teyssier, C., and Siddoway, C.S., Gneiss domes in orogeny: Boulder, Colorado, Geological Society of America Special Paper 380, p. 47–66. For 
permission to copy, contact editing@geosociety.org. © 2004 Geological Society of America

Geological Society of America
Special Paper 380

2004

Dome structures in collision orogens: Mechanical investigation of 
the gravity/compression interplay

Jean-Pierre Burg*
Boris J.P. Kaus

Yuri Yu. Podladchikov
Geologisches Institut, ETH and University Zürich, Sonnegstrasse 5, 8092 Zürich, Switzerland

ABSTRACT

Domes and basins are evidence for vertical movements in both compression and 
extension tectonic environments. They are thus evidence for interplay between grav-
ity and tectonic forces in structuring the continental crust. We employ analytical and 
numerical techniques to investigate the respective roles of gravity and compression 
during the growth of crustal-scale buckle anticlines and diapirs submitted to instanta-
neous erosion. The analytical perturbation method, which explores the onset of both 
types of instability, yields a “phase-diagram” discriminating eight folding-diapirism 
modes, fi ve of which are geologically relevant. Numerical simulations show that the 
phase diagram is applicable to evolved, fi nite amplitude stages. Calculated strain 
fi elds in both diapirs and folds show normal sense of shear at the interface if the 
upper layer is thick compared to the lower layer. We conclude that the present-day 
structural techniques applied for distinguishing diapiric domes and folds are ambigu-
ous if detachment folding and intense erosion take place during deformation, and that 
domes displaying extensional structures do not necessarily refl ect extension.
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INTRODUCTION

Collision mountain systems are long, linear to arcuate belts 
at Earth’s surface. In these mountains, abundant folds and thrusts 
refl ect regional shortening. Isostatic considerations, gravimetric 
studies, and seismic information show that horizontal shortening 
is intrinsically related to crustal thickening, and it requires 5–7 
km of crustal root to balance each km of mountain range above 
sea level. In other words, a mountain grows 5–7 times more 
downward than upward. Consequently, collision-mountains are 
sites where the continental crust is buried, and thus subjected to 
intense metamorphism and igneous activity. Thickening of the 
buoyant crust and subsequent uplift create a high topography. 
The mountain belt also becomes a region of erosion, which digs 
out deep crustal levels and supplies sedimentary basins. The 

long-term process results in ancient orogens being leveled to 
fl atlands that expose metamorphic and magmatic rock associa-
tions, those that were part of the mountain roots. Typically, these 
high-grade metamorphic regions display large, closed structures 
termed domes and basins. Application of plate tectonics to under-
standing collision orogens has focused on horizontal movements 
because convergence is one to two orders of magnitude larger 
than orogenic vertical movements. Horizontal transport is classi-
cally inferred from recumbent folds and thrust systems. Domes 
and basins are evidence for vertical movements (e.g., Brun, 
1983). Five distinct origins have been postulated:

• Folding: Many domes may be double plunging anticlines 
and/or culminations of crossing anticlines of two separate 
generations and different trends (Ramsay, 1967; Snowden 
and Bickle, 1976).
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• Diapirism of igneous intrusions: A usual explanation of 
blob-like geological map patterns in high-grade metamor-
phic terranes postulates that mobilized rock masses rose 
buoyantly in the core of domes in response to the gravity 
instability resulting from the low density and viscosity of 
the granitic core below the denser and stronger wall rocks 
(e.g., Ramberg, 1972; Brun et al., 1981; Ramberg, 1981; 
Ramsay, 1989). This mechanism has been modeled math-
ematically (Fletcher, 1972; Ramberg, 1972) and experi-
mentally (e.g., Dixon, 1975).

• Reactivation of basement plutons: The development of 
the type mantle gneiss domes in Finland (Eskola, 1949) 
invokes two orogenic events. During the fi rst orogeny, 
granite plutons were emplaced in metasediments and 
metavolcanites. Erosion exposed the plutons and country 
rock, which were covered by a younger sequence of sedi-
ments. Injection of new magma during the second orog-
eny reactivated the old plutons, causing them to expand 
upward and thereby fold the overlying strata into domes 
and basins. We consider this interpretation as a restrictive 
case of polyorogenic yet superposed diapirism and/or 
folding.

• Extensional culminations: rocks of mid-crustal levels are 
brought to shallower levels by tectonic denudation and 
erosion, with horizontal extension along major, shallow-
dipping detachments, scraping away the overlying cover 
(e.g., Coney and Harms, 1984).

• Upward impingement: A strong or rigid basement block 
forces bending of its plastic cover (Gzovsky et al., 1973).

These fi ve mechanisms are not mutually exclusive. For 
example, fold interference is not incompatible with gravity 
instability since both mechanisms could operate synchro-
nously, in particular where density contrast is invariably present 
between core and surrounding rocks (Snowden and Snowden, 
1981). These fi ve mechanisms produce upward movement of 
lower and mid-crustal levels during orogeny, but refer to differ-
ent force systems since compression and extension are predomi-
nantly horizontal forces of opposite sign, and diapirism versus 
impingement involve predominantly vertical forces acting with 
and against gravity, respectively. By chance for geologists, they 
develop symptomatic structural features that allow for identifi -
cation of which mechanism was dominant (Brun, 1983). In par-
ticular, extensional core complexes display a marked asymmetry 
of metamorphic grade and ages, contrasting with the symmetry 
in folds and diapirs (Fig. 1). Our aim is to discuss the growth 
and the mechanical characteristics of two types of domes in the 
light of two-dimensional numerical codes developed for the 
Ph.D. thesis of one of us (Kaus, 2004): (1) large upright folds 
for which upward amplifi cation is fundamentally a response 
to horizontal compression, and (2) magmatic bodies for which 
diapiric (i.e., piercing) rise controlled by the vertical gravity 
seems to play a signifi cant role. Extensional metamorphic core 
complexes in which rocks of middle crustal levels are uplifted 
and exposed by a process dominated by large offsets along low-

angle normal faulting are not discussed in this work; mechanical 
insight has been recently given by Lavier and Buck (2002).

