— ГЕОХИМИЯ =

УДК 552.3/.5+552.321.6 (571.56)

## МЕГАКРИСТАЛЛИЧЕСКИЙ КАТАКЛАЗИРОВАННЫЙ ЛЕРЦОЛИТ ИЗ ТРУБКИ УДАЧНАЯ: МИНЕРАЛОГИЯ, ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ, ГЕНЕЗИС

© 2004 г. К. Н. Егоров, Л. В. Соловьева, С. Г. Симакин

Представлено академиком Ф.А. Летниковым 05.02.2004 г.

Поступило 18.02.2004 г.

Ксенолиты из кимберлитов являются своеобразным окном в самые глубокие горизонты континентальной литосферы и подлитосферной мантии Земли. Особую научную информативность имеет расшифровка петрологической и геохимической истории сложных ксенолитов, испытавших влияние нескольких мантийных процессов. В настоящем исследовании приводятся новые данные по химическому и редкоэлементному составу первичных и метасоматических минералов в деформированном мегакристаллическом лерцолите из трубки Удачная – обр. UV-303. Уникальность данного ксенолита заключается в том, что процессы кластирования, пластического течения, метасоматизма и частичного плавления были наложены на породу, состоящую из ассоциации низкохромистых мегакрист (гранат, клинопироксен, ортопироксен, оливин [1]). Обычно мегакристы низкохромистой группы в кимберлитах (Gnt\*, Cpx, Opx, Ilm, Ol, Phl) рассматриваются как высокобарные фенокристы, выделившиеся из жидкостей базитового, пикритового или протокимберлитового составов [2, 3]. Ксенолиты деформированных перидотитов в кимберлитах, по мнению большинства исследователей, представляют собой астеносферное вещество, испытавшее интенсивное метасоматическое преобразование под влиянием глубинных флюидов-расплавов [4]. В геохимической истории деформированного мегакристаллического лерцолита UV-303 можно ожидать сохранение следов по крайней мере двух мантийных процессов: 1) кристаллизации мегакрист из астеносферных жидкостей и 2) деформации твердых мегакристовых кумулатов, которая сопро-

Институт земной коры

вождалась метасоматическим привносом вещества и частичным плавлением.

Петрография ксенолита детально изучена по нескольким шлифам, изготовленным из разных частей образца. Химические составы минералов первичного парагенезиса, метасоматических минералов и фаз из участков плавления исследовались на микроанализаторе "Superprobe JXА-733" фирмы "Geol" в Институте геохимии им. А.П. Виноградова СО РАН (Иркутск). Анализы содержаний редких элементов (Ba, Rb, Sr, La, Ce, Nd, Sm, Eu, Dy, Er, Y, Nb, Zr, Hf, Ti) B pa3ных точках зерен минералов были выполнены на микроанализаторе "Cameca IMS ion probe" в Институте микроэлектроники РАН (Ярославль). Последний метод обеспечивал точность измерений редких элементов с концентрациями >1 ppm не ниже 10% и с концентрациями 1-0.1 ppm – не ниже 15–20%.

Эллипсоидальный ксенолит лерцолита размером  $6 \times 20 \times 35$  см содержит вытянутые цепочки крупных (до 5-7 см) порфирокласт красно-оранжевого граната (~13%), травяно-зеленого клинопироксена (~15%) и желтовато-серого ортопироксена (~20%), погруженных в мономинеральную матрицу из мелких (0.1-0.2 мм) полигональных зерен оливина (~40%), которая содержит также неправильные порфирокласты размером до 1-2 см оливина (~12%). Порфирокласты пироксенов удлинены и имеют неправильную причудливую форму. Они растащены на отдельные блоки, перекристаллизованные в краевых частях в мелкозернистый агрегат. Порфирокласты клинопироксена нередко превращены в вытянутые ленты и линзы мелких полигональных зерен, которые обволакивают порфирокласты граната и ортопироксена. Неправильные сильно трещиноватые порфирокласты граната растащены на отдельные вытянутые развальцованные сегменты. Узкие краевые зоны порфирокласт, участки интенсивной кливажности в них и скопления полигональных зерен граната и пироксенов заметно осветлены. Возникшую в результате интенсивного стресса

<sup>\*</sup>Gnt – гранат, Срх – клинопироксен, Орх – ортопироксен, Ilm – ильменит, Ol – оливин, Phl – флогопит.

