УДК 549.5+552.321.4 (470.5)

© Д.чл. УАГН О.К.Иванов

ВАРИАЦИИ СОСТАВА ТИТАНОМАГНЕТИТА ПО РАЗРЕЗУ ОДНОГО ИЗ ПЛАСТОВ КОПАНСКОЙ РАССЛОЕННОЙ ИНТРУЗИИ, Ю.УРАЛ

Уральский институт минерального сырья, г.Екатеринбург

© Ivanov O.K.

THE TITANOMAGNETITE COMPOSITION VARIATION CROSS ONE LAYER FROM THE KOPANSKAJA LAYERED INTRUSION, SOUTH URALS

Автореферат

Изучен химический состав титаномагнетитов по разрезу одного титаномагнетитового пласта в южной части Копанской габбровой расслоенной интрузии. Мощность пласта 80 см. Вверх по разрезу пласта увеличивается содержание Fe^{3+} , Ті и Аl и уменьшается содержание Fe^{2+} и Mg. Содержание Cr, Mn, Ni остается стабильным. Вариации состава связываются с гравитационным расслоением рудного расплава по ионной плотности элементов.

Библ. 13. Рис. 3. Табл. 1

Ключевые слова: титаномагнетит, габбро, расслоенная интрузия, Копань.

Кусинско-Копанская расслоеннная габбровая интрузия содержит до 5 титаномагнетитовых пластов и зоны повышенной вкрапленности титаномагнетита и ильменита в габброидах. Характерной особенностью расслоенных интрузий являются существование петрографической (обычной и ритмической), минералогической и геохимической (скрытой) расслоенности массива по разрезу интрузии и внутри отдельных слоев (пластов). Скрытая слоистость в хромититовых пластах для Бушвельда и Сарановской интрузии изучена достаточно детально, тогда как для титаномагнетитовых слоев таких доказательств пока очень мало и они недостаточно полные [2-5, 12, 14]. Так, Дж. Уиллемз [13] со ссылкой на Молинэ, показал, что по разрезу титаномагнетитовых пластов Бушвельда, вверх по разрезу увеличивается содержание TiO_2 от 12.2 - 13.9 до 20% и уменьшается содержание V_2O_5 от 2,2 до 0,4%.

Для Кусинской интрузии еще П.Г.Пантелеев в 1938 г. установил изменение состава рудных тел метаморфизованного Кусинского ильменит-магнетитового месторождения, которые он считал образовавшимися из единого магматического очага. При этом от рудного тела 1 (пласта О.И.) до рудного тела 4 установлено закономерное увеличение содержания железа от 47,4 до 54,5%, уменьшение содержания титана от 14,8 до 13,6% и увеличение содержаний хрома от 0,42 до 1,07%, а также уменьшение отношений Ti / Fe и увеличение отношений Cr / Fe [12]. Однако тогда представление о расслоенных интрузиях еще не было разработано и, кроме того, он изучал сильно метаморфизованные руды.

Кусинско-Копанская расслоенная интрузия (пояс) на современном эрозионном срезе имеет длину около 70 км и ширину до 7 км, северо-западное простирание и юго-восточное падение под углом от 30 до 90^{0} (Рис.1). Проведенное в последнее время бурение показало, что интрузия выполаживается к востоку и увеличивается в мощности до 700 м в северной части, с перспективой еще большего увеличения мощности к востоку [1, 7, 13].

Расслоенная интрузия в этой части состоит по А.А. Алексееву и другим [1] снизу вверх из зоны габбро-норитов, мощностью около 300м, затем габброидной мощностью 600-750м и верхней диорит-гранитной зоны мощностью до 250м.

На западном контакте или в основании интрузии развиты доломиты, филлиты и кварциты саткинской, бакальской и зигальгинской свит, превращенные в зоне контакта в кальцифиры, скарны, флогопитовые, флогопит-тремолитовые, тремолит-доломитовые породы и фельдшпатизированные кварциты.

