УДК 550.4:552.313.8(234.851)

© М. Ю. Казачкин КИСЛЫЕ МЕТАТУФФОИДЫ ПУЙВИНСКОЙ СВИТЫ СРЕДНЕГО РИФЕЯ (ПРИПОЛЯРНЫЙ УРАЛ)

Институт геологии Коми НЦ УрО РАН, г. Сыктывкар, 167982, ул. Первомайская, д. 54. E-mail: m_kazachkin@geo.komisc.ru (Представлена д. чл. УАГН Я. Э. Юдовичем)

© M. Yu. Kazachkin ACID TUFFS OF THE MIDDLE RIPHEAN PUYVINSKAYA FORMATION (CIRCUMPOLAR URALS)

Автореферат

Приведены результаты исследования кислых метатуффоидов пуйвинской свиты среднего рифея с использованием современной методики литохимии. Выделены две разновидности метатуффоидов, по составу отвечающих риолитам и риодацитам (делленитам).

Ключевые слова: метатуффоиды, рифей, пуйвинская свита, Приполярный Урал.

Abstract

Acid tuffs of the Riphean puyvinskaya formation are studied using modern methods of the lithochemistry [Yudovich and Ketris, 2000: Principles of Lithochemistry]. Two types of the acid tuffs are characterized, corresponded to dellenite (type I) and rhyolite (type II).

Среднерифейская пуйвинская свита (R₂pv) широко распространена в Тельпосско-саблинском и Кожимсковангырском районах приполярного Урала (рис. 1). Породы пуйвинской свиты согласно залегают на отложениях ошизской толщи, или со стратиграфическим несогласием перекрывают карбонатную толщу щокурьинской свиты (R₁šk) в Кожимско-Вангырском районе и перекрываются со стратиграфическим несогласием отложениями хобеинской свиты (R₃hb) (рис. 2). Общая мощность пуйвинской свиты достигает 2000 м [4].

В нижней и верхней частях пуйвинская свита сложена в основном филлитовидными слабо углеродистыми сланцами с 89 тонкими прослоями кварцитовидных пород, а в средней преимущественно толщей зеленых сланцев-метабазитов, возможно с присутствием метагипербазитов-пикритов [1, с. 136-137].

До 1986 г. никаких других изверженных пород в составе пуйвинской свиты не отмечалось. Прослои риодацитов были впервые описаны А. М. Пыстиным в ходе геологической съемки масштаба 1:50000 в 1986 г., в районе устья руч. Хасаварки на Кожиме [3].

В 1987 г. в ходе регионально-геохимических исследований докембрия Кожимского района, Я. Э. Юдович установил выходы прослоев белых и желтоватых аркозовидных пород в разрезах по р. Кожим и по его притокам (руч. Игнатий-шор, Николай-шор, Хасаварка), а в 1999 г. - на восточном склоне Урала на руч. Панэче-шор, левом притоке р. Народа. Эти породы были определены им как кислые метатуффоиды¹. Некоторым аспектам геохимии этих пород были посвящены три публикации, в дальнейшем включенные в монографию «Геохимия древних толщ Севера Урала» [1, с. 31-32, 123-125, 209-215]. Несмотря на это, данные породы нуждаются в более обстоятельном изучении с использованием современной методики литохимии [5].

Нами была сделана выборка (n = 209) полных химических анализов пород пуйвинской свиты из составленной нами компьютерной геохимической базы данных (БД) севера Урала [2]. Генетические типы пород, попавших в выборку, и количество анализов этих типов в выборке приведены в таблице 1.

В соответствии с «Литохимическим стандартом ЮК», представляющем собою алгоритм литохимической обработки данных [2, с. 141] были рассчитаны литохимические модули и построены модульные диаграммы² с выделением кластеров -

90

¹ Метатуффоид - метаморфизованный туффоид. Согласно Я. Э. Юдовичу «...туффоиды суть осадочные или осадочнометаморфические породы с заметной примесью пирогенного материала» [5, с. 288].

² На диаграммы не выносились точки, соответствующие «породам проблематичного генезиса» и «прочим» (83 анализа).

Рис. 1. Схема распространения рифей-вендских отложений севера Урала. Составлена по [4].

Зоны: І - Западно-Уральская, ІІ - Центрально-Уральская, ІІІ -Восточно-Уральская. Районы: 1 - Амдерминский, 2 - Енганэпейский, 3 - Оченырдский и Изъяхойско-Малокарский, 4 - Тельпосско-Саблинский, 5 - Кожимско-Вангырский, 6 - Некраюсско-Верхнелемвинский, 7 - Верхнепечорско-Косьвинский, 8 - Хараматолоуский, 9 - Харбейский.