Сибирского отделения Российской Академии наук, Иркутск

структуру породы можно определить как мозаичную порфирокластическую с разрушенным и ламинарным подтипами. Характерной особенностью порфирокласт граната и, в меньшей степени, клинопироксена являются многочисленные мелкие неправильные скопления из зерен Аl-пироксенов, оливина, паргасита, Аl-шпинели, Тi-флогопита, ильменита, карбоната и содалита, в которых нередко присутствует бурое стекло. В порфирокластах граната отмечаются тончайшие прожилки афвиллита. Необласты матричного оливина замещаются монтичеллитом с развитием в зоне реакции мелких пластинок Ті-флогопита и Мд-магнетита. Наличие в ксенолите полиминеральных реакционных агрегатов и стекла указывают на интенсивную метасоматическую проработку и частичное плавление породы, незадолго до ее захвата кимберлитом.

Данные по главным и редким элементам в первичных и наложенных минералах из ксенолита UV-303 приведены в табл. 1. Деформированные мегакристы из ксенолита показывают высокую гомогенность состава в крупных свежих блоках, за исключением узких краевых зон, размеры которых варьируют в пределах 50–500 мкм. В целом все порфирокласты (Gnt, Cpx, Opx, Ol) химически подобны соответствующим мегакристам низкохромистой группы из трубки Удачная [5], а также низкохромистым мегакристам из кимберлитовых трубок Южной Африки и США [2].

Железистый оливин (FeO ~14 %) содержит заметные примеси Ti, Ca и Cr. Энстатит является титанистым бронзитом (TiO<sub>2</sub> 0.20%) с заметной примесью Na<sub>2</sub>O (0.18 %). Порфирокласты клинопироксена относятся к субкальциевому диопсиду (Ca/(Ca + Mg)<sub>ar</sub> = 0.40%) с 0.3–0.4% TiO<sub>2</sub> и 0.3–0.5% Cr<sub>2</sub>O<sub>3</sub>. Титанистый пироп содержит около 1% TiO<sub>2</sub> и существенную примесь Na<sub>2</sub>O (0.15%).

Метасоматические минералы неоднородны по составу и содержанию микропримесей. Наиболее широкими пределами колебаний основных оксидов характеризуется шпинель: 35.3-56.5% Al<sub>2</sub>O<sub>3</sub>; 4.6-18.9% Cr<sub>2</sub>O<sub>3</sub>; 11.3-14.4% MgO; 0.38-3.19% TiO<sub>2</sub>; 5.87–10.1% Fe<sub>2</sub>O<sub>3</sub>. Часто встречается зональная шпинель с увеличением магнезиальности к внешним зонам. Флогопит из реакционных агрегатов порфирокласт граната содержит больше оксидов титана (2.4-4.0%) и хрома (0.6-1.7%), в отличие от флогопита, замещающего порфирокласты клинопироксена (0.5–0.8% TiO<sub>2</sub> и 0.02–0.2% Cr<sub>2</sub>O<sub>3</sub> соответственно). Концентрации основных оксидов в составе глиноземистых ортопироксенов варьируют в следующих пределах: 5.6-14.4% Al<sub>2</sub>O<sub>3</sub>; 23.3–27.9% MgO; 0.3–1.7% Cr<sub>2</sub>O<sub>3</sub>; 0.3–0.7% TiO<sub>2</sub>; 1.3-2.0% СаО. Аналогичная вариабельность окси-

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 1 2004

дов характерна для глиноземистых клинопироксенов: 8.2–12.0%  $Al_2O_3$ ; 12–15.2% MgO; 0.1–0.6%  $Cr_2O_3$ ; 1.7–3.3% TiO<sub>2</sub>; 19.0–21.0% CaO. Ильменит из полиминеральных метасоматических агрегатов содержит 0.8–1.2%  $Al_2O_3$ ; 1.4–2.8%  $Cr_2O_3$ ; 9.0–10.0% MgO и до 6% Fe<sub>2</sub>O<sub>3</sub>. Для паргасита колебания содержаний оксидов титана (2.3–3%), железа (8.5–9.2%), хрома (0.2–0.6%) незначительны.