Сама расслоенная интрузия неравномерно метаморфизована. В северной части, в районе Кусинского месторождения габброиды метаморфизованы до амфиболитов и гранатовых амфиболитов, а титаномагнетитовые руды превращены в ильменит-магнетитовый агрегат. К югу степень метаморфизма постепенно уменьшается [8, 9, 13]. Наименее изменен метаморфическими процессами Копанский массив, сложенный на современном срезе нормальными лабрадоровыми габбро с подчинен-70 ным развитием габбро-норитов, норитов, оливиновых норитов, ильменитовых габбро, горнблендитов, пироксеновых анортозитов, амфиболовых габбро-диоритов и габбро-пегматитов. Небольшое количество титаномагнетитовых пластов картируется в центральной части интрузии. Наблюдается слабая стратифицированность пород и руд, с которой совпадает полосчатость и трахитоидность.

Массивные титаномагнетитовые породы в Копанском массиве образуют пять пластов длиной по простиранию до 10 км и мощностью от десятков сантиметров до 2м. Пласты сложные, неоднородные с резкими и постепенными границами с габброидами и содержат пропластки безрудных габбро. Пласты сложены массивным среднезернистым полиэдрическим титаномагнетитом с прослоями мелковоидных титаномагнетитовых пород. Мелковоидные титаномагнетиты состоят из мелких округлых овоидов диаметром до 1-2см, равномерно расположенных в массивной титаномагнетитовой породе, сложенной полиэдрическими зернами титаномагнетита размером 2-4мм. Овоиды сложены клинопироксеном с равномерной или уменьшающейся к центру овоида вкрапленностью изометрических зерен титаномагнетита размером до 1мм. Овоидная текстура в титаномагнетитовой породе и размерности минералов совершенно идентичны таковым из хромититовых пластов Сарановской расслоенной интрузии, где они в наиболее мощных пластах достигают диаметра 10 см [5].

Титаномагнетит по В.С.Мясникову и О.В.Карповой [9, 10, 11] полностью сложен структурами распада с выделением разноориентированных пластинок ильменита, шпинели, ульвита и диаспора в магнетитовом субстрате. Структура распада от ультратонкой до тонкозернистой, местами с выделением по прожилкам изометрических зерен ильменита. Вместе с тем, форма и первичные размеры индивидов титаномагнетита сохраняются без изменения, что говорит об относительно слабом, по отношению к Кусинскому месторождению, метаморфизме, где аналогичные пласты титаномагнетита полностью замещены мелкозернистым ильменит-магнетитовым агрегатом.

Пробы отбирались в южной части Копанского массива в обнажении на склоне горы Бурилка, расположенной в 3 км к юго-западу от г. Макуриха. В обнажении наблюдались два 71 сближенных титаномагнетитовых пласта мощностью 45 и 35 сантиметров, разделенных прослоем рудного габбро (рис. 2). Пробы выпиливались из куска пласта, куски постадийно дробились и из них отбирался титаномагнетит двух генераций – полиэдрический и мелкозернистый из овоидов. Затем в тяжелых жидкостях получалась тяжелая фракция без магнитной сепарации. Тяжелая фракция растиралась в «яшмовой», в действительности, туфовой ступке из калканской яшмы и отдавалась на химический анализ в Химическую лабораторию ЦКЛ УГУ в г.Екатеринбурге. Результаты анализа приведены в таблице.

Рис.1. Схематическая карта положения Кусинско-Копанского пояса расслоенных габбровых интрузий.

Условные обозначения: 1 – палеозой западного склона Урала; 2 – Главный Уральский надвиг; 3 – Магнитогорская синклиналь; 4 – Бердяушский массив рапакиви; 5 – гранито-гнейсы Губенского массива; 6 – Кусинско-Копанский пояс, залитое-габбро, косые крестики диорит-гранитоидная зона, номера массивов: 1 – Кусинский, 2 – Медведевский, 3 – Копанский, 4 – Москальский (Маткальский); 7 – протерозойские отложения, 8 – Тараташский метаморфический комплекс; 9 – место изученного титаномагнетитового пласта.