CRUSTAL-SCALE FOLDS

Geological Information

Although geologists have demonstrated and accepted the 
existence of large recumbent folds (fold nappes) with some tens 
of kilometers–long inverted limbs (e.g., Arthaud, 1970; Ramsay, 
1981), they resisted the concept of big buckle folds, with the intu-
itive belief that high amplitude, upright buckles could not stand 
against gravity (e.g., Ramberg, 1971). However, the concept 
becomes valid in places where erosion can behead crustal-scale 
anticlines during their growth, thus eliminating the height and 
relief problem. This is apparently the case in the Himalayan syn-
taxes for which the mechanical consistency of the erosion condi-
tion has been tested numerically (Burg and Podladchikov, 1999, 
2000). In these Himalayan regions, buckle folding has allowed 
exhumation of 30-km-deep rocks within the last 5 m.y. (Zeitler et 
al., 1993; Burg et al., 1997; Burg et al., 1998). Such neotectonic 
examples bring support to crustal fold interpretation of older 
domes such as in the Variscides (Stipska et al., 2000) and some 
mantled gneiss domes (Snowden and Bickle, 1976), although the 
folding perception has gone out of fashion. The apparent lack 
of periodically spaced anticlines neighboring domes interpreted 
as folds is a common criticism of the buckle interpretation since 
smaller scale simulations emphasize periodicity in buckling (e.g., 
Currie et al., 1962; Smith, 1977). The relative isolation of large-
scale folds is a puzzling singularity on which we will comment in 
the light of the numerical modeling presented here.

Mechanical Background

A considerable body of work has shown, both theoretically 
and experimentally, that if a thin layer undergoing layer-parallel 
shortening is more competent (i.e., stiffer) than the surrounding 
material, this condition is unstable and buckling as an instability 
of the stiff layer will occur, while the entire system is deform-
ing in pure shear (e.g., Price and Cosgrove, 1990). Early work 
focused on the analysis of buckling of a layer, either elastic 
or viscous, in an infi nite viscous matrix, taking into account a 
simple linear relationship between stress and strain or stress and 
strain-rate (Smoluchowski, 1910; Biot, 1961; Ramberg, 1964; 
Ramberg and Stephansson, 1964). Modeling relevant to litho-
spheric-scale deformation assumes that a power law viscous 
layer of thickness  H (representing the crust) fl oats on a viscous 
halfspace (representing the mantle; Fig. 2A). We used a setup 
similar to that of Schmalholz et al. (2002), and we additionally 
implemented rapid erosion at the top surface and considered an 
inverse density contrast between the layer and the underlying 
halfspace. If the viscous lower halfspace does not exert any 
shear stress on the layer, the thin-plate theory applies (e.g., 
Reddy, 1999).
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 (1)

where µ
1
 is the effective viscosity of the upper layer, n its power-

law exponent, and P is the mean viscous layer-parallel stress, 
given by: 

 P=4µ
1
 ε̇

BG 
 (2)

where ε̇
BG 

is the background pure shear shortening rate (e.g., 
Turcotte and Schubert, 2002; Schmalholz et al., 2002).

W(x,t) describes the defl ection of the layer/halfspace inter-
face, which is assumed to be sinusoidal with a time-dependent 
amplitude, A(t):

 W(x,t)=A(t)sin(ωx) (3)

where ω = 2π/λ is the wavenumber. Wm(x,t) = W(x,t)/2 is the 
defl ection of the middle line of the layer. H

λ
(x) is the thickness 

of the layer:

 H
λ
(x) = H – W(x,t) = H − A(t)sin(ωx), (4)

where H is the mean thickness of the layer.
Finally, σ

Ntop
 and σ

Nbot
 are the vertical forces exerted at the 

top and bottom of the layer, respectively. The top is kept fl at, so 
σ

Ntop 
= 0. The layer bottom is defl ected and has a density contrast, 

so the vertical forces that act on the layer are due to the gravita-
tional load and the viscous drag of the underlying halfspace with 
viscosity µ

2
 (e.g., Turcotte and Schubert, 2002, Equation 6-165, 

p. 251):

  (5)

in which ρ
2
 and ρ

1
 are the halfspace and layer densities, respec-

tively.
Substituting equations (3), (4), and (5) into (1) and keeping 

only linear terms (A(t)2 terms are omitted because A(t) is assumed 
to be small) gives a linear ordinary differential equation (ODE) 
for the amplitude A(t):

 (6)

The solution of this ODE has the form A(t)=A
0
e(qt), where q is the 

growth rate, given by:

 .  (7)

Substituting P from Equation (2) into Equation (7) yields:

 .  (8)

Setting the gravity term g to zero yields a solution for fold-
ing without gravity. Plotting q/ ̇ε

BG 
 versus λ/H shows that this 

function has a single maximum growth rate (Fig. 2B) that can 
be found by setting the derivative of equation (8) versus ω to 
zero and solving for ω. The only positive solution for ω yields 
the so-called dominant wavelength (Biot, 1961; Ramberg and 
Stephansson, 1964)

  (9)

with the corresponding growth rate:

   (10)

Equation (9) shows that the dominant wavelength is depen-
dent on the thickness of the layer and on the viscosity contrast 
between the upper and lower layers, a parameter that has a large 
amount of uncertainty in nature. Equation (10) shows that the 
growth rate is essentially dependent on the viscosity contrast. 
Note that the expressions for dominant wavelength and growth 
rate have a factor 3 in the denominator, which is appropriate for 
folding of one interface only.

It is interesting to compare these expressions with the solu-
tions obtained for a folded upper surface without erosion (Schm-
alholz et al., 2002). The expressions for dominant wavelength are 
the same, but the dominant growth rate is smaller by a factor of 
two under fast erosion. This counterintuitive result, which was 
confi rmed by more complete thick-plate analysis (Kaus, 2004), 
can be understood by noting that the folding instability is driven 
through defl ections on interfaces between different layers. Since 
there is only one defl ected interface in this setup, the rate at which 
the instability grows is half that when two interfaces are present. 
Another point worth noting is the effect of gravity. It can be seen 
from Equation (7) that a stable density confi guration (ρ

1 
< ρ

2
) 

will decrease the growth rate, and a rather large density contrast 
will eliminate the folding instability. If the density confi guration 
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is unstable (ρ
1 
> ρ

2
), calculations show that the dominant growth 

rate and wavelength both go to infi nity (Kaus, 2004).
One should note that the above derivation has the implicit 

assumption that folds are periodic by inserting a sinusoidal 
interface defl ection (Equation 3). However, the introduction of 
nonlinear effects in the matrix can result in a localized type of 
folding (e.g., Hunt et al., 1996). Both analogue (Abbassi and 
Mancktelow, 1992) and numerical (Zhang et al., 2000) experi-
ments pointed out the strong localizing effect that fi nite ampli-
tude initial perturbations have on the distribution and morphol-
ogy of buckle folds.

