= ГЕОХИМИЯ =

УДК 523.681

ХОНДРИТОВЫЙ МЕТЕОРИТ ЗЕРКАЛЫ

© 2004 г. Л. В. Агафонов, С. М. Кузнецов, Л. Н. Поспелова

Представлено академиком В.В. Ревердатто 04.11.2003 г.

Поступило 21.11.2003 г.

В 1954 г. в районе села Зеркалы Шипуновского района (Алтайский край) наблюдалось падение метеорита, сменившего траекторию вблизи поверхности Земли с вертикальной на слабонаклонную. В 1956 г. он был обнаружен при вспашке поля недалеко от места наблюдения. После находки, предполагая железный состав, метеорит нагрели "добела" в горне кузницы с целью расковать его. Однако это не увенчалось успехом. О находке забыли и только 26.09.97 о ней вспомнили и сдали в Косихинский районный музей как возможный метеорит, который был зарегистрирован в виде экспоната под № 501.

Изучение шлифов показало, что данный образец представляет каменный метеорит-хондрит, содержащий хондры различной формы, структуры и состава. Наряду с силикатной составляющей в нем присутствуют в небольшом количестве никелистое железо – камасит, тэнит и сульфид железа – троилит.

По форме метеорит представляет уплощенное тело толщиной 130 мм, в поперечном срезе напоминающее профиль крыла самолета с одной округло заостренной длинной стороной. Длина его составляет 230 мм, а ширина 190 мм (рис. 1). Первоначальная поверхность метеорита характеризовалась сглаженными формами при полном отсутствии острых углов. Метеорит покрыт коркой плавления незначительной мощности. Предположительно на стороне метеорита, обращенной к направлению полета, наблюдаются разной величины регмаглипты.

Замеры магнитной восприимчивости к показали, что она соответствует $33053.2 \cdot 10^{-5}$ ед. СИ. Величина естественной остаточной намагниченности J_n составляет 3000 мА/м = $3000 \cdot 10^{-6}$ ед. СГСЭ. Столь высокие магнитные параметры обусловлены наличием в метеорите никелистого желе-

Институт геологии Объединенного института геологии, геофизики и минералогии Сибирского отделения Российской Академии наук, Новосибирск за, а также незначительной примесью магнетита. Удельный вес метеорита составляет 3.26 г/см³.

Метеорит Зеркалы окрашен в темно-коричневый цвет, а его тонко измельченный порошок имеет светло-коричневую окраску. При резке метеорита алмазной пилой на срезе Ni-железо образует большой площади примазки, создавая впечатление его высокого содержания. Однако на полированной поверхности количество Ni-железа резко уменьшается по объему, составляя вместе с троилитом около 10%. Размер зерен Ni-железа и троилита варьирует в пределах 0.05-1.0 мм с максимумом 0.1 мм. Количество Ni-железа в метеорите составляет 4.74 мас. %. После отделения Ni-железа немагнитная и металлическая фракции анализировались раздельно. Состав немагнитной фракции приведен в табл. 1. Ni-железо имеет следующий химический состав, мас. %: Ni 6.92; Fe 92.53; Cr 0.55. Кроме того, в магнитной фракции согласно фазового рентгенометрического анализа зафиксирован в твердом остатке магнетит в количестве десятых долей процента от объема. Со-

Рис. 1. Зарисовка метеорита Зеркалы. С правой стороны схематически в виде изогнутых линий показаны регмаглипты.

SiO_2^*	TiO_2^*	$Al_2O_3^*$	Fe ₂ C) ^{**}]	FeO**	MnO*	MgO*	CaO*	Na ₂ O	* K ₂ O*	$* P_2O_5^*$	Ba*	NiO**	S**	Cr ₂ O	3 CoO	П.п.п**
33.30	0.11	2.92	7.8	1	18.92	0.31	25.43	1.82	0.90	0.25	0.26	0.10	1.74	1.85	0.31	0.56	2.29
С	Cı	u	V	Z	Zn 🛛	Ge	Rb	Sr		Zr	Mo	Pb	Th	ı 🔤	U	As	Сумма
0.23	0.0	0.01 0.008		0.0)07 ().0002	0.004	0.00)2 (0.006	0.005	0.004	0.00	03 0	.001	0.002	99.16

Таблица 1. Химический состав хондритового метеорита Зеркалы, мас. %

Примечание. * рентгено-флуоресцентный анализ; ** мокрый химический анализ; остальные элементы, кроме углерода, –рентгено-флуоресцентный анализ на синхротронном излучении ВЭПП-3 ИЯФ СО РАН; С – объемный метод.