Результаты оценки *РТ*-условий с использованием геотермобарометра Г. Брея и Т. Колера [6] свидетельствуют о высокобарном (58 кбар) и высокотемпературном (1230°С) формировании минералов первичного парагенезиса ксенолита. Процессы реакционных замещений порфирокласт граната и клинопироксена происходили при более низких температурах (менее 800°С), судя по высоким значениям Ca/(Ca + Mg) в метасоматических Al-клинопироксенах. Присутствие паргасита среди наложенной минеральной ассоциации в ксенолите ограничивает глубину образования метасоматических минералов до 100–120 км.

Содержания проанализированных редких элементов в минералах первичного парагенезиса (Gnt, Cpx, Opx, Ol), в их узких краевых зонах, а также в метасоматическом Ті-флогопите приведены в табл. 1. Распределение REE и HFSE (Nb, Zr, Hf, Ti) в гранате, клинопироксене, ортопироксене и оливине, нормированное по хондриту, по [7], показаны на спайдерграммах (рис. 1). В неизмененных блоках крупных порфиробласт граната содержания всех редких элементов показывают высокую степень гомогенности и подобны распределению в гранате 27 (рис. 1а). Для линии Gnt 27 характерен последовательный подъем от La к Yb с характерными максимумами для Nb, Zr, Hf на фоне REE и очень слабая положительная аномалия Ті. В узких краевых зонах граната и вблизи трещин отмечается заметное возрастание концентраций Nb, La, Се и незначительное уменьшение концентраций Er и Yb. При этом заметно снижаются максимумы Nb, Zr и Hf. Эти тенденции еще более четко проявлены в участках граната, отщепленных от порфирокласт и окруженных необластами оливина (ан. 43) или участком плавления. В краевых зонах и в отщепленных участках отмечается также возрастание содержаний Ва, Rb и Sr (табл. 1).

Гомогенные по главным и редким элементам порфирокласты клинопироксена показывают распределение, подобное составу 37 (рис. 16). Линия клинопироксена 37 имеет очень слабую выпуклость за счет пониженных значений La<sub>N</sub> и Ce<sub>N</sub> по сравнению с Nd<sub>N</sub> и существенный наклон к Er и Yb. В противоположность линии первичного Gnt 27 для линии Cpx 37 характерны резкие минимумы для Nb, Zr, Hf и отсутствие аномалии для Ti. В осветленных зонах порфирокласт и в вы-



Рис. 1. Спайдерграммы для REE и HFSE в минералах из ксенолита UV-303: а – в гранате; б – в клинопироксене; в – в ортопироксене и оливине. Цифры в легенде справа обозначают номера анализов в табл. 1; ан. 38 – краевая зона клинопироксена 37; L27 – жидкость, находящаяся в равновесии с гранатом 27; L37 – жидкость, находящаяся в равновесии с клинопироксеном 37. Составы магматических жидкостей вычислены по формуле:  $C_l = C_m/D_m$ , где  $C_l$  – концентрация элемента в жидкости,  $C_m$  – концентрация элемента в минерале,  $D_m$  – коэффициент распределения элемента, по [8], для Dy, Y, Yb по [9, 10]. Штриховая линия на "а" – Е-МОRB, линия с точками – толеиты океанических островов (ОІВ\* по [7]); штриховая линия K на "6" – базальтоидный кимберлит из трубки Удачная-Восточная (наши данные); линия с точками на "6" – ОІВ по [7].

тянутых полигональных лентах и линзах клинопироксена заметно возрастают содержания Nb, La, Ce и Yb с менее существенным повышением содержаний остальных элементов (линии 38, 39). Мелкие закалочные зерна клинопироксена из участков плавления (линия 34) содержат более высокие концентрации Nb, Zr, Hf, Ti, REE (рис. 1б), а также повышенные содержания Ba, Rb, Sr (табл. 1). Закалочный клинопироксен показывает слабое фракционирование редких земель (La<sub>N</sub>/Yb<sub>N</sub> = 2.1) и заметное уменьшение минимума Zr и Hf.

Линии распределения REE и HFSE для крупных гомогенных порфирокласт ортопироксена (ан. 2, рис. 1в) характеризуются практическим отсутствием фракционирования редких земель (La<sub>N</sub>/Yb<sub>N</sub> = 0.9), заметным максимумом Nb и резким пиком Ti. В узких краевых зонах порфирокласт (ан. 3) возрастает содержание всех REE с преимуществом для La, Ce и Nd, отмечается заметный максимум для Eu и Ti, понижение для Zr, Hf и отсутствие максимума Nb. Кроме того, в краевых каймах ортопироксена возрастает содержание Ba, Rb, Sr (табл. 1).