The analysis presented above has been extended to large-
scale problems by including the effects of a fi nite, low-viscous 
bottom layer called “matrix,” a denomination we will keep in this 
work to stay in line with earlier literature. Three different fold-
ing modes exist, depending on both the thickness of the lower 
viscous layer and the effi ciency of gravitational versus compres-
sional forces (Schmalholz et al., 2002). For example, gravity 
plays the dominant role in the lithospheric buckling of Central 
Asia, whereas the thickness of the underlying “soft” layer con-
trols buckling in the Zagros and Jura mountains. In the following 
section, we further employ the setup described above (see also 
Goff et al., 1996).

MAGMATIC/DIAPIRIC DOMES

Geological Information

Diapirism and intrusion are the processes involved when 
a geological formation (the source layer) has come under suf-
fi cient stress (including gravity driven components) to fl ow, 
pierce, and break through overlying strata of higher density and 
strength. Magmas commonly have densities lower than those of 
the overlying rocks and consequently tend to ascend through 
passageways or zones of weakness. Most magma does not reach 
Earth’s surface but crystallizes at depth to form plutonic bodies 
of igneous rocks. If plutons are diapirs (a concept still disputed) 
magma stops rising where surrounding rocks have lower density 

and/or at the temperature-equivalent depth where magma cools 
and solidifi es (Vigneresse and Clemens, 2000; Burov et al., 
2003). In fact, the coeval emplacement at similar depth of mag-
mas with different composition indicates that there is no neutral 
buoyancy level in the crust. Accordingly, purely gravity-driven 
igneous diapirism does not exist (e.g., Vigneresse and Clemens, 
2000). The abundance of pluton-cored domes in orogens, in par-
ticular in the European Variscides (Zwart, 1967), points to the 
participation of any tectonic deformation during magma ascent 
(Brun and Pons, 1981; Vigneresse and Clemens, 2000). A typical 
history comprises a deformation-controlled mechanical instabil-
ity that becomes the location from which buoyant upwelling of 
relatively light magma starts, while “ballooning” characterizes 
fi nal emplacement (Pitcher, 1979; Pons et al., 1992). A similar 
history is invoked for salt tectonics (e.g., Jackson and Talbot, 
1989; Poliakov et al., 1996) and many migmatite domes (see 
discussion in Teyssier and Whitney, 2002). Diapiric ascent thus 
most often occurs in a regional tectonic setting whose actual role 
requires new investigations.

Mechanical Background

Here, we only summarize statements from previous work. 
The driving force of diapirism is the density inversion (Biot and 
Odé, 1965). The spontaneous rise of buoyant domes into a denser 
overburden in Earth’s gravity fi eld is strongly inspired by salt 
tectonics (e.g., Talbot and Jackson, 1987). In its simplest form, 
the rock system consists of two horizontal layers, each of which 
has uniform thickness, density, and Newtonian viscosity (e.g., 
Woidt, 1978). Whether viscosities are equal or different, the set-
ting is unstable if the overlying layer is denser than the lower one 
and the interface between the two layers is not perfectly fl at. The 
gravitational instability of a heavy fl uid overlying a lighter fl uid 
is named Rayleigh-Taylor instability, which in its pure form is 
independent of background shortening or extension.

Dimensional analysis allows gaining a fi rst insight in the 
basic parameters that control the Rayleigh-Taylor instability 
(Whitehead, 1988). A layer of thickness, H, density, ρ

2
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Figure 3. A. Setup for analytical inves-
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halfspace. B. Growth rate plotted versus 
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symbols provided in the text.
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viscosity, µ
2
, underlies an infi nite viscous halfspace (Fig. 3A). 

The horizontal velocity v
x
 in the layer is much larger than the ver-

tical velocity v
z
. Force balance in the layer is given by the lateral 

pressure gradient p:

   (11)

where λ is the wavelength of the sinusoidal perturbation on the 
interface separating the two fl uids. The upper halfspace, with a 
viscosity µ

1
 and density ρ

1
, will have a force balance between 

buoyancy, vertical velocity, and viscosity:

   (12)

where the density difference between the two layers is assumed 
to be >0, g the gravitation acceleration and A(t) the time-depen-
dent amplitude of the perturbation. Combining Equations (11) 
and (12) gives:

   (13)

Assuming further that the fl uids are incompressible, (see Equa-
tion 6-53 in Turcotte and Schubert, 2002, p. 235):

 

gives:

  (14)

Like for folding, the interface instability grows exponentially 
with time (A(t) = A

0
eqt) at a growth rate q while the vertical veloc-

ity increases the amplitude as expressed by:

  (15)

where ∂/∂t expresses the time derivative. Substituting Equations 
(14) and (15) in (13) gives:

   (16)

and solving for q:

 . (17)

This simple derivation shows that the growth rate depends 
on the wavelength of the perturbation (Whitehead, 1988). Figure 
3B plots the growth rate as a function of normalized wavelength 
(λ/H). For the specifi c wavelength/thickness ratio:

  (18)

the growth rate is maximum:

 . (19)

This equation predicts the most favorable condition for 
the development of Rayleigh-Taylor instabilities (pure diapir). 
More complete derivations using a two-dimensional perturbation 
analysis also reach this basic result (Whitehead, 1988), albeit 
with different coeffi cients. The notable conclusions gained from 
this analysis are:

•The viscosity contrast is the chief parameter controlling the 
wavelength of a diapiric instability. As such, the depen-
dence of the dominant wavelength on viscosity is the same 
as for folding of a viscous layer in a viscous matrix (see 
Equations 9 and 10).

•Density infl uences the growth rate only and has a negligible 
effect on the wavelength.