72

Все анализы показывают присутствие кремнезема и, иногда, повышенные содержания магнезии. Было предположено, что часть кремнезема связана с растиранием титаномагнетита в ступке, часть – примесь силикатов. Отстройка диаграммы содержание кремнезема – содержание магнезии (рис. 3) показала, что частично между этими компонентами есть прямая зависимость при содержания кремнезема выше 1,0 %. Поэтому было принято, что при содержании кремнезема до 1 %, он представляет материал ступки, выше 1 % это примесь какого-то силиката магния. Поскольку, повышенных содержаний кальция и натрия в пробах нет, это должен быть минерал типа энстатита или клиноэнстатита. Исходя из этого, анализы были пересчитаны за вычетом примеси кремнезема и магниевого силиката и пересчитаны на 24 катиона (табл.). Из-за относительно небольшого количества вещества для мелких зерен титаномагнетита в овоидах возможен был лишь частичный анализ на TiO₂, Cr₂O₃ и V₂O₅.

Условные обозначения: 1 – габбро; 2 – рудоносное габбро; 3 – массивная титаномагнетитовая порода; 4 – рудоносное габбро с трахитоидной текстурой; 5 – габбро-пегматит.

Анализы отражают состав первичного титаномагнетита до процессов распада в результате какого-то геологического события, скорее всего, наложенного метаморфизма связанного с гранитоидами.

Результаты пересчета были вынесены на диаграмму, отражающую строение титаномагнетитового пласта (рис. 4). При этом:

Для суммарного железа наблюдается тенденция более или менее стабильного содержания по разрезу с зигзагообраз-73 ными колебаниями в нижнем пласте. Для Fe³⁺ четкая тенденция увеличения содержания вверх по разрезу. Для Fe²⁺ наблюдается четкая тенденция уменьшения содержания вверх по разрезу.

Рис. 3. Соотношение содержаний магнезии и кремнезема в пробах титаномагнетита.

Для титана по всей системе наблюдается сложная картина, тогда как для каждого из пропластков наблюдается увеличение содержаний титана в центральной части пропластков и уменьшение к верхним и нижним контактам.

Для магния, в целом, наблюдается заметное уменьшение содержания снизу вверх, тогда как для нижнего пропластка наблюдается увеличение содержания магния в центральной части и заметное уменьшение в нижнем и верхнем контактах.

Для алюминия наблюдается слабая тенденция увеличения содержания вверх по разрезу, но для нижнего пропластка характерно резкое зигзагообразное изменение содержаний.

Для марганца, никеля, хрома и ванадия четких вариаций содержания по разрезу не устанавливается.

Таким образом, в целом для двух сближенных титаномагнетитовых пластов наблюдаются достаточно четкие тенденции изменения состава титаномагнетита по разрезу с общим 74

