—— ГЕОХИМИЯ —

УДК 551.71+552.5+550.4(470.22)

РЗЭ-СИСТЕМАТИКА ВЕРХНЕАРХЕЙСКИХ ОСАДОЧНЫХ ПАРАГЕНЕЗОВ ЦЕНТРАЛЬНОЙ КАРЕЛИИ

© 2004 г. С. А. Светов, А. И. Светова

Представлено академиком В.А. Коротеевым 15.07.2003 г.

Поступило 31.07.2003 г.

Геохимический состав осадочных ассоциаций является функцией взаимодействия многих факторов: специфики источников сноса, условий выветривания, массопереноса, седиментогенеза, метаморфизма и пр. Геодинамическое положение питающих областей максимально контролирует состав осадочных ансамблей (в большей степени терригенных) [1], и как следствие – их химизм является надежным маркером палеогеодинамической приуроченности [2–6].

Литогеохимическое изучение терригенных ассоциаций проводилось ранее для молодых (< 2.9 млрд. лет) зеленокаменных структур Западной Карелии – Костомукши и Хизоваары [7, 8], что позволило получить новый материал по эволюции режимов седиментации и геодинамической истории этих структур. В пределах более древних зеленокаменных доменов Карельского кратона подобные исследования не проводились. В работе представлены новые геохимические данные по РЗЭ-характеристике выделенных осадочных парагенезов стратотипического разреза Хаутаваарско-Койкарского полигона верхнеархейского (3.05–2.85 млрд. лет) Ведлозерско-Сегозерского зеленокаменного пояса Центральной Карелии.

Зеленокаменный пояс расположен в юго-восточной части Фенноскандинавского щита, протягивается в субмеридиональном направлении на расстояние около 300 км при ширине 50–60 км и включает ряд локальных доменов (Хаутаваарский, Койкарский, Паласельгинский, Совдозерский и др.) [9, 10]. Геодинамические реконструкции, проведенные авторами [11], позволяют выделить в геологической истории формирования пояса магматические системы, приуроченные к древней (3.05–2.95 млрд. лет) островодужной системе [12], задуговому бассейну (3.05–2.95 млрд. лет) и молодой (2.90–2.85 млрд. лет) вулканической дуге, что укладывается в модель формирования зеленокаменного пояса как конвергентной межмикроплитной зоны протоокеан-протоконтинент.

Литогеохимическая типизация осадков, сохранившихся в разрезах зеленокаменного пояса и максимально полно в Хаутаваарско-Койкарском полигоне, позволяет выделить несколько групп вулканогенную (перемытые туфы, туффиты, ВІF, граувакки, туфопесчаники), терригенную (конгломераты, граувакки, арениты, аркозы, алевролиты), хемогенную (доломиты, силициты) и породы смешанного ряда – хемогенно-терригенные, вулкано-терригенные и др. По классификации Ф. Петтиджона [1], изучаемые породы относятся к грауваккам, аркозам и лишь отдельные пробы к лититовым ваккам (рис. 1). Осадочные парагенезы метаморфизованы в условиях от зеленосланцевой до эпидот-амфиболитовой фации и сохраняют все первичные текстурные и структурные признаки.

Геохимический анализ – определение петрогенных и малых элементов – осуществлен ХRF-методом (Philips PW1480) в аналитической лаборатории Геологической службы Финляндии (г. Эспоо). Максимальная погрешность определения составляет <6%. РЗЭ определялись в лаборатории ИГГД РАН (Санкт-Петербург) методом INAA, погрешность определения <5%.

Типичный состав породных литотипов приведен в табл. 1, при этом характеристика пород приводится на основе их геодинамического положения.

Внутриформационные осадки древней островодужной системы, маркируемой вулканитами BADR-серии с субвулканитами адакитового ряда [12], представлены туфо-туффитовой ассоциацией, прошедшей гравитационное осаждение и перемыв в бассейнах межвулканических депрессий. Ослабление эксплозивной деятельности привело к формированию пачек ритмитов – туффит– туфопесчаник–силицит. В верхних частях разрезов описаны графитистые алевролиты и силициты. Химический состав и распределение РЗЭ в тонких туфах, туффитах близки к вулканитам BADR-серии при слабом обогащении спектра

Институт геологии Карельского научного центра Российской Академии наук, Петрозаводск

Рис. 1. Классификационная диаграмма $lg(Na_2O/K_2O)-lg(SiO_2/Al_2O_3)$ [1] для вулканогенно-осадочных и осадочных пород Ведлозерско-Сегозерского зелено-каменного пояса. *I* – граувакки, *II* – лититовые вакки, *III* – аркозы. Поля: осадочные породы Ведлозерско-Сегозерского зеленокаменного пояса (Чалкинская и Койкарская структуры): *A* – граувакковые парагенезы, *B* – аркозы [9]. *I*–4 – соответствуют номерам в табл. 1.