ANALYTICAL PERTURBATION METHOD

Several authors have considered the case of a Rayleigh-Tay-
lor instability under compression and demonstrated that above 
a certain strain rate the folding instability becomes dominant 
(e.g., Conrad and Molnar, 1997; Ismail-Zadeh et al., 2002). To 
solve our geological preoccupation, which is how to tell fold-
domes from diapir-domes, we decided to explore the transition 
between both instability modes. We addressed the problem by 
using three methods for the simplest, two-layer system. First, 
the analytical perturbation method, which is valid for the onset 
of both types of instability, is used to derive a “phase diagram,” 
discriminating different modes of deformation. Second, numer-
ical simulations were performed to test the applicability of the 
phase diagram and to study the geometries that develop during 
the nonlinear fi nite amplitude stages. Finally, we calculated and 
compared the patterns of fi nite strain, which geologists may be 
able to use to distinguish the different deformation modes from 
fi eld observations.
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Method

In order to get insight into the transition between diapirism 
and buckling modes, the simplest model consists of a layer of 
high viscosity and density over a layer with lower viscosity and 
density (Fig. 4). The system is subjected to layer-parallel, pure-
shear background deformation at a constant strain rate. Gravity 
is present. The bottom boundary is rigid (no-slip condition), and 
the top is a fast redistribution boundary (no stress condition on 
the top boundary kept fl at throughout experiments). Rheology is 
assumed to be linearly viscous. With this setup, a standard pertur-
bation method (e.g., Fletcher, 1977; Smith, 1977) was employed 
to derive an analytical solution that describes the growth rate of 
the layer interface as a function of its wavelength, density and 
viscosity structure, and the thickness of both layers (see Appen-
dix). The complete analytical solution is rather complicated and 
grants only limited insight on the controlling parameters. There-
fore, analytical solutions regarding the dominant wavelength and 
growth rate were obtained for several end-member cases. For 
instance, an expression for dominant growth rate and wavelength 
was derived in the case of thin-layer diapirism by setting the 
background strain rate to zero and making the lower layer much 
thinner than the upper layer. The result obtained in this way is 
similar to that derived for magmatic/diapiric domes on the basis 
of dimensional analysis (Equations 18 and 19).

Phase Diagram: Folding versus Diapirism

With the technique summarized above, eight deformation 
modes could be distinguished, each with a different expression 
of dominant growth rate and wavelength. These deformation 
modes are displayed in a two-dimensional phase diagram (Fig. 
5) using two non-dimensional numbers, B and B

det
, constructed 

on the basis of rheological and geometrical parameters (Kaus 
2004). They are:

   (20)

 

where R is the viscosity contrast (µ
1 
/µ

2
 ) between the upper and 

the lower (matrix) layer, respectively, H and H
m
 the thickness of 

the lower and upper layer, respectively, and Ar the Argand num-
ber expressing the importance of gravity over background short-
ening rate  ε̇

BG 
  (adapted from England and McKenzie, 1982):

   (21)

Note that this defi nition of the Argand number differs from both 
the original defi nition (England and McKenzie, 1982) and that 
employed by Schmalholz et al. (2002). This point emphasizes 
that the defi nition of the Argand number is problem-related. With 
Equation (21), gravity dominates over compression if the Argand 
number (and therefore the B number) is large, and one expects 
diapiric-type structures. On the other hand, low Argand numbers 
indicate folding or homogeneous thickening modes.

Contours of the dominant growth rate and dominant wave-
length versus B and B

det
 are shown in Figure 5. The curves of 

iso-dominant wavelength and/or iso-growth rate have different 
slopes in different regions of the diagram, thus defi ning eight 
fi elds. The mechanical “phase-boundaries” are the locus of the 
points where slopes change. Inside each fi eld, the growth rate of 
the given mode is larger than the growth rate of any of the other 
seven modes.

It can be readily seen that diapiric modes (gravity domi-
nated) roughly occur for B > 1, and folding modes (where com-
pression dominates) exist when B < 1. Somewhat expectedly, the 
transition depends largely on the Argand number.

Three fi elds cover the diapiric modes:
1. Thin-layer diapirism, when the interlayer boundary is 

very close to the bottom, no-slip boundary;
2. Detachment diapirism, when the interlayer boundary is 

further up from the bottom, which still infl uences the dynamics 
of the system;

3. Matrix diapirism, when the stiff and thin top-layer exerts 
no infl uence.

Five fi elds cover the folding modes. With increasing B
det 

numbers, they are:
1. Thin layer folding, when the interlayer boundary is very 

close to the bottom boundary. In this case, growth rates are 
slower than the background shortening-rate. Folds will still grow, 
but at such a slow rate that they will not become discernable dur-
ing the later stages.

2. Detachment folding, when the interface is further up 
from the bottom, but the infl uence of the bottom is still felt. The 

instantaneous
erosion

  

Hm

H

gg

no slip

εBG εBG

Figure 4. Setup used in this work. A layer of high viscosity and density 
lies over a layer with lower viscosity and density. The system is sub-
jected to layer-parallel, pure-shear background deformation at a con-
stant strain rate. Gravity is present. The bottom boundary is rigid and 
the top is kept fl at. Defi nition for symbols provided in the text.
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low-viscosity lower layer acts like a thin channel and the 
growth rate of the interlayer boundary is limited by the rate 
with which viscous fl uids can fl ow through this channel. 
Therefore, growth rates increase with increasing channel thick-
ness (i.e., increasing  B

det 
number).

3. Matrix folding, when the lower layer is thick enough 
to act like an infi nite matrix (halfspace). Growth rates depend 
solely on the viscosity contrast and background strain rates.

4. Detachment erosion, which has signifi cantly longer 
dominant wavelengths than the matrix-folding fi eld. The 
growth rates are sensitive to viscosity contrast, matrix thick-
ness, and background strain rate.

5. Matrix erosion, which is not dependent on the thickness 
of the top stiff and thin layer.

In light of previous work (Schmalholz et al., 2002), the 
folding modes 1, 2, and 3 were expected. The new modes, 4 
and 5, are due to the action of erosion. The growth rate curves 
of these two compression modes draw attention because they 
have two maxima. For small B

det
 numbers (modes 1–3), the 

fi rst maximum always dominates. However, if B
det

 becomes 
larger than 101.2 (for R = 100), the second peak overtakes 
the fi rst (insets in Fig. 5B). This is accompanied by a sudden 
increase in dominant wavelength.