Таблица 1

		Хим	ический с	остав ти	ганомагн	етита и	его перес	счеты		
	К- 1639	К- 1642a	K-1643	К- 1644а	К- 1644б	К- 1645a	К- 1645а	К- 1645б	К-1646	К-1647
Компо- ненты	1	2	3	4	5	6	7	8	9	10
		Химич	еский сост	гав моно	фракций	титаном	агнетита	а, мас.%		
SiO ₂	2,25	1,80	1,70	-	0,30	-	3,30	1,10	1,20	-
TiO ₂	13,00	14,40	13,80	15,00	14,40	34,50	13,45	14,40	14,20	-
Al_2O_3	1,30	2,85	2,40	-	2,40		2,40	2,50	2,50	-
Cr ₂ O ₃	0,34	0,42	0,42	0,25	0,47	0,15	0,27	0,33	0,33	-
Fe ₂ O ₃	48,15	50,54	47,00	-	49,17	-	51,59	50,90	51,74	-
FeO	29,10	27,60	30,15	-	28,70	-	24,60	27,40	26,90	-
MnO	0,24	0,20	0,27	-	0,24	-	0,20	0,20	0,18	-
NiO	0,03	0,02	0,03	-	0,04	-	0,02	0,03	0,03	-
CoO	<0,002	<0,02	<0,002	-	<0,002	-	<0,002	<0,002	<0,002	-
MgO	1,80	1,50	1,25	-	1,35	-	2,70	1,10	1,10	-
CaO	0,20	0,10	0,10	-	0,10	-	0,10	0,10	0,10	-
Na ₂ O	<0,05	<0,05	<0,05	-	<0,05	-	<0,05	<0,05	<0,05	-
K ₂ O	<0,05	<0,05	<0,05	-	<0,05	-	<0,05	<0,05	<0,05	-
H ₂ O	0,24	0,08	0,20	-	0,28	-	0,26	0,08	H.O.	-
V ₂ O ₅	0,80	0,82	0,90	0,62	0,80	0,32	0,68	0,75	0,80	-
Сумма	97,01	100,55	96,52	-	96,32	-	<i>99</i> ,07	70,70	<i>99,2</i> 0	-
			Пересче	ет на чис	тое веще	ство и н	a 100%			
TiO ₂	13,84	14,73	14,42	-	14,67	-	14,27	14,76	14,55	-
Al ₂ O ₃	1,38	2,92	2,51	-	2,45	-	2,55	2,56	2,56	-
Cr ₂ O ₃	0,36	0,43	0,44	-	0,48	-	0,29	0,34	0,34	-
Fe ₂ O ₃	51,27	51,70	49,11	-	50,68	-	54,74	52,18	53,02	-
FeO	30,83	28,13	31,41	-	29,24	-	25,81	28,08	27,53	-
MnO	0,26	0,20	0,28	-	0,24	-	0,21	0,20	0,18	-
NiO	0,03	0,02	0,03	-	0,04	-	0,02	0,03	0,03	-
MgO	1,11	1,03	0,87	-	1,38	-	1,39	1,07	0,94	-
V ₂ O ₅	0,92	0,84	0,94	-	0,82	-	0,72	0,77	0,84	-
Сумма	100,00	100,00	100,01	-	100,00	-	100,00	99,99	99,99	-
				Пересче	ст на 24 к	атиона				
Ti	3,155	3,340	3,271	-	3,342	-	3,241	3,354	3,312	-
Al	0,495	1,038	0,892	-	0,873	-	0,907	0,912	0,913	-
Cr	0,085	0,104	0,106	-	0,115	-	0,065	0,082	0,082	-
Fe ³⁺	11,694	11,733	11,150	-	11,549	-	12,440	11,864	12,075	-
Fe ²⁺	7,813	7,095	7,926	-	7,266	-	6,518	7,095	6,969	-
Mn	0,066	0,052	0,072	-	0,063	-	0,054	0,052	0,047	-
Ni	0,008	0,006	0,008	-	0,009	-	0,006	0,007	0,007	-
Mg	0,502	0,465	0,388	-	0,619	-	0,626	0,480	0,425	-
V	0,182	0,167	0,186	-	0,163	-	0,142	0,153	0,168	-
Σ.	24,000	24,000	23,999	-	23,999	-	23,999	23,999	23,998	-