ЛРЗЭ, $(La/Sm)_n = 5.21 \pm 1.27$, $(Gd/Yb)_n = 1.94 \pm 0.25$, $(Ce/Yb)_n = 6.48 \pm 1.72$ (рис. 2a).

Осадочные парагенезы, приуроченные к задуговому бассейну, представлены туфами-туффитами коматиитового ряда, мафитовыми граувакками (вулканогенными и вулканомиктовыми), силицитами, графитистыми алевролитами.

Туфы, туффиты коматиитов и базальтов образуют слои мощностью от сантиметров до первых метров, по содержанию петрогенных элементов близки лавам [10]: SiO₂ от 37 до 50 мас. %, MgO 9–23 мас. %, с низкими концентрациями Al₂O₃ < 8% и щелочей: NaO < 0.5%, K₂O < 0.04%. Содержание 450 < Cr < 1200 ppm, 120 < Ni < 700 ppm, распределение РЭ и РЗЭ близко лавам коматиитов (рис. 2а). Индекс химического выветривания CIA [14] пород незначительный – 36.70 \pm 16.05. С туффитами ассоциируют вулканогенные мафитовые граувакки, замещая их в верхней части разреза.

Вулканогенные мафитовые граувакки (ВМГ) – темно-зеленые, мелкозернистые слоистые породы, алевролитовой или псаммитовой размерности, с мощностью слойков 2–3 см и мощностью слоев 25–30 м. Породы характеризуются низкими содержаниями SiO₂ (45.79 ± 1.66 мас. %),

Рис. 2. Распределение редкоземельных элементов, нормированных по хондриту С1 [13], в вулканогенноосадочных и осадочных породных комплексах Ведлозерско-Сегозерского зеленокаменного пояса. *1* – туффиты андезитов; *2a* – мафитовые граувакки, *2б* – межподушечный силицит; *3* – вулканогенно-осадочные породы (тонкий туф дацита, полевошпатовая граувакка, алевролит); *4* – чертовый аренит (хемогенно-терригенный); *5* – красный доломит; *6* – состав постархейских глинистых сланцев Австралии – PASS [14]. Поля (на рис. а): светлое – типовые составы лав коматиитовых базальтов Койкарской структуры [10], темное – лавы андезитов Чалкинской структуры [12].

TiO₂ (0.3–0.5 мас. %), щелочей (Na₂O 0.74±0.38 мас. %, K₂O < 0.3 мас. %), высоким MgO (9–12 мас. %). Содержание Cr достигает 784 ppm и Ni 338 ppm, для пород характерны ЛРЗЭ-обогащенные спектры ((La/Sm)_n = 1.88) с нефракционированным распределением ТРЗЭ (Gd/Yb)_n = 1.12 (подобным спектрам базальтовых коматиитов). Отношение Zr/Y = 3.12–4.41 (в коматиитах Zr/Y = 2.83±0.38). Индекс CIA = 40–60, что свидетельствует о незначительном выветривании источников сноса. ВМГ раз-