Уровень содержаний и тип распределения REE и HFSE в порфирокластах и мелких необластах оливина в целом близки, а линии распределения характеризуются пиками Nb, Zr, Hf и особенно Ti на фоне REE и отсутствием фракционирования редких земель (ан. 10 и 5 соответственно на рис. 1в). В закалочных зернах оливина из участков плавления возрастает содержание всех редких элементов с преимуществом для La, Ce и Nd (La<sub>N</sub>/Yb<sub>N</sub> = 7.4) и сохраняются пики Nb, Zr, Hf, Ti.

Первичное гигантозернистое строение ксенолита и близость химического состава порфиробласт Gnt, Cpx, Opx и Ol составу соответствующих низкохромистых мегакрист из трубки Удачная и кимберлитовых трубок мира [2, 3, 5] предполагают, что в своем первоначальном виде ксенолит представлял собой высокобарный магматический кумулат. Высокие РТ-параметры для ассоциаций низкохромистых мегакрист указывают на их кристаллизацию из родительской жидкости в верхней части астеносферы [3]. Явные свидетельства субсолидусных деформаций в мегакристах предполагают прохождение ими породной стадии до попадания в кимберлитовый расплав [5]. В ксенолите UV-303 кластирование и пластическое течение также были наложены на твердую породу, по-видимому, представлявшую собой мегакристовый кумулат в верхней части астеносферы Сибирского кратона. Точки La, Ce, Nd, Sm и Eu на линии жидкости L27, равновесной с гранатом 27, находятся вблизи линии E-MORB и заметно ниже линии толеита океанических островов - OIB\* (рис. 1а). В отличие от последних линия L27 имеет характерные максимумы Nb, Zr и Hf, Ti, а также более существенный наклон к Yb ( $La_N/Yb_N = 5.5$ ). Жидкость L37, равновесная с клинопироксеном 37 (рис. 1б), существенно обогащена легкими и средними редкими землями (La<sub>N</sub>/Yb<sub>N</sub> = 45), резко