Продолжение таблицы 1

1651a 16516 1652a 1652a 1653a 1633a 1633a <t< th=""><th>16566 20 0,30 14,40 2,40 0,38 48,11 30,30</th></t<>	16566 20 0,30 14,40 2,40 0,38 48,11 30,30									
Компо- ненты 11 12 13 14 15 16 17 18 19 Химический состав монофракций титаномагнетита, мас.% SiO2 - 0,75 - 0,40 - 0,75 - 0,65 - TiO2 13,80 14,10 12,00 14,70 15,00 14,80 13,20 14,70 14,50 Al ₂ O ₃ - 3,65 - 1,00 - 2,35 - 2,40 - Cr ₂ O ₃ 0,27 0,45 0,35 0,38 0,25 0,52 0,40 0,45 0,35 Fe ₂ O ₃ - 46,04 - 47,71 - 48,70 - 47,75 -	20 0,30 14,40 2,40 0,38 48,11 30,30									
Химический состав монофракций титаномагнетита, мас.% SiO2 - 0,75 - 0,40 - 0,75 - 0,65 - TiO2 13,80 14,10 12,00 14,70 15,00 14,80 13,20 14,70 14,50 Al ₂ O3 - 3,65 - 1,00 - 2,35 - 2,40 - Cr ₂ O3 0,27 0,45 0,35 0,38 0,25 0,52 0,40 0,45 0,35 Fe ₂ O3 - 46,04 - 47,71 - 48,70 - 47,75 -	0,30 14,40 2,40 0,38 48,11 30,30									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,30 14,40 2,40 0,38 48,11 30,30									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,40 2,40 0,38 48,11 30,30									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,40 0,38 48,11 30,30									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,38 48,11 30,30									
Fe ₂ O ₃ - 46,04 - 47,71 - 48,70 - 47,75 -	48,11 30,30									
	30,30									
FeO - 31,00 - 30,15 - 29,00 - 29,85 -										
MnO - 0,27 - 0,33 - 0,26 - 0,30 -	0,23									
NiO - 0,03 - 0,03 - 0,03 - 0,03 -	0,03									
C_{00} - $<0,002$ - $<0,002$ - $<0,002$ - $<0,002$ -	<0,002									
MgO - 1,50 - 1,80 - 2,10 - 2,10 -	2,20									
CaO - 0,10 - 0,10 - 0,10 - <0.05 - 0.05	0,10									
Na ₂ O - <0,05 - <0,05 - <0,05 - <0,05 -	<0,05									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0,05									
H_2O - 0,02 - 0,20 - 0,10 - 0,12 -	0,02									
$v_2 0_5$ 0,65 0,85 0,75 0,70 0,62 0,76 0,85 0,75 0,75	0,82									
Сумма - 98,86 - 97,60 - 99,57 - 99,25 -	98,39									
Пересчет на чистое вещество и на 100%										
TiO ₂ - 14,40 - 15,18 - 15,02 - 14,95 -	14,56									
Al ₂ O ₃ - 3,73 - 1,03 - 2,39 - 2,44 -	2,43									
Cr ₂ O ₃ - 0,46 - 0,39 - 0,53 - 0,46 -	0,38									
Fe ₂ O ₃ - 47,03 - 49,29 - 49,43 - 48,56 -	48,66									
FeO - 31,67 - 31,15 - 29,44 - 30,36 -	30,65									
MnO - 0,28 - 0,34 - 0,26 - 0,31 -	0,23									
NiO - 0,03 - 0,03 - 0,03 - 0,03 -	0,03									
MgO - 1,53 - 1,86 - 2,13 - 2,14 -	2,26									
V_2O_5 - 0,87 - 0,72 - 0,77 - 0,76 -	0,83									
Сумма - 100,00 - 99,99 - 100,00 - 100,01 -	100,03									
Пересчет на 24 катиона										
Ti - 3,224 - 3,442 - 3,376 - 3,357 -	3,267									
Al - 1,308 - 0,367 - 0,842 - 0,859 -	0,854									
Cr - 0,110 - 0,094 - 0,124 - 0,109 -	0,091									
Fe^{3+} - 10,548 - 11,177 - 11,121 - 10.910 -	10,925									
Fe ²⁺ - 7,881 - 7,850 - 7,358 - 7,579 -	7,645									
Mn - 0,069 - 0,088 - 0,067 - 0.077 -	0,058									
Ni - 0,007 - 0,007 - 0,007 - 0,007 -	0,007									
Mg - 0.680 - 0.834 - 0.950 - 0.950 -	0,992									
V - 0.172 - 0.142 - 0.154 - 0.150 -	0.163									
Σ - 23.999 - 24.001 - 23.999 - 23.998 -	,,									