	1		2					3				4	
Компо- нент	101-2	104-1	10-2	27-C	29-1C	29-2C	28-2C	28-3C	5718-9C	26-C	30-C	57-C	52-C
	Чалка		Койкары					I				Эльмус	
SiO ₂	57.40	59.94	50.34	56.10	43.26	53.68	79.56	61.72	67.90	65.82	67.16	76.36	7.72
TiO ₂	0.86	0.64	0.88	0.67	1.69	0.77	0.05	0.74	0.65	0.51	0.48	0.09	0.04
Al_2O_3	16.64	15.26	15.15	14.54	12.01	15.22	10.61	15.20	15.56	16.64	15.11	12.42	1.45
Fe ₂ O ₃	1.41	1.56	1.83	0.87	3.05	0.86	0.45	1.40	1.13	1.03	0.70	1.14	5.07
FeO	6.11	4.88	10.34	8.19	15.94	5.45	0.57	4.52	3.01	4.02	4.59	0.28	0.57
MnO	0.130	0.14	0.16	0.142	0.238	0.159	0.022	0.077	0.066	0.051	0.060	0.025	0.651
MgO	4.77	4.94	8.44	8.98	7.19	5.86	0.50	4.00	1.74	2.36	3.18	0.87	17.93
CaO	6.17	7.86	2.23	1.14	6.43	5.00	0.28	2.28	0.71	0.57	0.57	0.43	25.31
Na ₂ O	2.56	3.02	3.47	1.99	0.43	2.71	0.61	3.19	5.73	4.12	1.84	0.08	0.08
K ₂ O	2.00	0.65	0.03	0.41	0.02	1.81	6.61	2.54	1.05	1.50	2.34	6.81	0.22
P_2O_5	0.04	0.01	0.18	0.08	0.10	0.21	0.02	0.24	0.23	0.10	0.13	0.02	0.01
H_2O	0.08	0.09	6.78	0.16	0.20	0.10	0.04	0.10	0.14	0.09	0.12	0.10	0.08
П.п.п.	1.62	1.15	50.34	6.33	9.53	7.86	0.70	3.98	1.73	2.77	3.67	1.36	40.68
Сумма	99.81	100.14	99.91	99.60	100.09	99.69	100.02	99.99	99.65	99.58	99.95	99.99	99.81
Cr	541	236	240	784	31	295	122	33	29	145	196	33	21
Ni	184	368	160	338	13	107	24	26	14	32	41	26	16
Co	39.5	58.2	63	59	65	25	<1	<1	10	14.9	16.9	<1	7.8
V	232	188	240	276	850	134	<15	<15	115	123	123	<15	47
Pb	3	8	15	17	19	126	5	15	9	9	17	15	7
Rb	40	21	20	9	3	36	101	127	35	2	54	127	2
Ba	248	196	153	120	124	265	1129	1186	546	327	429	1186	80
Sr	148	258	64	61	53	79	22	7	171	20	25	7	40
Nb	7	8	4	2	3	10	11	14	9	8	8	14	2
Zr	152	146	63	71	62	190	122	191	224	65	93	191	5
Y	34	38	26.1	22	27	32	28	40	27	10	17	40	5
Th	2.5	2.9	3.6	3.3	0.75	6.3	12.7	7.4	7.3	3.8	9.1	14.3	0.90
La	9.5	21.4	1.87	47.1	12.0	26.4	29.5	23.1	29.2	16.7	21.3	39.2	2.3
Ce	25.4	47.2	6.7	105.1	21.7	57.1	67.5	50.1	58.7	35.7	44.2	67.7	4.5
Nd	11.8	21.8	4.93	51.2	13.8	20.8	28.5	23.4	21.7	11.9	24.1	29.7	3.0
Sm	3.35	5.37	1.88	9.22	3.72	3.71	6.44	4.84	4.16	3.19	2.45	5.11	0.69
Eu	0.74	1.23	1.09	1.84	1.02	0.93	0.56	1.23	1.20	0.85	0.83	0.7	0.3
Tb	0.77	0.92	0.61	0.51	0.90	0.58	0.77	0.74	0.62	0.46	0.57	1.09	0.12
Yb	3.52	4.41	2.50	1.43	3.72	2.43	2.87	2.42	2.37	1.36	2.01	4.47	0.38
Lu	0.52	0.66	0.38	0.21	0.57	0.34	0.44	0.36	0.31	0.20	0.30	0.66	0.05
U	0.6	0.6	0.4	0.5	0.5	0.67	2.3	1.9	1.1	1.0	0.5	1.3	0.5
Sc	37.6	31.1	20.3	34.1	52.7	19.4	3.21	16.5	10.5	15.5	20.0	5.18	1.63
Hf	3.1	2.8	1.8	1.9	1.9	4.1	4.3	4.7	5.4	3.6	3.3	6.0	0.5
Та	0.39	0.44	0.21	0.17	0.14	0.50	0.79	0.64	0.53	0.25	0.48	0.80	0.028
Cs	4.27	1.66	0.8	0.5	0.5	2.4	3.3	5.2	0.53	2.4	2.0	4.3	0.5

Таблица 1. Состав верхнеархейских вулканогенно-осадочных и осадочных породных литотипов Ведлозерско-Сегозерского зеленокаменного пояса (мас. %; ppm)

Примечание. Осадочные литотипы, сформированные: 1 – в древней (3.05–2.95 млрд. лет) островной дуге, 2 – в задуговом бассейне (3.0–2.95 млрд. лет), 3, 4 – в молодой (2.9–2.85 млрд. лет) вулканической дуге. 101-2, 104-1 – псаммитовый туффит андезита; 10-2, 27-С – вулканогенная мафитовая граувакка; 29-1С – вулканомиктовая мафитовая граувакка; 29-2С – алевролитовая граувакка; 28-2С – межподушечный силицит; 28-3С – туф андезидацита; 5718-9С – тонкий туф дацита; 26-С – полевошпатовая граувакка; 30-С – алевролит; 57-С – чертовый аренит (хемогенно-теригенный); 52-С – красный доломит.

