= ГЕОХИМИЯ =

УДК 550.41

ФИЗИКО-ХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОВЕДЕНИЯ ЗОЛОТА И СЕРЕБРА В ПРОЦЕССАХ ГИДРОТЕРМАЛЬНОГО РУДООБРАЗОВАНИЯ

© 2004 г. Г. А. Пальянова, Г. Р. Колонин

Представлено академиком Н.В. Соболевым 10.09.2003 г.

Поступило 10.09.2003 г.

Еще полвека назад В.В. Щербина [1] убедительно показал важность выявления особенностей и причин геохимической дифференциации Аи и Ад при образовании золото-серебряных месторождений. Накопленный и систематизированный к настоящему времени фактический материал по вещественному составу и условиям образования обеспечил возможность геолого-генетической типизации этих месторождений [2, 3]. Как в обобщающих работах, так и в публикациях, посвященных конкретным объектам, указывалось на необходимость дальнейшего изучения физико-химических особенностей рудообразующих систем, включая их потенциальную золотоносность, минералого-геохимические признаки, в том числе минеральный состав продуктивных ассоциаций, Au/Ag-отношение вообще и пробность золота в частности. Логико-математическая обработка комплексных данных по Au-Ag-месторождениям [4] также приводит к выделению близких критериев их типизации. Все это указывает на существование в природе достаточно ограниченного количества типовых рудно-магматических систем, которые должны отличаться друг от друга ТР-условиями, составами флюидной фазы, а также характером эволюции этих параметров в процессе рудообразования.

В настоящей работе предпринята попытка сопоставления главных физико-химических обстановок, обусловленных существованием различий в фундаментальных свойствах Au и Ag, с обобщенными итогами геолого-геохимического анализа условий образования основных типов золото-серебряных месторождений. Наиболее значимыми в этой области являются публикация геохимиковпрактиков [5] и теоретическая работа [6]. Главные особенности используемого подхода были схематично выдвинуты авторами еще в [7] и более по-

Институт минералогии и петрографии

Сибирского отделения Российской Академии наук, Новосибирск дробно обоснованы в [8]. Предлагаемые данные существенно развивают и дополняют термодинамический подход и результаты, изложенные в [6]. В частности, наша термодинамическая база для комплексов в растворах и сплавов Аи-Аg неидеального ряда уточнена и дополнена более поздними литературными [9–11] и собственными данными [8, 12]. В совокупности это и обеспечило возможность более надежного термодинамического моделирования поведения золота и серебра в гидротермальных условиях в пределах 6-компонентной системы состава Au-Ag-H₂O-H₂-NaCl-H₂S. В качестве независимых переменных приняты *T*, *P*, pH, red-ох потенциал ($f_{\rm H_2}$), а также концентрации хлоридов ($c_{\rm NaCl}$) и сульфидной серы ($f_{\rm H,S}$).

В рамках рассматриваемой проблемы все эти параметры влияют как на состав раствора, определяя концентрации и соотношения существующих в нем хлоридных и гидросульфидных комплексов, так и на пробность самородного золота. При постановке задачи были сделаны следующие допущения: а) списочный состав Аи-Ад форм в растворе был ограничен ведущими моно-, бигидросульфидными и бихлоридными комплексами; б) эволюция $f_{\rm H_2}$ и $f_{\rm H_2S}$ от температуры соответствовала условиям восстановительного пирит-пирротин-(магнетитового) Руг-Ро(-Mgt) или окислительного гематит-пирит-(магнетитового) Hem-Pyr(-Mgt) буферов; в) давление было принято постоянным и равным 1000 бар. Эти допущения позволили свести термодинамическое моделирование к расчету шести констант реакций образования комплексов золота и серебра, а также пяти основных обменных реакций и реакции образования сульфида серебра из Аи-Ад сплава (см. табл. 1 в [8]). На их основе выявлены возможные варианты сочетаний доминирующих растворенных форм Au и Ад в зависимости от физико-химических параметров системы в интервале температур 100-500°С и концентраций NaCl от 0.6 до 30 мас. % NaCl. Кроме того, рассчитаны составы самородного золота в равновесии с сульфидом серебра и при его отсут-

Новосибирский государственный университет

ПАЛЬЯНОВА, КОЛОНИН

Таблица 1. Основные типы рудоносных растворов, а также характеристики сульфидных руд и физико-химические параметры образования продуктивных стадий золото-серебряных и золоторудных месторождений разных генетических типов