Not all of the eight fi elds on the phase diagram are expected 
to occur in nature. The thin-layer folding fi eld is one example. 
The growth rate is always smaller than background shortening, 
implying that the system will deform homogeneously rather than 
produce a localized instability. The erosion modes that require 

Figure 5. A. Growth rates normalized over the back-
ground strain rate as a function of B and B

det
 plotted for 

an R-value of 100. Thick lines indicate phase bound-
aries that were calculated on the basis of simplifi ed 
dominant wavelength and growth rate expression. B. 
Contours of dominant wavelengths normalized over 
the total thickness of the system as a function of B and 
B

det
, plotted for an R-value of 100. Switching from a 

detachment-folding mode to a detachment-diapirism 
mode by changing B but keeping B

det
 at a constant 

level, the dominant wavelength remains almost un-
changed. The insets show that the growth rate curve 
for folding with erosion has two peaks. The second 
peak becomes larger than the fi rst one in the detach-
ment-erosion fi eld. 
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mates of the effective thickness of the upper crust for Central 
Asia vary between 6 and 12 km (Schmalholz et al., 2002). Owing 
to these limits, only 5 fi elds are considered further in the current 
study (Fig. 6A). Changing the viscosity contrast affects the topol-
ogy of the phase diagram (Fig. 6B). The boundaries between the 
diapiric modes 2 and 3 and between the folding modes 2 and 3 
are independent of the viscosity contrast, a fact due to the defi ni-
tion of B and B

det
. The other boundaries move across the diagram 

so that the other fi elds widen with increasing viscosity contrast.

Discussion

The fi rst point extractable from the phase diagram (Fig. 5) 
is that detachment folding and detachment diapirism have very 
similar dominant wavelengths. For example, consider a model 
with given layer thicknesses and viscosity contrast resulting in 
log

10
 B

det
= −1. If compression is very slow (i.e., ̇ε→0), the Argand 

number is very large (Ar→∞) and, consequently, the B number 
is large. A diapiric, purely gravity-driven deformation mode will 
develop with a given wavelength (Fig. 5B). If the system now 
suddenly undergoes compression, the B number decreases and 
detachment folding becomes favored. However, the dominant 
wavelength remains almost unchanged and instabilities that 
started forming in the diapiric fi eld are likely to continue ampli-
fying under the folding mode without discernable consequences 
on the wavelength. This observation may help in understanding 
sites and shapes of salt diapirs that pierce periodical folds of the 
Zagros Mountains (Alavi, 1994). A second point is that the shapes 
of both diapirs and folds developing while being instantaneously 
eroded have two-dimensional profi les that look alike; both have 
chimney (cusp) shapes with very steep walls and narrow heads. 
The three dimensional shape of the resulting structures is only 
partially understood for diapirs. Three dimensional, tubular 
diapirs amplify slightly faster than two-dimensional, linear, wall-
like diapirs at fi nite amplitudes (Kaus and Podladchikov, 2001). 
Therefore, diapirs tend to form fi nger-like (or in map-view, circu-
lar) intrusions. Three-dimensional folding, on the other hand, has 
only been studied in the linear initial stages for a layer embedded 
in an infi nite matrix (Fletcher, 1991, 1995). The effects of both 
fi nite amplitude and a detachment layer remain to be examined. 
At the moment, we can only speculate that existing large-ampli-
tude three-dimensional folds will continue amplifying in the 
same detachment-folding mode.

NUMERICAL SIMULATION

The boundaries separating the different deformation modes 
are relatively sharp (Fig. 5), which points to rapid changes in 
deformation mechanism from one mode to the next. However, 
the analytical perturbation method used to derive the diagram 
has an important shortcoming in that it implies infi nitely small 
perturbations of the interface and, therefore, is valid only for 
starting conditions. Linearization is too strong an assumption 
for understanding geological structures that accumulate large 
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Figure 6. A. Phase diagram for crustal deformation for a viscosity 
contrast of R = 1000 as a function of B and B

det
. Not all phase fi elds are 

likely to occur at crustal scale, because some require a very thin layer 
on a very thick matrix (detachment erosion and matrix erosion fi elds) 
and others have a growth rate smaller than the background shortening-
rate (thin-layer folding) and will therefore not produce fi nite amplitude 
domes. B. Topology of the phase diagram as a function of viscosity 
contrasts. The non-dimensional numbers B and B

det
 were chosen in 

such a way that the boundary between the four fi elds that are thought 
to be relevant for the crust is independent on the viscosity contrast. The 
other fi elds become larger with increasing viscosity contrast.

very large thickness ratios are another example. Consider, for 
example, a 50 km thick crust. If a viscosity contrast of 100 is 
assumed between a strong upper crust and a weak lower crust, 
the thickness of the strong layer should be around 350 m in order 
to fall within the detachment-erosion mode (log

10
 B

det
=1.5). Esti-
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amounts of strain. We performed numerical simulations to study 
the importance of nonlinear fi nite amplitude effects and, there-
fore, to estimate the validity of the analytical predictions.

Numerical Technique

We used the code GANGO (Kaus, 2004), which is a two-
dimensional Eulerian fi nite-difference/spectral method that 
builds upon the technique described in Schmalholz et al. (2001). 
It solves the momentum equations for the slow motion of rocks 
on geological timescales. Incompressibility is assumed. The gov-

erning partial differential equations are solved on a two-dimen-
sional domain that uses a spectral approximation in the horizon-
tal direction and a conservative fi nite difference approximation 
in the vertical direction. Time stepping is done with an implicit 
algorithm in order to accurately track the highly unstable initial 
stages of the developing instabilities. A marker line that elimi-
nates numerical diffusion describes the interface between layers 
of different, sharply varying material parameters.

The two-layer setup is the same as that used for the ana-
lytical method (Fig. 4). It mimics a high-viscosity, high-density 
layer, analogue to the upper crust, resting on a low-viscosity, 
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Figure 7. Comparison of analytical growth rates with numerically determined growth rates for four different deformation modes. In all cases, the 
numerically determined growth rates with a small amplitude perturbation are very close to analytical results. Cases where the initial perturbation 
has larger amplitude generally result in smaller growth rates, while the dominant wavelength remains almost unchanged.
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low-density layer representing the deeper crust. The density 
inversion could represent, for example, magma-rich migmatites 
or salt at depth. Rheology is linearly viscous and constant within 
each layer. Horizontal boundary conditions are assumed to be 
periodic on top of a background pure-shear velocity fi eld. A 
no-slip boundary condition was set at the bottom boundary; 
fast redistribution is allowed on the top boundary. This means 
that the topography created at the surface is instantaneously fl at-
tened; depressions are fi lled with a high-viscosity, high-density 
material similar to that of the upper layer. Thus, the modeling 
particularly concerns regions of very fast erosion and sedimen-
tation, as is suggested in the Himalayan syntaxes (Burg and 
Podladchikov, 2000).