виты в Койкарской структуре (район озер Ребо, Яниш), в верхней пачке лоухиваарской свиты Хаутаваарской структуры.

Вулканомиктовые мафитовые граувакки (ВГ) диагностируются по появлению в породе кластического плагиоклаза в виде кристаллокласт или их сростков, погруженных в матрикс состава: плагиоклаз (5–20%), хлорит (60–70%), сфен (3-5%), магнетит (1-2%), карбонат (0-5%), эпидот (0-2%), единичные зерна амфибола. В ассоциации с ними отмечаются линзы алевролитовых или лититовых (с обломками базальтов) граувакк, слои коматиитовых туффитов, линзы силицитов, иногда кроме плагиоклаза появляется тонкозернистый кварц. Общая мощность ВГ составляет 150-170 м, они имеют пестрый химический состав, повышенные содержание SiO₂ (до 56-64 мас. %), Na₂O (0.4–5.3 мас. %), MgO (5–10 мас. %) при железистости 4-6 мас. %. Концентрация Cr < 30-70 ppm и Ni < 10-50 ppm. Отношение Zr/Y \approx ≈ 10. Индекс CIA составляет 54.52 ± 4.15. Для ВГ характерны ЛРЗЭ-обогащенные спектры, $(La/Sm)_n =$ $= 3.50 \pm 1.16$, при этом отношение (Ce/Yb)_n изменяется от 1.62 до 6.53, сохраняя единый топологический вид спектра. Модельные расчеты показывают, что обогащение ЛРЗЭ-спектров в ВГ связано с привносом (10–25%) хемогенного кремнезема (рис. 2а).

Источником материала для мафитовых граувакк служили продукты разрушения коматиитбазальтовых лав, их пирокластитов и внутренних осадков (туффитов, силицитов, графитистых алевролитов), с добавлением выше по разрезу андезитовой вулканокластики. Седиментация осадков происходила в спокойных гидродинамических условиях морского бассейна со слабо расчлененным рельефом и регрессивной направленностью осадконакопления.

Осадки, представляющие продукты размыва континентальной окраины, маркируются в Ведлозерско-Сегозерском зеленокаменном поясе (пример – Хаутаваарская структура) шельфовыми отложениями и прибрежно-морскими турбидитами. С базальными осадками (конгломератами) в основании описана толща переслаивания аренитов мелко-средне-крупнозернистых, субаркозовых аренитов, внутриформационных конгломератов, туфопесчаников, аркоз, мощностью до 300 м.

Для аренит-аркозового ансамбля характерна грубая слоистость с мощностью слоев до десятков метров, обусловленная различным составом и гранулометрией осадков и тонкая ритмичность внутри слоев. Отмечается прямая и обратная ритмичность, отвечающая кратковременным колебаниям трансгрессивно-регрессивных режимов. Мощная пачка однородных неслоистых аркоз маркирует появление в области эрозии нового источника сноса – гранитоидных массивов. А р е н и т ы – разнозернистые песчаники, в обломочной части которых преобладают кварц, кислый плагиоклаз в матриксе из серицита, кварца, альбита. Породы характеризуются высоким содержанием SiO₂ (до 72–76 мас. %), TiO₂ (0.23 ± 0.24 мас. %), низким MgO (0.6–1.1 мас. %) и широкими вариациями FeO (1.5–2.5 мас. %), Na₂O (0.5–2.8 мас. %), K₂O (3.5–4.5 мас. %). Максимальное содержание Cr достигает 185 ррт и Ni 204 ррт. Отношение Cr/Ni = 2.01 ± 1.74 , Cr/V = 0.54 ± 0.19 . Отношение Zr/Y = 12.55 ± 1.63 (в TTГ – 15.8 ± 2.9). Индекс CIA ≈ 63 .

Аркозовые арениты имеют содержания мас. %: SiO₂ 61–69, Na₂O 3.70 ± 1.46, K₂O 1.6– 4.6, MgO 0.86 ± 0.08; Cr < 145 ppm и Ni < 10 ppm. Отношение Cr/Ni = 16.10 ± 0.64, Cr/V = 5.58 ± 1.20 . Отношение Zr/Y ≈ 4. Индекс CIA = 54.56 ± 2.12 .