	Характеристики растворов			Характеристики сульфидных руд			Генетические типы/глу-
p-pa	<i>T</i> , °С стадии	C _{NaCl} ,%	рН/минералы метасоматитов	пробность золота	Au/Ag*	минеральные формы Au, Ag	бинность/примеры мес- торождений
I → II	480–200 1, 2	5–20	2–6/Q, Carb, Ser, Kaol, dik, Alu, Bar, Anh	980–400	0.1–0.002	Высокопробное золото, электрум, аргентит, сульфо- соли Ag	1. Золото-серебряные алунит-кварцевые эпи- термальные месторож- дения (<2км) Кайрагач (Узбекистан), Саммит- вилл (США), Лепанто (Филиппины)
$I \rightarrow IV$	450–150 1–3	1–45	5–8/Q, Carb, Ser, Ad	700–0	1–0.0001	Электрум, кюсте- лит, серебро, арген- тит , селениды, сульфосоли, ин- терметаллиды Аg, теллуриды Au и Ag	2. Золото-серебряные адуляр-кварцевые эпи- термальные месторож- дения (<2 км) Дукат, Кварцевое, Аметисто- вое (Россия), Комсток, Тонопа, Пэтч, Голд Кап (США), Пачука, Гуано- хуато (Мексика)
I → III	700–300 1, 2	2–40	5–7/Ser, Carb, Chl	940–900 750–630	1-0.001	Высокопробное золото, электрум, аргентит	3. Золото-медно-пор- фировые месторожде- ния (2–5 км) Кальма- кыр (Узбекистан), Санта Рита (Мексика), Бингхем (США), Кинг- кинг(Филиппины)
I → II	540–240 1, 2	3–10 [20]	5–6/Chl, Q, Carb	990–600	10–1 [0.1]	Высокопробное золото, электрум, теллуриды Au и Ag [сульфосоли Ag, аргентит]	4. Золото-скарновые месторождения (1–5 км) Синюха, Натальевка (Россия), Ортоса (Испа- ния), Никель Плейт (Канада), [Фортитьюд, Кроун Джевел (США)]
IV, II	300–200 1 350–190 2	<5–10 <20	8–6/Carb, Ser, Chl, Ad 4–6/Chl, Ser, Q, dik	980–560 650–0	10–1 [1–0.1]	Высокопробное золото, электрум, калаверит, гессит, петцит, [аргентит, сульфосоли Аg, кюстелит, серебро]	5.Золото-теллуридные месторождения (<2 км) Зодское (Армения), Крипл-Крик (США), Эмперор (Фиджи), [Поргера (Новая Гви- нея), Тонгянг (Корея)]
IV, II	380–220 1 400–170 2	2–5 12–30	8–6/Carb, Ser, Chl, Ab	1000–850 960–650	30–1 [3–0.1]	Высокопробное золото, электрум, [сульфосоли Ag, аргентит, редко ауростибит, теллу- риды Au]	6.Золото-мышьяковые месторождения черно- сланцевых формаций (2–5 км) Олимпиада (Россия), Бакырчик (Казахстан), Кумтор (Киргизстан), Бендиго (Австралия), [Нежда- нинское (Россия)]
IV, II	400–200 1 250–180 2	1–5 5–30	8–6/Q, Carb, Ser, Ab 4–6/Q, Ser, Prf, Chl	990–900 900–530	30 – 1	Высокопробное золото, электрум, ауростибит, редко сульфосоли Аg	7. Золото-сурьмяные месторождения (<2 км) Сарылах, Удерей (Рос- сия), Хиллгров (Австра- лия), Карма (Боливия), Вест Гор (Канада)
$IV \to V$	380–200 1	<3	8–5/Ser, Carb, Chl	970–780	20–1	Редко теллуриды Аи	8. Золоторудные месторождения докембрий- ских зеленокаменных поясов (2–12 км) Поркью-Пайн, Бралорн (Канада), Мазер Лод (США), Ашанти (Гана)
V → II	270–150 1	<5	7–4/Q, Kaol, декарбонати- зация	1000–750	300-3	Высокопробное золото, редко сульфосоли Ag	9. Золоторудные месторождения терриген- но-карбонатных фор- маций (2–3 км) Карлин, Гетчел, Пост Бетце, Мейкле (США), Во- ронцовское (Россия)

Примечание. Условные обозначения минералов: Q – кварц, Kaol – каолин, Carb – карбонат, Ser – серицит, Ab – альбит, Ad – адуляр, Chl – хлорит, Prf – пирофиллит, Alu – алунит, dik – диккит, Bar – барит, Anh – ангидрит.