Comparison of Numerics and Analytics

In order to check the accuracy of the code, we numeri-
cally calculated growth rates by imposing different sinusoidal 
perturbations of small amplitude at the interlayer boundary and 
recording the fastest growth rate under four different deforma-
tion modes, detachment and matrix diapirism, and detachment 
and matrix folding. The analytical and numerical results show a 
good agreement (Fig. 7). To study the nonlinear fi nite amplitude 
effects, growth rates were calculated for sinusoidal perturbations 
with larger initial amplitudes. In this case, the growth rate curves 
are similar in shape, but the magnitudes are smaller. Therefore, 
the dominant wavelength of fi nite amplitude instabilities is close 
to the wavelength predicted by the analytical solution. Accord-
ingly, the phase diagram can be applied to large strain cases.

Geometries Developing at Finite Amplitude Stages

Previous numerical simulations have demonstrated that an 
initially horizontal layer perturbed with random noise develops 
structures with wavelengths close to the dominant wavelength 
(e.g., Schmalholz and Podladchikov, 1999; Kaus and Podlad-
chikov, 2001). Exceptions to this general rule can occur if the 
amplitude of the noise is large compared to the thickness of 
the layer (e.g., Mancktelow, 1999), if a large non-dominant 
initial perturbation is present (e.g., Schmeling, 1987), or if the 
dominant growth rate is smaller than the background strain rate. 
Simulations starting with an initial low-amplitude random noise 
performed for four deformation modes (not shown here, see in 
Kaus, 2004) indeed developed into structures with a wavelength 
close to the dominant one. To study the geometries developing 
during fi nite amplitude stages, it is therefore suffi cient to start 
with a sinusoidal perturbation of dominant wavelength. Results 
of such calculations are displayed in Figure 8, for which, in addi-
tion to the B and B

det
 numbers, the initial perturbation amplitude 

was varied. Figure 9 shows simulations for the same B and B
det 

parameters with different viscosity contrasts. The resulting struc-
tural characteristics can be summarized as follows:

• Thin-layer diapirism to detachment diapirism: a ten-
dency to form balloon-on-a-string diapirs (Podladchikov 

et al., 1993) is observed, both at small and large initial 
amplitudes and viscosity contrasts. After the diapir 
reaches the surface, its form changes to a stock or chim-
ney-like shape.

• Detachment diapirism: Simulations with a viscosity con-
trast of 3000 always produced chimney-like geometries 
after the low-viscosity low-density material reaches the 
surface. The simulation with a lower viscosity contrast 
formed a balloon-on-a-string diapir. The smaller dominant 
wavelength and thickness ratio in this simulation than in 
the other cases explains this difference. The interface is 
far from the eroding top surface during the initial stages, 
and the shape of the diapir evolves as if the top were a no-
slip or free-slip boundary (e.g., Woidt, 1978). Additional 
simulations showed that, as a rule-of-a-thumb, chimney-
like diapirs form if the dominant wavelength is at least 4–5 
times larger than the thickness of overburden.

• Matrix diapirism: All simulations evolve toward chimney-
like structures.

• Thin-layer folding to detachment folding: Dynamic growth 
rates are too small to have active amplifi cation of the 
interlayer surface whose change in shape is due to the 
overall pure-shear shortening.

• Detachment folding: The simulation with a small initial 
amplitude and large viscosity contrast has active ampli-
fi cation but insuffi cient to reach the surface. The thereby 
developed “hidden” chimney-like structure would be dif-
fi cult to observe in orogenic belts. Simulations that started 
with a larger initial amplitude, on the other hand, produced 
structures that reached the surface, after which the geom-
etry evolved toward chimney-like structures. Simulations 
with a smaller viscosity contrast have smaller growth rates 
and no active amplifi cation.

• Matrix folding: All simulations reach the surface and form 
chimney structures very similar to those in the matrix-dia-
pirism fi eld.

In conclusion, two different dome-like geometries can be 
observed: (1) the classical diapir structure, which forms if very 
thin layers are present; and (2) chimney-like structures, which 
form both in folding and diapiric deformation modes.

Dynamics of Dome Formation

Numerical results show that the fi nal stage morphology of 
both diapiric and folding deformation modes are very similar, at 
least regarding the shape of the interface between different material 
properties. The aim of this section is to investigate differences in the 
dynamic evolution of buckling and diapiric deformations. Figure 10 
shows snapshots in the evolution of a simulation in the detachment 
diapirism fi eld and in the detachment-folding fi eld. Comparisons 
are made for the stream function and effective stress (second invari-
ant of the deviatoric stress tensor; e.g., Ranalli, 1995). During the 
fi rst two stages, before the growing structures reach the surface, the 
velocity patterns are very similar. Both diapirs and folds behave as 
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if the low-viscosity material fl ows through a thin channel toward 
the center of the dome. However, differences exist in the magnitude 
and distribution of effective stress; much larger values are built up 
in the folding mode, which is due to larger background strain rates 
set in this simulation.

During the last stages, after the interlayer boundary reaches 
the surface, considerable differences occur in the velocity fi eld. 
Upward fl ow in the center of the eroding dome continues in the 
diapiric mode, with acceleration due to the fact that velocities 
are no longer controlled by the highest but by the lowest vis-
cosity region. Folds, however, change the velocity pattern from 

upward movement to downward squeezing of low viscosity 
material near the center of the dome. This is accompanied with 
a decrease in absolute velocity and can be explained because 
the dominant mechanism changes from a folding instability to 
fl ow-between-rigid-plates. If this channel has a wedge-shaped 
form, the material gets squeezed outward rather than through 
the channel. Simulations within the matrix-dominated fi elds 
confi rm these results: Initial velocity patterns are similar, but 
patterns change once erosion of the dome material starts.

Chimney-like structures are appealing features to explain 
the formation of isolated domes because the so-called dominant 
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det
 ) points: one with initial amplitude, A

0
, of 0.01 times the height of the initial box and one with larger 

initial amplitude. Varying the initial amplitude has relatively little effect on the fi nal structures that form in the detachment-diapirism, the matrix 
diapirism, and the matrix folding fi elds, whereas it has signifi cant effect in the detachment-folding fi eld where the anticlinal crest does not always 
reach the surface. e

xx
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wavelength becomes very large under rapid erosion conditions. 
These two aspects, along with the occurrence of steep limbs, 
are reminiscent of the Himalayan Syntaxes. However, the bulk 
form and distribution are scantily discriminating. Therefore, we 
tried to establish further discrimination between diapirs and 
folds from the strain fi eld in and around domes.