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 1 2004

| ОМПОНАЦТ                       |        | Gnt     |          |        | Cpx     |          | Ō     | xd     |         | IO      |          | Dh1 (75) |
|--------------------------------|--------|---------|----------|--------|---------|----------|-------|--------|---------|---------|----------|----------|
| - OMITORCHI                    | ц (27) | кр (29) | сат (43) | ц (37) | кр (39) | зак (34) | ц (2) | кр (3) | ц (10)  | м (5)   | 3aK (33) |          |
| SiO <sub>2</sub>               | 40.88  | 42.13   | 40.95    | 55.34  | 55.3    | 43.77    | 56.46 | 56.71  | 39.91   | 40.21   | 40.68    | 36.61    |
| $TiO_2$                        | 0.94   | 1.03    | 0.94     | 0.3    | 0.41    | 3.3      | 0.17  | 0.16   | Не обн. | Не обн. | Не обн.  | 3.96     |
| $AI_2O_3$                      | 20.93  | 20.47   | 20.43    | 1.93   | 0.88    | 11.96    | 0.72  | 0.7    | *       | *       | *        | 16.43    |
| Cr <sub>2</sub> O <sub>3</sub> | 1.53   | 1.13    | 1.71     | 0.37   | 0.41    | 0.13     | 0.21  | 0.01   | *       | *       | 0.12     | 1.73     |
| FeO*                           | 11.2   | 11.06   | 11.32    | 5.07   | 4.35    | 6.83     | 8.25  | 8.56   | 14.34   | 14.05   | 13.72    | 6.36     |
| MnO                            | 0.38   | 0.35    | 0.44     | 0.07   | 0.07    | 0.22     | 0.13  | 0.17   | 0.15    | 0.16    | 0.13     | Не обн.  |
| MgO                            | 19.07  | 18.47   | 19.07    | 18.14  | 18.37   | 11.93    | 32.57 | 32.14  | 45.56   | 45.46   | 45.32    | 19.92    |
| CaO                            | 4.74   | 4.99    | 4.81     | 16.79  | 19.52   | 20.98    | 1.09  | 1.12   | Не обн. | Не обн. | 0.06     | Не обн.  |
| $Na_2O$                        | 0.1    | 0.14    | 0.17     | 1.99   | 1.04    | 0.28     | 0.19  | 0.16   | *       | *       | Не обн.  | 0.97     |
| $K_2O$                         | 0.05   | 0.06    | 0.05     | 0.02   | 0.03    | 0.01     | 0.04  | 0.05   | *       | *       | *        | 9.3      |
| $P_2O_5$                       |        | _       | _        | _      | H e c   | 0 б н а  | р у ж | е н о  |         | _       | _        | _        |
| Сумма                          | 99.82  | 99.83   | 99.89    | 100.02 | 100.38  | 99.41    | 99.83 | 99.78  | 96.66   | 99.88   | 100.03   | 95.28    |
| Ba                             | 0.119  | 2.31    | 7.74     | 1.21   | 22.02   | 0.449    | 0.126 | 15.6   | 0.212   | 0.074   | 8.94     | 993      |
| Rb                             | 9.04   | 10.5    | 17.5     | 4.74   | 8.08    | 7.6      | 7.71  | 23.2   | 14.4    | 17.1    | 17.1     | 602      |
| Nb                             | 0.41   | 0.667   | 1.2      | 0.362  | 3.1     | 3        | 0.1   | 0.896  | 0.071   | 0.046   | 4.25     | 17.7     |
| La                             | 0.049  | 0.219   | 0.98     | 2.73   | 6.09    | 10.3     | 0.02  | 1.37   | 0.00    | 0.001   | 1.07     | 0.57     |
| Ce                             | 0.36   | 0.6     | 2.64     | 9.62   | 16.1    | 37.8     | 0.079 | 1.45   | 0.011   | 0.007   | 3.19     | 0.01     |
| Sr                             | 2.23   | 18.7    | 58.6     | 132.9  | 155.6   | 87.6     | 3.36  | 73     | 1.41    | 1.66    | 5.89     | 31.1     |
| Nd                             | 1.16   | 1.26    | 2.43     | 7.51   | 10.6    | 30       | 0.071 | 0.531  | 0.006   | 0.003   | 0.44     | 0.15     |
| Zr                             | 67.4   | 70.1    | 54.7     | 7.45   | 12.9    | 165      | 0.37  | 1.47   | 0.308   | 0.378   | 9.35     | 4.33     |
| Hf                             | 1.97   | 1.92    | 1.86     | 0.413  | 0.74    | 6.86     | 0.012 | 0.045  | Не обн. | Не обн. | 0.127    | 0.44     |
| Sm                             | 0.855  | 1.01    | 0.987    | 1.78   | 2.3     | 7.8      | 0.036 | 0.13   | *       | 0.006   | 0.062    | 0.03     |
| Eu                             | 0.433  | 0.458   | 0.527    | 0.472  | 0.758   | 2.31     | 0.011 | 0.119  | 0.003   | 0.002   | 0.055    | 6.37     |
| Ti                             | 6360   | 6480    | 5550     | 2025   | 2396    | 9532     | 1094  | 1143   | 265     | 238     | 460      | 16700    |
| Dy                             | 3.25   | 3.08    | 3.1      | 0.748  | 1.02    | 6.87     | 0.039 | 0.06   | 0.006   | 0.004   | 0.092    | 0.10     |
| Y                              | 23.7   | 22.7    | 21.8     | 3.45   | 4.28    | 34.87    | 0.174 | 0.467  | 0.05    | 0.053   | 0.738    | 0.0      |
| Er                             | 2.62   | 2.34    | 2.55     | 0.327  | 0.451   | 3.93     | 0.016 | 0.04   | 0.002   | 0.009   | 0.081    | 0.03     |
| Yb                             | 2.58   | 2.23    | 2.64     | 0.223  | 0.397   | 3.6      | 0.015 | 0.02   | 0.005   | 0.006   | 0.104    | 0.00     |
| $La_N/Yb_N$                    | 0.01   | 0.07    | 0.3      | 8.8    | 11      | 2.1      | 0.9   | 50.5   | 1.4     | 0.1     | 7.4      | 4        |