В квадратных скобках – данные для месторождений, на которых интенсивно проявилась вторая продуктивная стадия. *Золото-серебряное отношение в рудах.

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 3 2004

ствии (в системах с повышенными содержаниями Au и низкими Ag). Результаты расчетов контролировали с помощью программного комплекса "HCh" [13], позволяющего учитывать все хлоридные, гидроксокомплексы золота и серебра, а также влияние ионной силы растворов на активность ионов.

С целью типизации физико-химических условий рудообразования на основе данных, имеющихся в [8], на рис. 1 показаны Т–рН-области преобладания главных типов растворов, характеризующихся определенным составом доминирующих в них комплексов Au и Ag. Цифрой I обозначена ограниченная область высокотемпературных кислых растворов, где оба металла присутствуют в форме бихлоридных комплексов даже при умеренных концентрациях хлоридов. Область II занимает основную часть кислых-нейтральных растворов, где в широком интервале температур Аи и Ад находятся в различных формах в виде комплексов – $AgCl_2^-$ и AuHS⁰. Узкая область III представляет условия, где вместо моногидросульфидной формы Au при высоких температурах уже появляется комплекс $Au(HS)_2^-$, хотя для серебра даже в условиях действия сульфидного пиритпирротинового буфера форма $AgCl_2^-$ остается устойчивой. Наконец, области IV и V соответствуют условиям нахождения обоих металлов в виде бигидросульфидных или моногидросульфидных комплексов. Кроме того, на рис. 1 стрелками показаны направления предполагаемой эволюции *Т*-рН-условий растворов при формировании золоторудных месторождений девяти генетических типов, охарактеризованных в табл. 1, на основании данных из [2-4, 14, 15] и ряда других работ.

Условиям образования продуктивных ассоциаций золото-серебряных алунит-кварцевых эпитермальных месторождений (1) на начальных стадиях соответствуют растворы І типа, характеризующиеся высокой хлоридностью, окислительными условиями, а также ультракислыми рН, переходящими в близнейтральные (поле II) по мере снижения температуры. Для адуляр-кварцевых эпитермальных месторождений (2) для ранней продуктивной стадии также характерны высокохлоридные растворы I типа, но более восстановительные, менее кислые, эволюционирующие в щелочную область (поле IV). Руды 1 и 2 генетических типов месторождений характеризуются низкими Au/Ag отношениями, широкими вариациями пробностей самородного золота и сульфидными, сульфосольными и другими формами отложения серебра. Подобные направления изменения типов физико-химических обстановок можно найти в группе золото-медно-порфировых (3) и золотоскарновых (4) месторождений. При формировании самородного золота ранних генераций на зо-

Рис. 1. Возможные типы физико-химических обстановок и направлений их эволюции, определяющие составы доминирующих комплексов Au и Ag в растворах, равновесных с пирит-пирротин-магнетитовым буфером. Толстые сплошные линии разделяют поля преобладания различных комплексов серебра при умеренных (6 мас. % NaCl) концентрациях хлоридов, пунктир – то же для золота. Стрелки показывают изменения *T*, pH растворов для месторождений различных генетических групп в соответствии с нумерацией в табл. 1: тонкие сплошные – для кислых высокохлоридных (*I*–*4*), штрих-пунктир – для щелочных растворов (5–7, ранние стадии), штриховые линии – для малохлоридных сульфидных типов (*8*, *9*).

лото-теллуридных, золото-мышьяковых и золото-сурьмяных месторождениях (5–7) следует ожидать перехода от щелочных растворов на начальных стадиях (IV тип) к близнейтральным растворам (II тип) на более поздних. Золоторудным месторождениям докембрийских зеленокаменных поясов (8) и терригенно-карбонатных формаций ("Карлин") (9) больше всего соответствуют переходы от исходных щелочных (IV тип) или близнейтральных (V тип) к слабокислым малохлоридным низкотемпературным обстановкам (V и II тип). Руды 8 и 9 генетических типов месторождений характеризуются высокопробным золотом, высокими отношениями Au/Ag и отсутствием сульфидов серебра.