STRAIN IN AND AROUND DOMES

In order to predict the strain distribution in and around domes, 
a feature observable to geologists, a passive grid was inserted in 

the numerical simulations and moved with the calculated velocity 
distributions. Results are displayed in the form of fi nite strain 
ellipsoids for an intermediate stage in Figure 11 and for a late 
stage in Figure 12, which are chosen for their likeliness in the 
shape of the interface. Expectedly, the largest strains are recorded 
within the low viscosity materials. Diapir simulations show a 
normal sense of shear toward the diapir-overburden interface. 
The matrix-folding simulations show a reverse sense of shear 
toward this interface, which is in agreement with fold vergence 
and the senses of shear that geologists have been using (Figs. 13 
and 14). However the detachment folding simulations behave 
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Figure 11. Strain patterns around diapirs 
(top) and folds (bottom) during inter-
mediate stages when the low viscosity 
material has not yet reached the surface. 
The following parameters were used: 
detachment diapirism, log

10
(B
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)= -1.4, 

log
10

(B)=2, R=3000, 
A
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)=0.1; matrix diapirism, 

log
10

(B
det

)=0.05, log
10

(B)=2, R=3000, 
A

0
/(H+H

m
)=0.1; detachment folding, 

log
10

(B
det

)= -1.4, log
10

(B)=2, R= 3000, 
A

0
/(H+H

m
)=0.1; and matrix folding, 

log
10

(B
det

)=0.05, log
10

(B)=2, R=3000, 
A

0
/(H+H

m
)=0.1. Both detachment fold-

ing and detachment diapirism show a 
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sembles the pattern classically attributed 
to diapirs only. e
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Figure 10. Results of numerical calculations, showing different snapshots of a simulation in the detachment diapirism fi eld (B
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 is 0.1 times the height of the box. During the initial stages, the main difference between folding and diapirism is the magnitude of 

effective stress in the high viscous layer, which is due to the fact that the background strain rate is larger in the folding case. Remarkably, the 
active velocity fi eld and the geometry of the interface are similar for both cases. Only after the low viscosity/low density material has reached 
the surface and is being eroded, the deformation pattern changes signifi cantly: Whereas the diapir continues to move upward with a dramatically 
increased rate, the material in the core of the fold mainly follows a downward movement (gets squeezed away). e
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Figure 13. Structural characteristics of a cylindrical diapir and a cylindrical buckle-anticline; adapted from Dixon (1987). This classical morphology is 
consistent with matrix diapirism and folding (Fig. 12).

Figure 12. Strain patterns around diapirs 
(top) and folds (bottom) during late 
stages, when the low viscosity mate-
rial has reached the surface and is being 
eroded. All parameters are the same as 
in Figure 11. Matrix folding and matrix 
diapirism still have opposite senses of 
shear close to the boundary. Detach-
ment diapirism and detachment folding 
have the same sense of shear close to 
the interface; however, the detachment 
folding sense-of shear fl ips toward the 
center of the anticline. e

xx
—shortening 

in the horizontal (x) direction.

Figure 14. Structural characteristics of a diapir and a buckle-anticline submitted to instantaneous erosion as modeled in this work. This morphol-
ogy refers to detachment diapirism and folding (Fig. 12).
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opposite to expectations with a normal sense of shear at the inter-
face. This is explained by the fact that the thin viscous channel 
largely controls deformation and, indeed, the strain pattern resem-
bles that of viscous pipe fl ow. Only after extrusion of low-viscos-
ity material, the fi nite strain pattern starts switching from normal 
to reverse sense of shear near the center of the dome, whereas 
in the diapir case the pattern remains relatively unchanged. We 
conclude that the present-day structural techniques applied for 
distinguishing diapiric domes and folds are ambiguous if detach-
ment folding takes place and that domes displaying extensional 
structures do not necessarily refl ect extension.

DISCUSSION

We have presented results for a two-layer system with 
simple Newtonian rheology, which is a fair approximation of 
the creep behavior of salt and sediments. However, rocks gener-
ally have a brittle rheology and/or a power-law rheology known 
to be depth-dependent through the strong temperature effect on 
the constitutive laws (e.g., Ranalli, 1995). In light of previous 
studies on folding and diapirism, we will fi rst comment on the 
infl uence of power-law and brittle rheologies on our results. 
The main effect of power-law rheology on the folding instabil-
ity is a marked increase in growth rates and a small decrease 
in dominant wavelength (e.g., Smith, 1977; Schmalholz et al., 
2002; see also Equations 9 and 10). The same effect was also 
recognized for diapirs, around which the deformation aureole 
becomes smaller with increasing power law-exponent (Wein-
berg and Podladchikov, 1995).

Temperature dependency of viscosity may have an infl u-
ence on the results presented here, which are, strictly spoken, 
only valid for quasi-adiabatic conditions. Thermal diffusion 
is known to be more effective if (1) growth rates of the insta-
bilities are low and (2) the instability wavelength is small (e.g., 
Conrad and Molnar, 1997). Both conditions may exist in the 
thin-layer folding and thin-layer detachment modes (Fig. 5) 
and would slow the growth of domes. Since in crustal cases the 
viscosity differences are related to composition differences, the 
overall thermal effects are likely minor at initial stages. During 
evolved stages, however, cooling may stop domes from rising, 
an effect that will be more pronounced for short-wavelength 
structures. Nonlinear feedback mechanisms, such as those 
due to shear heating (e.g., Regenauer-Lieb and Yuen, 2003), 
may also modify the fi nite amplitude structures. Inspection of 
Figures 11 and 12 indicates that shear-heating may be most effi -
cient for the detachment-folding mode, where it would poten-
tially transform the two-layer system into a three layer system 
with a weak shear zone intercalated between the low-viscous 
layer and the highly-viscous overburden. The consequences of 
this intermediate zone on the geometry and dynamics of dome 
formation are currently unknown and should be addressed in 
future studies.

A brittle rheology has only minor effects on salt diapirism 
(Poliakov et al., 1996). Gerbault et al. (1999) also argued that 

the brittle rheology has a relatively minor effect on lithospheric-
scale folding. Zuber (1987) and Schmalholz et al. (2002) have 
considered the effect of a depth-dependent rheology. For this 
purpose, they redefi ned the thicknesses (H and H

m
) of the lay-

ers during modeling; yet, the results remained similar to those 
obtained with depth-independent rheologies. Accordingly, one 
should expect that power-law and brittle rheologies will change 
the defi nitions of the two non-dimensional numbers B and B

det
, 

but the main results of this paper, as fi rst-order strain patterns 
and phase diagram, will not change signifi cantly.