С вулканической дугой (2.9–2.85 млрд. лет), маркируемой андезидацитами СМА-типа, ассоциируют осадочно-вулканогенные породы – туффиты, туфопесчаники, силициты, чертовые арениты (смешанные хемогенно-терригенные породы). Тонкие туфы, туффиты отвечают по составу лавам андезидацитов (Na-специализации).

Интенсивное кремненакопление (образование силицитов) в Койкарской и Хаутаваарской структурах синхронно с отложением тонкой кислой пирокластики. Для них характерна горизонтальная и линзовидная слоистость, конкреционные структуры, структуры гелевого осадка. Наибольшая мощность силицитов (от 0.5 до 25 м) выявлена в Янишском (Койкарском) и Эльмуском палеовулканах, где они отлагались в кратерных озерах и в активных фумарольных полях. В зависимости от примеси окисного или закисного железа изменяется цвет силицитов, от белого, зеленоватого до розового, красного, черного. Химическая характеристика пород следующая (мас. %): $76 < SiO_2 < 82$, 0.1 < FeO_{tot} < 1.3, MgO < 0.8, CaO < 0.4, широкий спектр РЗЭ 2 < (La/Sm)_n < 14, 2 < (Ce/Yb)_n < 35 (рис. 2б).

Доломиты – в условиях прибрежного осолонения бассейна формируются линзы доломитов, характеризующиеся содержаниями (мас. %) СаО на уровне 22–28, MgO 14–19, MnO 0.7–0.9, имеют очень большие п.п.п. – 32–43 и низкое содержание SiO₂ < 15, Na₂O < 0.17, K₂O < 0.53. Концентрация Fe₂O₃ > FeO в 2–4 раза. Распределение РЗЭ имеет низкий фоновый уровень спектров при четком обогащении их ЛРЗЭ: (La/Sm)_n = 2.15, (Ce/Yb)_n = 3.26 (рис. 26).

С завершением вулканизма формируется пачка терригенных пород – граувакк, аренитов, графитистых алевролитов. Класс терригенных граувакк образует латеральный ряд в тесной ассоциации с грубыми кластогенными осадками (конгломератами) в

проксимальной группе фаций и алевролитов с хемогенными отложениями в дистальных фациях.

Лититовые граувакки (ЛГ) – зеленые, грубослоистые породы, содержат мелкие класты дацитов, базальтов, осколки кристаллов плагиоклаза, окатанные зерна кварца, погруженные в мелкозернистый цемент, имеющий плагиоклаз-мусковитхлорит-карбонат-эпидот-кварцевый состав. Распространены в северной части Койкарской структуры. ЛГ характеризуются широкими вариациями валового химического состава (мас. %): MgO < 3.5, FeO < 4, SiO₂ 68.30 \pm 4.31, TiO₂ 0.41 \pm 0.33. Cogepжания Cr < 100 ppm, Ni < 30 ppm, CIA = 44–73. Характеризовать спектры распределения РЗЭ в ЛГ корректно по тонкозернистым разновидностям, для них типичны ЛРЗЭ-обогащенные спектры $(La/Sm)_n = 3.30$ с фракционированным распределением ТРЗЭ (Ce/Yb)_{*n*} = 20.36.

Полевошпатовые граувакки (ПГ) – зеленые, мелкозернистые породы, массивные, иногда содержат прослои кварц-серицитовых сланцев (метаалевролитов). В минеральном составе плагиоклаз составляет 25-40%, кварц 0-10%, хлорит 5-25%, мусковит 15-40%, карбонат 0-5%, сфен 0-5%, магнетит 0-5%. ПГ описаны в верхних частях кивилампинской свиты Койкарской структуры, в Хаутаваарской структуре в верхней части лоухиваарской свиты, в разрезах структур Покровская, Лужма и Корбозеро. По геохимическому составу ПГ разделяются на высокомагнезиальные (MgO < 12 мас. %, Cr 840 ppm, Ni 600 ppm) и низкомагнезиальные (1 < MgO <<4 мас. %) разности, маркируя контрастные источники сноса. Распределение РЗЭ имеет слабо обогащенный ЛРЗЭ-спектр – (La/Sm)_n = 2.08, $(Ce/Yb)_n = 1.62$. CIA от 50 до 78.