став немагнитной фракции характеризуется высоким содержанием железа, магния и никеля, большая часть которого фиксируется в лимоните. Различными методами исследования в метеорите Зеркалы установлены оливин, ромбический пироксен, хромшпинелид, плагиоклаз, камасит, тэнит, троилит, лимонит, магнетит, углерод и неидентифицированный минерал, состоящий из кремния, алюминия, хрома, железа с примесью натрия, калия, кальция и никеля (рис. 2). В некоторых случаях в нем отмечаются магний и примесь титана. На сканирующем микроскопе с энергодисперсионной приставкой "Kevex" эта фаза зафиксирована в виде мелких включений (10-30 микрон) в камасите. Количественное приблизительное соотношение минералов в метеорите по данным просмотра трех шлифов может быть представлено в следующем виде: оливин 40 об. %; ромбический пироксен 25%; плагиоклаз 10%; лимонит 10%; троилит (стехиометрически на основании содер-

Рис. 2. Энергодисперсионный спектр фазы, находящейся в виде мелких включений в камасите.

жания серы) 5.42%; Ni-железо 4.74%; углерод 0.23%. На долю остальных минералов приходится 4.61%. В числе минералов, диагностированных в шлифах под микроскопом, присутствуют также единичные, чаще мелкие, зерна моноклинного пироксена и серпентин. Кроме того, изредка в виде микрожилок отмечается тальк, иногда окрашенный в бурый цвет.

Фазовое состояние углерода не установлено. Включения его, вероятно, фиксируются в виде мельчайших частиц в троилите.

Метеорит характеризуется ярко выраженным хондритовым строением, которое наблюдается при просмотре шлифа на свет. На общем коричневом фоне основной массы метеорита, окрашенной лимонитом, хондры видны в виде светло-серых округлых и линзовидных выделений. Часто по границам хондр развиты каемки лимонита. В других случаях без видимых границ хондры переходят во вмещающую массу, сливаясь с последней, как это показано Дж. Вудом [1] на примере метеорита Lumpkin. Размер хондр колеблется от 1 мм (преобладает) до 2 мм. В площади шлифа размером 12 × 36 мм было отмечено 48 хондр общей площадью 54 мм², что составило 12.5%.

Метеорит имеет весьма неоднородную структуру как основной массы, так и хондр. Крупность минералов, слагающих метеорит, изменяется от микрозернистых до среднезернистых. Весьма разнообразны по своей структуре хондры. Среди них выделяются разности с колосниковой структурой, сложенные вытянутыми зернами оливина, иногда содержащие в межзерновом пространстве плагиоклаз. Широко представлены хондры, сложенные оливином и, реже, плагиоклазом микрогранобластовой структуры, а также хондры радиально-лучистого строения, сложенные ромбическим пироксеном, в котором фиксируются редкие мелкие зерна оливина и плагиоклаза. Отмечаются хондры наполовину сложенные крупными разноориентированными зернами оливина с межзерновым тонкозернистым агрегатом клинопироксена, а вторая часть хондры состоит из крупных зерен радиальнолучистого и широкопризматического моноклинного пироксена. Встречаются хондры, состоящие из крупных разноориентированных таблитчатых зе-

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 2 2004

ХОНДРИТОВЫЙ МЕТЕОРИТ ЗЕРКАЛЫ

		1	1		1	I I							
Компо-	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.
нент	26	46	34	7	Л-1	Л-4	Тэ-4	Тэ-2	Tp-1	Tp-3	K-2	24	44
SiO ₂	39.83	37.05	57.83	52.36	4.91	1.54	_	_	_	-	_	0.07	66.40
TiO ₂	0.03	Не обн.	0.15	0.18	Не обн.	Не обн.	-	_	_	-	-	1.06	0.04
Al_2O_3	Не обн.	»	0.11	0.15	0.03	»	-	-	_	-	-	7.45	19.77
Cr ₂ O ₃	»	0.02	0.08	0.12	Не обн.	»	-	-	-	-	-	55.56	Не обн.
FeO	17.15	20.72	11.00	17.25	41.73	73.70	47.59	67.59	61.46	64.18	92.44	28.89	0.99
NiO	Не обн.	0.46	Не обн.	0.42	36.00	8.33	51.95	31.30	2.39	Не обн.	6.25	0.03	0.06
MnO	_	-	-	_	0.03	0.03	0.02	0.02	S-35.16	S-36.26	0.02	1.12	Не опр.
MgO	43.72	40.32	31.98	27.54	1.49	0.39	-	_	0.01	Не обн.	-	2.81	0.02
CaO	0.03	0.03	0.79	0.75	0.10	0.15	-	_	_	-	-	0.03	2.62
Na ₂ O	0.04	0.01	0.03	0.05	0.17	0.21	-	-	_	-	-	0.06	9.71
K ₂ O	_	-	Не обн.	Не обн.	Не обн.	Не обн.	-	_	_	-	-	Fe ₂ O ₃	1.18
												1.09	
P_2O_5	_	-	»	»	0.38	0.03	-	-	—	-	-	0.01	-
Сумма	100.80	98.61	101.97	98.82	84.84	84.35	99.92*	99.23**	99.19+	100.44	99.20 [•]	97.20	100.79
F	18.04	22.38	16.32	25.98								85.19	