Продолжение таблицы 1

	K-1657a	К-1657б	K-1658a	К-1658б						
Компоненты	21	22	23	24						
Химический состав монофракций титаномагнетита, мас.%										
SiO ₂		0,30	1,75	0,50						
TiO ₂	14,00	13,60	13,80	13,60						
Al ₂ O ₃		2,40	2,35	2,40						
Cr ₂ O ₃	0,33	0,35	0,45	0,18						
Fe ₂ O ₃		57,70	55,60	58,30						
FeO		30,60	28,70	30,60						
MnO		0,27	0,26	0,27						
NiO		0,03	0,02	0,03						
CoO		<0,002	<0,002	<0,002						
MgO		1,60	2,20	1,10						
CaO		<0,05	0,10	0,20						
Na ₂ O		<0,05	<0,05	<0,05						
K ₂ O		<0,05	<0,05	<0,05						
H ₂ O ⁻		0,12	0,14	0,18						
V ₂ O ₅	0,70	0,75	0,90	0,52						
Сумма		98,65	98,47	99,02						
Пересчет на чистое вещество и на 100%										
TiO ₂		13,87	14,41	13,87						
Al ₂ O ₃		2,45	2,45	2,45						
Cr ₂ O ₃		0,36	0,47	0,18						
Fe ₂ O ₃		49,43	49,72	50,33						
FeO		31,20	29,88	31,21						
MnO		0,28	0,27	0,28						
NiO		0,03	0,02	0,03						
MgO		1,63	1,83	1,12						
V ₂ O ₅		0,76	0,94	0,53						
Сумма		100,01	99,99	100,00						
Пересчет на 24 катиона										
Ti		3,125	3,247	3,141						
Al		0,865	0,869	0,869						
Cr		0,084	0,113	0,041						
Fe ³⁺		11,149	11,209	11,402						
Fe ²⁺		7,819	7,486	7,859						
Mn		0,070	0,070	0,070						
Ni		0,007	0,006	0,007						
Mg		0,729	0,814	0,504						
V		0,151	0,186	0,107						
Σ		23,999	24,000	24,000						

Примечание:

1 – акцессорный титаномагнетит из рудного габбро в основании нижнего титаномагнетитового пропластка, обр. К-1639, 2 – мелкие зерна титаномагнетита из густовкрапленного рудного габбро с трахитоидным плагиоклаПродолжение примечания к таблице 1:

зом, обр. К-1642а, 3 – титаномагнетит из габбро-пегматита, обр. К-1643, 4 – мелковоидная титаномагнетитовая порода из верхнего пропластка. Мелкие зерна титаномагнетита из овоидов, обр. К-1644а, 5 - тот же образец. крупные зерна из массивной полиэдрической титаномагнетитовой породы, обр. К-16446, 6 – ильменит из овоидной титаномагнетитовой породы, обр. К-1645а, 7 - то же, мелкие зерна титаномагнетита из овоидов, обр. К-1645a, 8 – крупные зерна из массивной полиэдрической титаномагнетитовой породы, обр. К-16456, 9 – титаномагнетит из средне и густовкрапленного рудного габбро с трахитоидной текстурой, обр. К-1646, 10–11 – мелкие зерна титаномагнетита из массивной породы на расстоянии 0-5см от основания нижнего пропластка, обр.К-1651а, 12 – тот же образец, крупные зерна из массивной титаномагнетитовой породы, обр. К-1651б, 13 – мелкие зерна титаномагнетита из массивной титаномагнетитовой породы в 5-15 см от основания нижнего пропластка, обр.К-1652а, 14 - крупные зерна из того же образца, обр. К-1652б, 15 – мелкие зерна титаномагнетита из массивной титаномагнетитовой поролы в 15-20 см от основания нижнего пропластка, обр. К-1653а, 16 - крупные зерна титаномагнетита из того же образца, обр. К-1653б, 17 – мелкие зерна титаномагнетита из массивного титаномагнетита отобранного в 25-32 см от основания нижнего пропластка, обр. К- 1655а, 18 – крупные зерна из того же образца, обр. К-16556, 19 - мелкие зерна титаномагнетита из массивного полиэдрического титаномагнетита отобранного на расстоянии 32-38 см от подошвы нижнего пропластка, обр.К- 1656а, 20 - крупные зерна титаномагнетита из того же места, обр. К-1656б, 21 – мелкие зерна титаномагнетита из массивной руды, отобранные на расстоянии 38-45 см от основания нижнего пропластка. Обр. К-1657а, 22 – крупные зерна титаномагнетита отобранные там же, обр. К-16576, 23 - прослой с пойкилитовой вкрапленностью титаномагнетита в пироксене в 50м на юг по отрогу, обр. К-1658а, 24 – крупные зерна титаномагнетита из того же образца, обр. К- 1658б.