Рис. 2. Стратиграфическая схема отложений пуйвинской свиты, подстилающих и перекрывающих ее пород. Составлена по [4]. 92

Таблица 1

Распределение пуйвинских пород по генотипам

	Количество	
тенстические типы пород	анализов	
Калиевые метасоматиты	2	
Метаалевролиты	6	
Метаалевропелиты (включая известковистые)	15	
Метабазиты	12	
Метагипербазиты	2	
Метагравелиты	8	
Метапелиты	16	
Метапесчаники	8	
Метатуффоиды ацидитовые	57	
Породы проблематичного генезиса	79	
Прочие	4	

Примечание: генетические типы пород определены согласно принятой нами в БД классификации [2].

групп сближенных фигуративных точек, позволяющих выполнять усреднение аналитических данных (рис. 3). Анализ модульных диаграмм позволил выделить два широких поля химических составов и три кластера.

Поле А отвечает составам метабазитов и метагипербазитов (рис. 3). Они отличаются невысоким содержанием щелочей при величине ГМ (гидролизатный модуль), находящейся в пределах от 0,2 до 0,8. На «базовой» модульной диаграмме в координатах ($Na_2O + K_2O$) - ГМ это поле отчасти перекрывается с полем осадочных пород (поле В) (рис. 3, а). Однако на диаграмме в координатах ($Na_2O + K_2O$) - ФМ (фемический модуль) (рис. 3, б) поле А четко дифференцируется по своей высокой фемичности, и контуры его не пересекаются с контурами поля осадочных пород.

Поле В включает обширную группу заведомо осадочных пород - это различные метапесчаники, метагравелиты, метаалевролиты, метаалевропелиты и метапелиты.

Кластер I в пределах этого поля образуют только меаалевролиты; точки, соответствующие другим породам, кластеров не образуют, поскольку имеют сильную дисперсию литохимических модулей (рис. 3). В целом поле В характеризу-93

ется позитивной корреляцией щелочности и глинистости пород.

Рис. 3. Модульные диаграммы для пород пуйвинской свиты в координатах (Na₂O + K₂O) - Γ M (a), (Na₂O + K₂O) - Φ M (б), TM - Γ M (в).

Кластер II слагают калиевые метасоматиты, встречающиеся на контактах кварцевых жил с вмещающими их метапелитами и метаалевролитами [1, с. 142]. Эти породы отличаются самыми высокими величинами ГМ (более 0,9), относительно высокой общей щелочностью (7,7) и низкой величиной щелочного модуля (ЩМ менее 0,15), вследствие доминации K₂O над Na₂O (рис. 3).

Кластер III представлен кислыми метатуффоидами (рис. 3). В целом они характеризуются повышенной щелочностью при невысоких величинах ГМ и ФМ. Следует особо подчеркнуть, что эти породы отличаются экстремально низкими величинами титанового модуля (ТМ) (рис. 3, в) [5, с. 82, 98; 1, с. 123]. Обычно величина модуля ТМ для них составляет менее 0,008 (за исключением отдельных образцов), в то время как у любых других пород пуйвинской свиты ТМ всегда превышает 0,017. 94

В кластере III по показателю общей щелочности и величинам модулей ГМ, ФМ и НКМ (нормированная щелочность) выделяются два подкластера - III а и III b (рис. 4, табл. 2). Метатуффоиды подкластера III а характеризуются относительно пониженными значениями модулей ГМ (рис. 4, а, в), ФМ (рис. 4, б) и НКМ (рис. 4, г). Наиболее четкое разделение пород проводится по модулю НКМ, отображающим соотношение полевых шпатов и слюды [5]. Для пород кластера III а характерны значения этого модуля в пределах от 0,35 до 0,41, для пород кластера III b от 0,41 до 0,51.

Рис. 4. Модульные диаграммы для кислых метатуффоидов пуйвинской свиты в координатах $(Na_2O + K_2O) - \Gamma M$ (a), $(Na_2O + K_2O) - \Phi M$ (б), TM - ΓM (в), HKM - ЩМ (г).

Изученные нами метатуффоиды сходны по своим петрографическим характеристикам, однако выявленные литохимические разновидности имеют свои характерные особенности.

В общем, во всех образцах под микроскопом различимы основная масса (90-100 %) и вкрапленники (до 10 %). Основная масса представляет собой мелкозернистый полевошпаткварцевый агрегат с мелкими чешуйками серицита и (или) цоизита. На этом фоне четко выделяются полевошпатовые вкрапленники, иногда сдвойникованные, по которым часто развивается серицит или цоизит. В некоторых образцах встречаются скопление крупных (до 1 мм) зерен кварца, неправильной формы.