Таблица 2. Химический состав минералов хондритового метеорита Зеркалы, мас. %

Примечание. Обр. 26, 46 – оливины; обр. 34, 7 – ромбические пироксены; обр. Л-1 – кайма вокруг тэнита; обр. Л-4 – кайма вокруг камасита; обр. Тэ-4, Тэ-2 – тэнит (в т.ч. * Со – 0.06; Си – 0.30; ** Со – 0.16; Си – 0.17); обр. Тр-1 – троилит сросток с тэнитом (в т.ч. * Со – 0.17); обр. Тр-3 – троилит; обр. 24 – хромшпинелид; обр. 44 – плагиоклаз. Прочерк – не определялось; обр. К-2 – камасит (в т.ч. * Со – 0.46; Си – 0.03); в тэните, камасите и троилите результаты анализа в виде металлов; *F* – железистость = Fe/(Fe + Mg) %. Анализы выполнены на микроанализаторе "Сатеbax-Micro", ОИГГМ СО РАН.

рен ромбического пироксена. Кроме отмеченных хондр, наблюдаются крупные зерна оливина, окруженные по периферии каймой мелкозернистого агрегата оливина или плагиоклаза. Основная масса метеорита характеризуется аллотриоморфнозернистой структурой с участками гипидиоморфнозернистой. Очень редко наблюдаются идиоморфные кристаллы оливина. Во всех хондрах видны тончайшие зерна троилита и резко подчиненные им по объему частицы Ni-железа. Основное количество троилита и Ni-железа сосредоточено в виде крупных зерен в основной массе метеорита. Иногда троилит и Ni-железо образуют сростки. Форма выделений этих двух минералов неправильная и подчеркивает интерстиционый характер выполненного пространства.

Химический состав минералов приведен в табл. 2, в которой показаны выборочные крайние значения анализов по содержанию железа.

Типоморфной особенностью оливина метеорита Зеркалы в отличие от земных пород [2] является его невыдержанный состав по элементампримесям. Так, содержание NiO колеблется в 18 проанализированных зернах от 0 до 0.46 мас. % при среднем значении 0.05 мас. %. Устойчиво в оливине фиксируется натрий на уровне 0.02–0.04 мас. %. Среднее содержание марганца составляет 0.49 мас. % (n = 6), что в несколько раз выше, чем в оливинах из ультраосновных пород офиолитов.

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 2 2004

Средняя железистость оливина (см. табл. 2) составляет 18.89 и соответствует хризолиту. Известно [3, 4], что в оливинах каменных метеоритов часто наблюдаются пластические деформации в виде волнистого и мозаичного погасания, полос сброса и рекристаллизации. В метеорите Зеркалы признаки пластической деформации оливина практически отсутствуют. Только в единичных зернах оливина отмечалось едва заметное волнистое погасание. Отсутствие пластических деформаций в оливине, вероятно, обусловлено вторичным прогревом метеорита.

Ромбический пироксен представлен бронзитом (число анализов n = 24) и характеризуется более широкими вариациями железистости и содержаний элементов примесей, чем оливин. Пределы колебания составляют, мас. %: TiO₂ 0.10–0.52; Al₂O₃ 0.10–0.69; Cr₂O₃ 0.07–0.47; NiO 0–0.27; Na₂O 0.02-0.13. Более однородны пироксены по содержанию MnO (0.50-0.56 мас. %). Из особенностей состава по сравнению с земными ортопироксенами следует отметить в них низкое содержание алюминия и устойчивое, а в некоторых случаях повышенное количество натрия. Оптически бронзиты метеорита характеризуются отсутствием плеохроизма и погасанием, несколько отклоняющимся от прямого (до 7°). Ламелли распада в ортопироксене данного метеорита отсутствуют.