увеличением содержания трехвалентного железа, титана и алюминия и уменьшением, в том же направлении, содержаний магния и двухвалентного железа. Это подтверждает геологические выводы о расслоенной природе интрузии и ортомагматическом происхождении титаномагнетитовых пластов. Вместе с тем, вариации состава титаномагнетита гораздо менее четкие, чем для мощных хромититовых пластов и всей их совокупности в Сарановской расслоенной интрузии. Скорее всего, это связано с меньшей мощностью титаномагнетитовых пластов и сложным строением сближенных пропластков.

Причина вариаций состава титаномагнетита связывается, как и для хромититовых пластов с гравитационным расслоением вещества пласта в зависимости от ионной плотности катионов [4, 5]. 78

Рис.4а. Вариации состава титаномагнетита по разрезу титаномагнетитового пласта Копанской расслоенной интрузии. Объяснения в тексте. * -Формульные единицы.

Литература

1. Алексеев А.А., Г.В. Алексеева, С.Г. Ковалев. Кусинско-Копанский расслоенный интрузивный комплекс, новые данные, представления и перспективы. Уфа. ИГ БНЦ. 1992. 20с.

2. Иванов О.К. Титаномагнетитовые концентрации в дифференцированных базальтоидных интрузиях// Минералогия и геохимия железорудных месторождений Урала. 1974, С.81-84. (Тр. ИГИГ УНЦ АН СССР. Вып...).

3. Иванов О.К. Зависимость состава шпинелидов базальтоидных интрузий от их мощности и степени дифференцированности// Минералогия и геохимия гипербазитов Урала. Минералогический сборник № 13. Свердловск. УНЦ АН СССР. 1977, С.53-57. (Труды ИГИГ УНЦ АН СССР. Вып. 125.).

4. Иванов О.К. Изменение состава хромшпинелидов по разрезу хромититовых пластов стратиформных месторождений// Минералогия и геохимия гипербазитов Урала. Минералогический сборник № 13. Свердловск. УНЦ АН СССР. 1977, С.53-57. (Труды ИГИГ УНЦ АН СССР. Вып. 125.).

5. Иванов О.К. Расслоенные хромитоносные ультрамафиты Урала. М.: Наука. 1990. 243с.

6. Карпова О.В. Титаномагнетитовые руды Южного Урала. М.: Наука. 1974. 152с.

7. Кравцова А.И. Геологическое строение и история формирования Копанского габбрового массива на Южном Урала// Магматизм, метаморфизм, металлогения Урала. Т.1. Свердловск. УФАН АН СССР. 1963. С.467-480.

8. Малышев И.И., П.Г. Пантелеев, А.А. Пэк. Титаномагнетитовые месторождения Урала. Л.: АН СССР. 1934. 272с.

9. Мясников В.С. Некоторые особенности месторождений титаномагнетитовых руд Южного Урала и проявления в них метаморфизма// Геология рудных м-ний. 1959. №2. С....

10. Мясников В.С., О.В. Карпова. Состав и условия локализации титаномагнетитов Копанского габбрового массива// Минералогия базитов в связи с вопросами петрогенезиса. М.: Наука. 1970. С.205-218.

11. Мясников В.С., О.В. Карпова. К минералогии силикатных и рудных минералов Копанского габбрового массива// Там же. С. 124-133.

12. Пантелеев П.Г. К вопросу о геохимии Ті, V, Cr в титаномагнетитах Урала// Изв. АН СССР. 1938. С. 449-464.

13. Штейнберг Д.С., А.И. Кравцова, А.С. Варлаков. Основные черты строения Кусинской габбровой интрузии и залегающих в ней рудных месторождений// Тр. ГГИ УФАН АН СССР. 1959. Вып 40. С. 13-40.

14. Уиллемз Дж. Ванадистые магнетитовые руды Бушвельдского комплекса// Магматические рудные месторождения. М.: Недра. 1973. С.129-150.