— ГЕОХИМИЯ —

УДК 550.47

РАСПРЕДЕЛЕНИЕ МИКРОЭЛЕМЕНТОВ В СИСТЕМАХ КИМБЕРЛИТ–БИТУМ И БАЗАЛЬТ–БИТУМ В ДИАТРЕМАХ СИБИРСКОЙ ПЛАТФОРМЫ

© 2004 г. Р. П. Готтих, Б. И. Писоцкий, Д. З. Журавлев

Представлено академиком А.А. Маракушевым 24.05.2004 г.

Поступило 31.05.2004 г.

Одной из важных задач в рамках проблемы нетрадиционного эндогенного рудообразования, связанного с черносланцевыми формациями и зонами углеродистого метасоматоза, является выяснение геохимической специализации восстановленных флюидов, отделяющихся от расплавов различного состава при декомпрессионной или кристаллизационной дифференциации магм.

В настоящее время представления о металлоносности магматических флюидов в основном базируются на экспериментальных исследованиях и термодинамических расчетах, которые показали, что концентрация многих рудных элементов (Fe, Pb, Zn, Cu, Ag, Au, Mn, Hg и др.) в таких флюидах может достигать достаточно высоких значений. Это могут быть существенно газовые системы, гомогенные надкритические флюиды с переменным содержанием воды и гетерофазные флюиды – раствор + газ. Естественно, что они должны отличаться по своим геохимическим характеристикам, зависящим от источника и, соответственно, состава расплава, соотношения между солевыми и газовыми компонентами, а также окислительновосстановительного потенциала.

В настоящей работе рассмотрено распределение микроэлементов в двух природных системах: кимберлит-битум и базальт-битум. В данном случае углеродистые вещества в магматических образованиях трактуются нами как результат абиогенного синтеза из флюидных компонентов расплавов на заключительных стадиях их становления (пневматолито-гидротермальная).

Битумопроявления в диатремах впервые описаны Н.С. Бескровным и К.К Макаровым, и их особенности достаточно полно представлены в [1, 2]. Битумы типа асфальта или асфальтита на-

Государственный научный центр

Российской Федерации

ходятся в тесной ассоциации с карбонатной, карбонатно-сульфидной и кварцевой минерализацией, образующей прожилки, друзы и жеоды в кимберлитах, и связаны, как полагают, с пульсационной постмагматической деятельностью. Исследовали образцы асфальтита из сингенетичной кальцитовой жеоды трубки "Удачная" и кварцевой жилы в трубке "Айхал", в свое время любезно предоставленные Н.С.Бескровным, а также асфальт, полностью или в ассоциации с кальцитом выполняющий миароловые пустоты в толеитовом базальте (коллекция Ф.П. Мельникова). Наблюдаемые парагенезисы свидетельствуют о практически одновременном образовании CaCO₃ и углеродистых веществ.

Изучение особенностей распределения микроэлементов (МЭ) в битумоидах из диатрем Сибирской платформы, выполненное А.Е. Воронцовым и Э.А. Развозжаевой с соавторами [3], показало существование устойчивых связей металлов с органическим веществом и избирательную способность некоторых элементов образовывать комплексы с определенными по структуре и составу углеродистыми соединениями. К сожалению, определен узкий круг МЭ, и точность выполненных анализов оказалась невысокой, за исключением V, Ni и Mo (оптический спектральный анализ).

Одновременное использование двух методов (INAA и ICP-MS) позволило нам получить значительно большую информацию о микроэлементном составе битумов (табл. 1).

Совместное рассмотрение данных об особенностях распределения редкоземельных элементов, полученных для кимберлитов и битумов, показывает конформность хондритнормализованных спектров и позволяет говорить о их генетической общности (рис. 1). Несмотря на разницу в общей концентрации элементов (La/Yb)_N-отношение в породе и асфальтите трубки "Айхал" составляет 107 и 122, а в аналогичных образованиях трубки "Удачная" – 96 и 93 соответственно. Вместе с тем при более высоком уровне концентрирования лантаноидов в кимберлите трубки "Айхал" (550 ppm), по срав-

Всероссийский научно-исследовательский институт геологических, геофизических и геохимических систем, Москва