К в а р ц - п о л е в о ш п а т о в ы е г р а у в а к - к и (КпГ) – зеленовато-серые мелкозернистые песчаники и алевролиты, ритмичнослоистые. Мощность ритма составляет 2–3 см. Отдельные зерна альбита и кварца погружены в матрикс тон-козернистой мусковит-хлорит-альбит-кварцевой массы. Для КпГ характерны содержания SiO₂ 56.51 ± 4.25 мас. %, ЛРЗЭ-обогащенные спектры (La/Sm)_n = 3.38, (Ce/Yb)_n = 7.32. CIA = 30–83.

РЗЭ-спектры терригенных граувакковых ансамблей Хаутаваарско-Койкарского полигона подобны составам постархейских глинистых сланцев PASS [14] (рис. 2б) и типичны для архейских гранитзеленокаменных террейнов [14, 15]. Положение фигуративных точек выделенных осадочных парагенезов на факторной диаграмме Бхати (рис. 3) (метод расчета факторов DF₁ и DF₂ приводится в [3]) подтверждает корректность разделения осадочных пород по геодинамическим условиям формирования, четко разграничивая породы с "протоокеанической" и "протоконтинентальной" историей.

Рис. 3. Дискриминационная диаграмма М. Бхати [2] для характеристики геодинамической приуроченности осадочных парагенезов. I-4 – соответствуют номерам в табл. 1. Поля: A – обстановки пассивных континентальных окраин, B – океанические обстановки, C – обстановки континентальных островных дуг, D – активные континентальные окраины.

Полученная литогеохимическая характеристика осадочных парагенезов (РЭ- и РЗЭ-систематика), наряду с характеристикой магматических ассоциаций, является важным инструментом для проведения палеогеодинамических реконструкций в пределах архейских зеленокаменных поясов. Сосуществование в разрезах геодинамически контрастных осадочных ансамблей, имеющих различную историю седиментогенеза, свидетельствует о существовании конвергентных режимов в архее на рубеже (3.05-2.85 млрд. лет) и подтверждает правомерность выделения в геологической истории Ведлозерско-Сегозерского зеленокаменного раннего аккреционного и позднего коллизионного этапов, приведших к формированию современного стратотектонического разреза и выпадению из него отдельных породных ассоциаций по латерали.

Исследования поддержаны Фондом содействия отечественной науке (С.А. Светов) и выполнялись при поддержке РФФИ (грант 02–05– 97507).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Петтиджон Ф.Д.* Осадочные породы. М.: Недра, 1981. 751 с.
- 2. Bhatia M.R. // J. Geol. 1983. P. 611–627.
- 3. Bhatia M.R., Crook K.A. // Contribs Mineral. and Petrol. 1986. P. 181–193.
- Camire G.E., Lafleche M.R., Ludden J.N. // Precambr. Res. 1993. V. 62. P. 285–305.
- Bonjour J.L., Dabard M.P. // Chem. Geol. 1991. V. 91. P. 257–267.

- 6. *Fedo C.M., Eriksson K.A., Krogstad E.J.* // Geochim. et cosmochim. acta. 1996. V. 60. № 10. P. 1751–1763.
- 7. *Милькевич Р.И., Мыскова Т.А. //* Литология и полез. ископаемые. 1998. № 2. С. 177–194.
- 8. Thurston P.C., Kozhevnikov V.N. // Precambr. Res. 2000. V. 101. P. 313–340.
- 9. Светова А.И. Архейский вулканизм Ведлозерско-Сегозерского зеленокаменного пояса Карелии. Петрозаводск: КНЦ РАН, 1988. 148 с.
- Svetov S.A., Svetova A.I., Huhma H. // Geochem. Intern. 2001. V. 39. Suppl. 1. P. s24–s38.
- Svetov S.A., Svetova A.I. In: Abstr. Vol. III. GEODE-Fennoscandian Field Workshop on Paleoproterozoic and Archaean Greenstone Belts and VMS Districs in Fennoscandian Shield. Russia: SC "Mineral" & Karelian Research Centre, 2001. P. 82–83.
- 12. Светов С.А. // ДАН. 2003. Т. 388. № 5. С. 664–668.
- 13. *Sun S.S., McDonough W.F.* // Geol. Soc. London. Spec. Publ. 1989. № 42. P. 313–345.
- 14. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора, ее состав и эволюция. М.: Мир, 1988. 383 с.
- 15. Yamashita K., Creaser R.A., Villeneuve M.E. // Earth and Planet. Sci. Lett. 2000. V. 174. P. 283–299.