Особенностью пород подкластера III а (рис. 5, а) является присутствие карбоната (до 6 %), образующего скопления зерен размером до 0,5 мм

Все метатуффоиды подкластера III b содержат гранат, образующий идиоморфные кристаллы и неправильной формы зерна (рис. 5, б) размером от 0,1 мм до 1,2 мм. В некоторых образцах встречаются зональные гранаты, ранее детально описанные Я. Э. Юдовичем [1, с. 209] (рис. 5, в) и гранаты с гелицитовой структурой (рис. 5, г). Напротив, карбонат для этих пород не характерны - он встречается только в некоторых образцах и в небольших количествах (до 2 %).

Из кластера III нами были исключены семь образцов (рис. 3, 4; табл. 2) имеющих некоторые особенности химического состава, не позволяющие усреднять их с остальными образцами. Среди таких особенностей – относительно повышенная или пониженная общая щелочность (обр. 1, 2), повышенный титановый модуль (обр. 2-5), а также аномальная натровость (высокие значения щелочного модуля ЩМ - обр. 6, 7). Образцы 8-14 по своему химическому составу хотя и соответствуют кластеру III, но вычленяются нами из подкластеров III а и III b только по признаку наличия или отсутствия карбоната.

Итак, нами выделены две разновидности пуйвинских метатуффоидов. По своему химическому составу они в основном соответствуют риодацитам-делленитам (кластер III а) и риолитам (кластер III b). Индивидуальные особенности состава отдельных пород можно объяснить спецификой условий осадконакопления (обр. 2-5) или постседиментационными метасоматическими процессами (обр.

Рис. 5. Микроструктуры метатуффоидов пуйвинской свиты. а, б - с анализатором, в, г - без анализатора.

а - метатуффоид. Подкластер III а. На фоне кварц-полевошпатовой основной массы отчетливо виден сложно сдвойникованный вкрапленник альбита с включениями слюды и цоизита. Также присутствуют прожилки кварца и карбоната. Обр. Ко5/1558.

Продолжение подписи к рисунку 5

б - метатуффоид. Подкластер III b. На фоне кварц-полевошпатовой основной массы - неправильной формы зерно и идиоморфный кристалл гранатов. Обр. XC7/1538. в - зональный гранат в метатуффоидах. Подкластер III b. Обр. Ко6/1642. г - гранат с гелицитовой структурой в метатуффоидах. Подкластер III b. XC1/1432. 98 1, 6, 7)³. Мы считаем, что близость химического состава пород обр. 2-5 и развитых в районе осадочных пород связана с тем, что пепловый материал при осаждении смешивался с нелитифицированными осадками, что, в частности, увеличивало титановый модуль туффоидов. Поэтому эти породы нами аттестуются как метатуффиты.

Таблица 2

Химический состав пуйвинских метатуффоидов

Мо кластера			(MIII1	(141114	(141114	(MIIIO	(Ko5	(1411111
Mº sofnaciepa	IIIa	IIIb	(1050)	(1073)	(1074)	1083)	(K05- 1620)	1088)
(л⊻ образца)			1039)	1075)	1074)	1085)	1020)	1000)
Количество								
ооразцов в кла-	10	0.5					(5)	(0)
стере (номер	18	25	(1)	(2)	(3)	(4)	(5)	(6)
образца на								
диаграммах)								
SiO ₂	66,96	72,63	70,60	77,94	70,77	64,34	69,13	75,32
TiO ₂	0,11	0,06	0,10	0,40	0,63	0,86	0,29	0,04
Al_2O_3	16,23	14,65	16,41	9,99	13,84	16,20	14,82	13,94
Fe ₂ O ₃	0,91	0,76	0,56	0,63	1,11	1,02	1,05	0,50
FeO	1,35	1,06	0,91	2,79	3,14	5,54	4,93	1,51
MnO	0,06	0,08	0,01	0,16	0,08	0,13	0,26	0,04
MgO	1,24	0,45	0,84	0,83	1,47	1,94	0,33	0,28
CaO	2,78	1,38	0,44	1,37	1,14	1,34	1,61	0,71
Na ₂ O	3,57	4,86	6,80	1,83	3,19	2,79	5,09	5,73
K ₂ O	2,58	1,79	1,48	1,69	2,12	2,70	0,93	0,76
P_2O_5	0,02	0,03	0,05	0,16	0,35	0,09	0,06	0,02
П. п. п.	3,55	1,82	1,19	1,40	1,31	1,93	0,25	0,25
Сумма	99,36	99,58	99,39	99,19	99,15	98,88	98,75	99,10
$Na_2O + K_2O$	6,15	6,65	8,28	3,52	5,31	5,49	6,02	6,49
ГМ	0,28	0,23	0,25	0,18	0,27	0,37	0,31	0,21
ЖМ	0,14	0,13	0,09	0,34	0,3	0,39	0,41	0,15
ΦM	0,05	0,03	0,03	0,06	0,08	0,13	0,10	0,03
AM	0,24	0,20	0,23	0,13	0,20	0,25	0,21	0,19
TM	0,007	0,004	0,006	0,040	0,046	0,053	0,020	0,003
НКМ	0,38	0,45	0,50	0,35	0,38	0,34	0,41	0,47
ЩМ	1,45	2,91	4,59	1,08	1,50	1,03	5,47	7,54