Лимонит формирует каемки вокруг Ni-железа до 20 микрон мощностью, никогда не рассекая его, образует бесформенные выделения размером до 0.5 мм, а также в виде тонких и сети тончайших жилок (первые микроны) пронизывает все минералы – силикаты метеорита. В последнем случае он, как правило, залечивает трещинки и в проходящем свете фиксируется по грязножелтой окраске, тогда как в каемках, жилках и самостоятельных выделениях он окрашен в красно-коричневый цвет. В крупных зернах в лимоните отмечается тонкополосчатое или концентрически-зональное строение. Было выполнено четыре анализа лимонитов из каемок вокруг тэнита и камасита. Химический состав лимонита по тэниту и камаситу (табл. 2) свидетельствует, что в процессе формирования лимонита в него привносятся элементы силикатных минералов: кремнезем, магний, кальций и натрий. Что же касается железа, то при лимонитизации тэнита и камасита оно выносится. Очевидно, лимонитизация метеоритов, как каменных, так и железных [5], – обычный процесс в физико-химических условиях Земли, где повышенная влажность по сравнению с космосом приводит к интенсивному замещению Ni-железа и железосодержащих минералов гидроксидами железа. Лимонитизации метеорита Зеркалы способствовали его повторный высокотемпературный прогрев и механические удары, приведшие к образованию многочисленных микротрещин.

Троилит в полированных шлифах имеет серолатунный цвет, содержит большое количество разновеликих непрозрачных труднодиагностируемых включений (вероятно, графит). По объему его количество, по сравнению с Ni-железом, заметно преобладает. В составе троилита в отдельных зернах определен никель, причем в срастании с тэнитом его количество весьма значительно (табл. 2). В этом зерне зафиксирован также кобальт. Все проанализированные троилиты характеризуются дефицитом серы.

Камасит и тэнит микроскопически не различимы, поэтому, чтобы установить количественное соотношение этих минералов, был проведен микрозондовый анализ случайных зерен на никель и железо. Из 18 случаев 2 зерна оказались тэнитом, остальные камаситом, что составило приблизительное соотношение камасита и тэнита как 9 : 1. Камасит метеорита Зеркалы имеет выдержанный состав. Колебание железа в нем составляет 91.90–93.18 мас. %, а никеля – 5.85–6.53 мас. %. В заметных количествах в камасите присутствует кобальт. Количество меди и марганца в нем лишь незначительно превышает фоновое.

Тэнит в отличие от камасита характеризуется широкими колебаниями состава. Содержание железа и никеля в нем варьируют соответственно от

47.11 до 68.43 и 29.18–51.95 мас. %. В качестве примесей в тэните установлены Со до 0.16 мас. % и Си – до 0.25 мас. %.

Плагиоклаз фиксируется по низкому показателю преломления. При просмотре шлифов не встречено его выделений с полисинтетическими двойниками. Обычно это неправильные по форме отдельные зерна и их скопления среди других минералов. Плагиоклаз встречается как в составе хондр в виде мономинерального микрогранобластового агрегата и индивидуальных зерен, так и в основной массе. Состав плагиоклаза изменяется главным образом от альбита до олигоклаза, однако в некоторых случаях, судя по высокому содержанию кальция, доходит до андезина. Во всех проанализированных зернах плагиоклаза установлен калий. Анализ с максимальным содержанием этого элемента приведен в табл. 2. Отметим, что в минералах метеорита Зеркалы широко проявлены включения как первичного минерального, так и вторичного происхождения газовожидкого состава. Поэтому не исключены некоторые аномальные содержания отдельных элементов, в том числе и в плагиоклазах. Так, вероятно, повышенные значения MgO (2.96 и 3.67 мас. %), NiO (0.17 мас. %), Cr₂O₃ (0.15 мас. %) обусловлены мельчайшими включениями оливина, Ni-железа и хромшпинелида. Повышенные содержания железа в плагиоклазе (0.77-1.15 мас. %) сопоставимы с таковыми в плагиоклазах магматических пород [6].