A point worth discussing again is the fact that natural folds 
are often non-periodic on a large scale, whereas they appear to 
be rather periodic on the outcrop scale. The simulations pre-
sented in this paper shed some light on this process by show-
ing that instabilities starting from a larger initial perturbation 
grow faster. Recent work on viscoelastic folding pointed out 
that elasticity triggers more localized folding (e.g., Schmal-
holz and Podladchikov, 1999). Localization is also obtained 
if geometrical (with a non-dominant wavelength and fi nite 
amplitude) and/or rheological heterogeneities are present. It 
is obvious that a mountain chain like the Himalayas contained 
such heterogeneities at the onset of continental shortening 
(e.g., sutures, igneous intrusions, etc.). Therefore, large-scale 
folding, especially during continental collision, may naturally 
be localized. Folding of the oceanic lithosphere, on the other 
hand, is expected to be much more periodic, since the oceanic 
lithosphere is more homogeneous. It is thus logical that regu-
lar undulations in topography, gravity signal and Moho-depth 
observed in the Central Indian Basin over hundreds of kilome-
ters (e.g., Zuber, 1987; Gerbault, 2000 and references therein) 
are periodic buckle folds. It is also evident that three-dimen-
sional constraints linked to corner effects in original bends of 
continental boundaries (e.g., Brun and Burg, 1982) will force 
fold localization.

CONCLUSIONS

Simplifi ed analytical calculations result in a phase diagram 
separating different modes of deformation as a function of two 
non-dimensional numbers: B and B

det
 . Five modes of deformation 

are important in non-extensional, crustal-scale doming, ranging 
from diapiric to folding modes. Numerical simulations further 
demonstrated that the evolved diapirs and folds are similar-looking 
chimney-like like, rather isolated, domes, and erosion plays a key 
role in this isolation.

The strain distribution around domes allows the discrimination 
of folds versus diapirs only in the case where B

det
>1, implying that 

the low-viscosity lower layer is relatively thick. In the other cases, 
the use of asymmetric structures can erroneously point to a diapiric 
origin even if the dome has formed in compression only. If shorten-
ing continues after the core of the dome is eroded, important differ-
ences will be observed between diapirs and folds: the core of diapirs 
continues rising, whereas folds develop a core syncline refl ecting 
downward movement in the center of the dome.
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APPENDIX. PERTURBATION ANALYSIS

For geological processes, inertial terms can be ignored, and 
force equilibrium in a two-dimensional case, ignoring the effect 
of gravity, is given by:

  (A1)

In addition, one assumes that material is incompressible:

   (A2)

Rheology is linearly viscous (with a constant viscosity µ inside 
each layer) and given by:

   (A3)

where p is pressure. Inserting Equations (A3) into the force-bal-
ance Equations (A1) gives:

   (A4)

Pressure is eliminated by taking the derivative of the fi rst 
equation versus z and subtracting the derivative of the second 
equation versus x:

   (A5)

We split the velocity in a sinusoidal perturbed part and a back-
ground part, due to the pure-shear shortening.

   (A6)

where I=  and ε̇
BG

 is the background pure-shear strain rate 
assumed to be constant over the model. Inserting Equations (A6) 
into Equation (A5), using the incompressibility constraint (A3) and 
dividing by µIexp(Iωx)/ω yields a fourth order ODE for ṽ

z
(z):

   (A7)

A general solution of Equation (A7) has the form:

   (A8)

where A, B, C, and D are four constants. Having expressed ṽ
z
(z), 

we can determine all other velocities, stresses, and the pressure 
from Equations (A2), (A3) and (A6), respectively.

The studied case is a two-layer system. Within each layer, 
Equation (A8) applies. Thus, there are eight unknown constants 
that need eight equations. Two of these equations apply at the no-
slip lower boundary, lo, at z = −H

m
 (Fig. 4):

   (A9)

Two equations apply at the upper boundary, up, at z = −H
m
, where 

an infi nitely fast erosion boundary condition is set (Fig. 4):

  (A10)

At the interface between the layers (z =0), continuity of 
velocity is required. After making a fi rst order Taylor expansion 
around (z = 0), the condition can be written:

  (A11)

Stresses across the interface should also be continuous:

  (A12)
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where η=A(t)cos(ωx) is the sinusoidally perturbed interface, 
and A(t) is the perturbation amplitude, which grows exponen-
tially with time. The growth on top of the background pure-
shear thickening is given by:

  (A13)

where q is the growth rate of the interface.

Noting that: 

one can derive that: 

Substituting this relationship in Equations (A12) yields:

  (A14)

Equations (A9), (A10), (A11), and (A14) thus are eight equations 
for eight unknowns (A–F).

They can be written in matrix form:

 AC=R (A15)

where A is an 8 by 8 matrix containing coeffi cients in front of 
the unknowns (A–F), C is an 8 by 1 vector containing the eight 
unknowns, and R is an 8 by 1 vector, which is fi lled with zeros 
in the studied case.

The system (A15) has a nontrivial solution only if det
(A) = 0. In practice, this tedious task is performed using the 
symbolic manipulation package MAPLE, but even in this case 
the analytical solutions are complicated. An alternative method 
was described in Smith (1977), who determines the growth 
rate q numerically by inserting a random value for q in A and 
iterating until the det(A) is zero. This gives the growth rate for 
a given wave number and for given physical parameters. This 
task can be done using the linear algebra package MATLAB. 
By scanning ranges of ωs, the fastest growth rate is found. 
Analytical expressions of the maximum growth rate versus 
physical parameters were found by calculating growth rates 
for limiting cases (e.g., setting the background strain rate to 
zero gives pure diapiric modes). These analytical expressions 
were then compared to analytical expressions that were derived 
for simplifi ed cases (e.g., the formula for dominant wavelength 
and growth rate for matrix folding was compared to an analyti-

cal solution that was derived for the case of folding if a layer 
rested on an infi nite halfspace). Once expressions for growth 
rates are known for every deformation mode, the boundaries 
between deformation modes can be calculated by requiring that 
the growth rate of two adjacent phases are equal at the phase 
boundary.
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