³ Более подробно особенности состава щелочных метасоматитов комплекса доуралид (в том числе и пуйвинской свиты) рассмотрены в монографии «Геохимия древних толщ Севера Урала» [1, стр. 139].

Продолжение таблицы 2

№ кластера	(ИШ11-	(ИШ1-	(XC8-	(Ко5-	(Ко5-	(Ко5-	(Ко5-	(Ко5-
(№ образца)	1090)	1058)	1544)	1568)	1583)	1601)	1605)	1627)
Количество								
образцов в кла-								
стере (номер	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
образца на								
диаграммах)								
SiO ₂	75,46	70,57	0,18	69,17	68,16	67,46	8,92	69,60
TiO ₂	0,05	0,08	0,06	0,12	0,11	0,13	0,07	0,07
Al ₂ O ₃	13,91	16,30	5,08	17,07	17,11	16,76	4,91	15,05
Fe ₂ O ₃	0,60	0,74	0,55	1,33	1,05	1,14	0,60	0,77
FeO	1,27	1,45	0,66	1,37	0,99	1,88	0,86	0,67
MnO	0,05	0,01	0,01	0,04	0,02	0,02	0,05	0,02
MgO	0,21	1,11	0,65	1,06	1,26	1,48	0,59	0,60
CaO	0,67	0,32	2,53	0,74	3,30	1,09	3,02	2,48
Na ₂ O	6,20	5,15	3,90	2,92	4,07	4,48	6,08	3,90
K ₂ O	0,37	2,18	2,52	3,29	1,58	2,45	1,34	2,53
P ₂ O ₅	0,02	0,05	0,02	0,05	0,02	0,04	0,02	0,02
П. п. п.	0,54	1,37	3,27	2,20	1,70	2,36	2,93	3,73
Сумма	99,35	99,33	9,43	99,36	99,37	99,29	9,39	99,44
$Na_2O + K_2O$	6,57	7,33	6,42	6,21	5,65	6,93	7,42	6,43
ГМ	0,21	0,26	0,23	0,29	0,28	0,30	0,24	0,24
ЖМ	0,14	0,13	0,08	0,16	0,12	0,18	0,10	0,10
ФМ	0,03	0,05	0,03	0,05	0,05	0,07	0,03	0,03
AM	0,18	0,23	0,21	0,25	0,25	0,25	0,22	0,22
TM	0,004	0,005	0,004	0,007	0,006	0,008	0,005	0,005
НКМ	0,47	0,45	0,43	0,36	0,33	0,41	0,50	0,43
ЩМ	16,76	2,36	1,55	0,89	2,58	1,83	4,54	1,54

Примечания: AM — алюмокремниевый модуль. В таблице выделены аномальные величины литохимических модулей.

Породы, не вошедшие в подкластеры III а и III b, также по сути являются разновидностями метатуффоидов и их особенности можно объяснить локальными процессами.

Литература

1. Геохимия древних толщ Севера Урала / Отв. Ред. академик Н. П. Юшкин. Ред.-сост. Я. Э. Юдович и М. П. Кетрис. Сыктывкар: Геопринт, 2002. 333 с. 2. Казачкин М. Ю. Геохимическая база данных древних толщ севера Урала // Структура, вещество, история литосферы Тимано-Североуральского сегмента. Сыктывкар: Геопринт, 2003. С. 102-106. (Информационные материалы 12-й научной конференции).

3. Пыстин А. М. Карта метаморфизма Приполярного и южной части Полярного Урала. Сыктывкар, 1991. 20 с. (Науч. Докл. Коми НЦ УрО АН СССР; Вып. 259).

4. **Четвертое** Уральское межведомственное совещание. Стратиграфические схемы Урала и объяснительная записка к ним: Приняты 20 апреля 1990 г. и утверждены межведомственным стратиграфическим комитетом России 12 ноября 1991 г. Екатеринбург, 1994.

5. Юдович Я. Э., Кетрис М. П. Основы литохимии. СПб: Наука, 2000. 479 с.