Хромшпинелид в метеорите присутствует преимущественно в виде мелких неправильной формы зерен размером до 50 микрон и только очень редко их величина достигает 0.1-0.2 мм. В проходящем свете они просвечивают красно-коричневым светом. Проанализированные три зерна хромшпинелидов находились в виде включений в камасите. Очевидно, с этим связано наличие хрома в магнитной фракции Ni-железа. В составе хромшпинелида установлены повышенные количества ТіО₂ до 1.93 мас. %, МпО до 1.12 мас. %, FeO до 29.88 мас. % при аномально низком содержании MgO (2.81-4.18 мас. %). Минерал характеризуется высокой хромистостью и низкой глиноземистостью. По этим параметрам он приближается к хромшпинелидам хромитовых руд и дунитов, связанных с офиолитами [2].

Полученные данные по вещественному составу метеорита Зеркалы в рамках существующих классификаций, основанных на химическом составе минералов, метеоритов и их петрологических особенностях [1, 4, 7, 8], позволяют отнести его к хондритовому метеориту группы Н (высокожелезистый, оливин-бронзитовый). Однако соотношения элементов в нем в некоторых случаях значительно отличаются от табличных данных [9] для химической группы Н-хондритов: Fe/SiO₂ = 0.73;

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 2 2004

 $Fe^{0}/Fe = 0.18$; Fa = 18.89; SiO₂/MgO = 1.31. OTHOMEние металлического железа к общему (Fe⁰/Fe) значительно меньше, чем в табличных данных, что указывает на низкое содержание Ni-железа в метеорите Зеркалы по сравнению с данными У.Р. Шмуза и Ж.А. Вуда [9]. Несколько ниже в метеорите отношение SiO₂/MgO из-за более низкого содержания оксида кремния [8]. Это подтверждается и другими данными [7], где метеориты типа Н характеризуются более низкими отношениями Mg/Si и Ca/Si. Что же касается петрологической характеристики метеорита Зеркалы, то следует отметить сравнительно однородный состав оливина; из пироксенов преобладает ортопироксен; зерна плагиоклаза ксеноморфны; стекло отсутствует. Сказанное соответствует 5-му и 6-му петрологическому типу хондритов [1, 8]. Среднее содержание никеля в троилите меньше 0.5%. Хондры заметны благодаря разной окраске хондр и перекристаллизованной матрицы. Содержание углерода и воды находится в пределах, указанных в петрологической характеристике. На основании приведенных данных метеорит Зеркалы может быть отнесен к 5-му петрологическому типу с низким количеством Ni-железа, содержание которого ниже 20% величины, характерной для этого типа хондритов.

Подводя итог, отметим, что хондритовый метеорит Зеркалы представлен оливин-бронзитовым, высокожелезистым типом H5, в котором широко проявлена лимонитизация матрицы. Последняя, как и хондры, характеризуется весьма неоднородной структурой. Метеорит подвергся вторичному прогреву и деформациям в земных условиях, что, вероятно, нарушило первичные структурно-текстурные особенности метеорита, слагающих его минералов и в какой-то степени его химический состав.

В процессе исследования метеорита оказывали всестороннюю помощь С.М. Жмодик, А.С. Жмодик и С.В. Ковязин, за что авторы приносят им свою благодарность.

Работа выполнена при поддержке Президиума СО РАН, грант 6.4.1.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Вуд Дж.* Метеориты и происхождение солнечной системы. М.: Мир, 1971. 172 с.
- 2. *Пинус Г.В., Агафонов Л.В., Леснов Ф.П.* Альпинотипные гипербазиты Монголии. М.: Наука, 1984. 200 с.
- 3. Carter N.L., Raleigh C.B., DeCarli P.S. // J. Geophys. Res. 1968. V. 73. № 16. P. 5439–5461.
- 4. Соботович Э.В., Семененко В.П. Происхождение метеоритов. Киев: Наук. думка, 1985. 204 с.
- 5. Агафонов Л.В., Кужугет К.С., Ойдуп Ч.К., Иванова Г.М. // ДАН. 1997. Т. 352. № 4. С. 501–503.
- 6. *Рябов В.В., Шевко А.Я., Гора М.П.* Магматические образования Норильского района. Новосибирск: Изд-во Нонпарель, 2000. Т. 2. 600 с.
- 7. Дьяконова М.И., Харитонова В.Я., Явнель А.А. Химический состав метеоритов. М.: Наука, 1979. 68 с.
- 8. *Соботович Э.В., Семененко В.П.* Вещество метеоритов. Киев: Наук. думка, 1984. 191 с.
- 9. Schmus W.R., Wood J.A. // Geochim. et cosmochim. acta. 1967. V. 31. № 5. P. 745–765.