Для основных ожидаемых физико-химических обстановок переноса и отложения Au и Ag на рассмотренных генетических группах месторождений на рис. 2 показаны составы самородного золота равновесного с Ag₂S (в системах, богатых Ag) (стрелки 1-4) и в его отсутствие (стрелки 5-9). Поскольку присутствие сульфидов серебра в парагенезисах снижает вариантность системы, то становится возможным использование пробности самородного золота в качестве геотермометра. Возможные предельные составы Au–Ag-сплавов, равновесных с Ag₂S, для условий Hem-Pyr(-Mgt)

Рис. 2. Тренды изменения пробности самородного золота в зависимости от температуры для месторождений различных генетических групп (стрелки *1–9*). Здесь также приведены возможные предельные составы золото-серебряных сплавов, равновесных с Ag₂S для условий Hem-Pyr(-Mgt) и Pyr-Po(-Mgt)буферов (линии). Стрелки показывают изменение пробности с температурой для месторождений различных генетических групп (их обозначения те же, что и на рис. 1).

буфера близки к трендам пробности самородного золота на алунит-кварцевых эпитермальных (1) и золото-медно-порфировых месторождениях (3), характеризующихся окислительными условиями. Тренды пробности золота для адуляр-кварцевых эпитермальных (2) и золото-скарновых (4) месторождений тяготеют к восстановительному Руг-Ро(-Mgt)буферу. Пунктирные стрелки в верхней части рисунка показывают направление и ограниченные пределы снижения пробности золота на собственно золоторудных месторождениях 8 и 9 генетических типов. Аналогичные изменения пробности характерны для раннего высокопробного золота на золото-теллуридных, золото-мышьяковых и золото-сурьмяных месторождениях (стрелки 5-7). Проведенное общее сопоставление результатов термодинамического моделирования с установленными минералого-геохимическими закономерностями образования золоторудных месторождений позволяет рассчитывать на перспективность предложенного подхода как при логико-математической обработке соответствующей информации, так и при построении количественных моделей для наиболее изученных и важных природных объектов.

Авторы признательны А.С. Борисенко и Г.Г. Павловой за полезное обсуждение работы на стадии ее подготовки.

Работа выполнена при финансовой поддержке РФФИ (грант № 03–05–65056) и МО РФ "Университеты России" (УР.09.01.019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Щербина В.В. // Геохимия. 1956. № 3. С. 56-63.
- 2. *Сафонов Ю.Г.* // Геология руд. месторождений. 1997. № 1. С. 25-40.
- Константинов М.М., Некрасов Е.М., Сидоров А.А. и др. Золоторудные гиганты России и мира. М.: Науч. мир, 2000.
- 4. *Некрасова А.Н., Орешин В.Ю., Чижова И.А.* // Руды и металлы. 1997. № 5. С. 33–43.
- Morrison G.W., Rose W.J., Jareith S. // Ore Geol. Rev. 1991. V. 6. P. 333–364.
- Gammons C.H., Williams-Jones A.E. // Econ. Geol. 1995. V. 95. P. 420–432.
- 7. Колонин Г.Р., Гаськова О.Л., Пальянова Г.А. // Геология и геофизика. 1986. № 7. С. 133–141.
- 8. *Колонин Г.Р., Пальянова Г.А. //* ДАН. 2000. Т. 373. № 4. С. 527–531.
- Benning L.G., Seward T.M. // Geochim. et cosmochim. Acta. 1996. V. 60. P. 1849–1872.
- 10. *Stefansson A., Seward T.M.* // Geochim. et cosmochim. acta. 2003. V. 67. № 7. P. 1395–1413.
- Акинфиев Н.Н., Зотов А.В. // Геохимия. 2001. № 10. С. 1083–1099.
- 12. Пальянова Г.А., Дребущак В.А. // Геохимия. 2002. № 12. С. 1352–1354.
- 13. Шваров Ю.В. // Геохимия. 1999. № 6. С. 646-652.
- 14. Groves D.I., Goldfarb R.J., Gebre-Mariam M. et al. // Ore Geol. Revs. 1998. № 13. P. 7–27.
- Метасоматизм и метасоматические породы. Под ред. В.А. Жарикова, В.А. Русинова. 1998. М.: Научный мир.