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 1 2004

## МЕГАКРИСТАЛЛИЧЕСКИЙ КАТАКЛАЗИРОВАННЫЙ ЛЕРЦОЛИТ

91

обеднена Nb, Zr и Hf и ее линия имеет четко выраженную положительную аномалию Ті. Изменение состава магматической жидкости L27 до L37 может быть объяснено частичным удалением из расплава таких мегакрист, которые обеднены LREE относительно HREE, а также обогащены Nb, Zr, Hf по сравнению с REE. В качестве таких фракционирующих фаз могут быть рассмотрены ильменит, гранат и циркон. Ильменит широко представлен в мегакристовой ассоциации в трубке Удачная [5], но его удаление из расплава L27 привело бы наряду с обогащением остаточного расплава LREE и разубоживанием Nb, Zr, Hf к резкому обеднению Ті. В первом приближении можно принять, что геохимическая эволюция расплава L27 до L37 могла быть обусловлена фракционированием мегакрист граната, близкого гранату 27, и циркона, так как удаление этих фаз приведет к обогащению остаточного расплава LREE и обеднению Nb, Zr, Hf с возможным накоплением Ті. За исключением Nb и Ті, линия расплава L37 исключительно близка линии базальтоидного кимберлита из трубки Удачная. Это может свидетельствовать о возможности геохимической эволюции базитового расплава, родоначального мегакристам, к протокимберлитовому расплаву, что не противоречит данным об изотопном родстве низкохромистых мегакрист кимберлитам [3]. Близкий толеитам E-MORB расплав L27 имеет необычные для них пики HFSE на фоне REE, что, по-видимому, указывает на обогащение глубинного источника расплава, давшего начало высокобарной ассоциации мегакрист, такими фазами, как титанат, рутил, циркон и Mg-перовскит [7, 8]. Возможное присутствие в глубинном источнике Mg-перовскита, в свою очередь, не исключает существования в ранней истории Земли магматического океана [8]. Развитие астеносферных расплавов в период кимберлитообразующего цикла могло быть инициировано мощными потоками глубинных флюидов [11].

Более низкие *PT*-параметры, рассчитанные по составам метасоматических кайм на первичных минералах и для закалочных фаз в участках плавления ксенолита, предполагают подъем породы с развитием интенсивных деформаций и активных метасоматических преобразований. Этому этапу отвечает кластез, полигонизация и перекристаллизация оливина и пироксенов с развальцеванием более твердых порфирокласт граната, а также развитие широкого ряда метасоматических минералов. Возрастание в реакционных каймах на гранате, пироксенах и оливине концентраций наиболее несовместимых редких элементов с некоторым отставанием от редких земель HFSE (рис. 1) предполагает преимущественно флюидную форму метасоматоза с высокой ролью СО<sub>2</sub> [12]. Богатые СО<sub>2</sub> флюиды возникали в астеносфере как остаточные после кристаллизации жидкостей базитового состава и могли играть важную роль в формировании кимберлитовых расплавов. Последующее частичное плавление породы развивается как следствие метасоматической подготовки и декомпрессии при подъеме.

Работа выполнена при финансовой поддержке РФФИ (проекты 02–05–64065, 03–05–65382).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Egorov K.N., Bogdanov G.R., Solovjeva L.V. In: V Intern. Kimberlite Conf. Brasilia, 1991. P. 495–497.
- 2. Jones R.A. In: Mantle Xenoliths. Chichster: Wiley, 1987. P. 711–724.
- Schulze D.J., Valley J.R., Bell D.R., Spicuzza M.J. // Geochim. et cosmochim. acta. 2002. V. 65. P. 4375– 4384.
- Griffin W.L., Smith D., Ryan C.G. et al. // Can. Miner. 1996. V. 34. P. 1179–1193.
- 5. Соловьева Л.В., Владимиров Б.М., Днепровская Л.В. и др. Кимберлиты и кимберлитоподобные породы. Вещество верхней мантии под древними платформами. Новосибирск: Наука, 1994. 256 с.
- 6. Brey G.P., Kohler T. // J. Petrol. 1990. V. 31. № 6. P. 1353–1378.
- Sun S., Mcdonough W.F. // Geol. Soc. Austral. Spec. Publ. 1989. V 42. P. 313–345.
- Xie Q., McCuaig T.C., Kerrich R. // Chem. Geol. 1995. V. 126. P. 29–42.
- 9. Halliday A.N., Lee D.C., Tommasims N. et al. // Earth and Planet. Sci. Lett. 1995. V. 133. P. 379–395.
- 10. *Hart S.R., Dunn T. //* Contribs Mineral. and Petrol. 1993. V. 113. P. 1–8.
- Летников Ф.А. // Геология и геофизика. 2003. Т. 44. № 12. С. 1262–1269.
- 12. Hauri E.H., Shimizu N., Dien J.J., Hart S.R. // Nature. 1993. V. 365. P. 221–227.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 1 2004