Таблица 1. Содержание микроэлементов (ppm) в породах и битумах	
--	--

	Кимберлит		Асфальтит			Асфальт
МЭ	тр. "Айхал"	тр. "Удачная"	тр. "Айхал"	тр. "Удачная"	Базальт	базальта
Li	10.606	17.058	0.0712	0.0269	5.624	0.32
Be	2.888	0.992	0.0126	0.00744	0.548	1.14
Sc	16.167	9.689	0.272	0.422	37.270	3.94
Ti	10188.408	7077.756	1.74	4.62	7676.904	130.899
V	157.931	94.686	549	615	293.844	8.140
Cr	2187.195	1333.107	1.166	2.995	182.933	1.692
Mn	1640.396	959.765	2.03	30.4	1090.225	754.847
Co	82.409	76.331	0.2845	0.2685	48.336	59.403
Ni	1649.247	1760.944	67.8	120	165.899	284.716
Cu	35.506	43.520	0.182	8.52	123.441	55.639
Zn	76.711	57.754	1.76	321	85.126	7.499
Ga	6.867	4.150	0.1935	0.362	17.176	4.26
Rb	49.837	62.146	0.0178	0.0846	2.673	0.53
Sr	476.728	716.900	5.46	12.3	168.500	52.54
Y	17.844	9.719	0.231	0.552	26.571	7.55
Zr	183.776	99.525	0.5225	0.842	86.445	2.92
Nb	315.428	211.056	0.0895	0.0162	3.440	0.24
Мо	2.179	2.258	4.18	4.7	0.369	0.12
Cd	0.119	0.080	0.0105	0.545	н/о	0.03
Cs	0.503	0.749	0.00061	0.0017	0.068	0.07
Ba	1078.960	973.826	0.356	1.07	96.616	1.47
La	134.089	77.723	1.485	2.53	6.108	0.41
Ce	242.089	137.393	3.105	4.795	15.089	1.25
Pr	26.137	14.629	0.3315	0.635	2.168	0.17
Nd	86.008	48.188	1.135	2.3641	10.210	0.87
Sm	11.579	6.450	0.2039	0.45504	3.156	0.40
Eu	2.728	1.594	0.0388	0.132	1.177	0.25
Gd	7.355	4.154	0.1265	0.3464	3.905	0.62
Tb	0.859	0.513	0.0135	0.0338	0.671	0.14
Dy	3.762	2.279	0.0509	0.126	4.389	1.31
Но	0.590	0.359	0.00793	0.01865	0.939	0.31
Er	1.341	0.789	0.0194	0.0411	2.641	1.13
Tm	0.159	0.099	0.0016	0.00338	0.394	0.29
Yb	0.840	0.538	0.00837	0.0179	2.478	2.55
Lu	0.116	0.075	0.00115	0.00264	0.375	0.49
Hf	4.631	2.426	0.00514	0.0168	2.356	0.07
Та	12.284	13.492	0.00404	0.00474	0.251	<d.1.< td=""></d.1.<>
W	1.480	2.182	0.0237	0.0344	0.140	0.03
T1	0.075	0.082	0.00882	0.106	0.017	0.01
Pb	9.841	5.194	0.1655	0.3125	1.349	2.47
Bi	0.064	0.044	0.00161	0.00533	0.028	0.01
Th	19.169	11.721	0.0652	0.0744	0.926	0.04
U	3.723	4.738	0.049	0.0527	0.315	0.12

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 3 2004

Рис. 1. Спектры распределения в кимберлитах и битумах: а – редкоземельных (нормировано на СІ по [11]); б – некогерентных (нормировано на РМ по [12]) и в – транзитных (нормировано на РМ по [13]) элементов. Кимберлиты трубок: *1* – "Айхал", *2* – "Удачная"; битумы: *3* – трубка "Айхал", *4* – трубка "Удачная".

нению с породой трубки "Удачная" (280 ppm), в углеродистом веществе, ассоциирующем с кварцем из первой, содержание РЗЭ почти в два раза ниже, чем в ассоциирующем с кальцитом асфальтите из трубки "Удачная" – 6.5 и 11.5 ppm.

Сконцентрированная на спайдер-диаграммах информация позволяет сделать выводы сразу по большой группе некогерентных элементов (рис. 1). Прежде всего обращает на себя внимание согласованное распределение большинства элементов в пробах, за исключением Мо, Nb и в меньшей степени Ва и W, что может отражать характер фракционирования в системе ультращелочной расплавфлюид. Выраженная отрицательная аномалия по ниобию в битумах по сравнению с кимберлитами обусловлена преимущественным накоплением данного элемента в расплаве и, таким образом, не

Рис. 2. Спектры распределения микроэлементов в базальте (1) и битуме (2). а, б, в – см. подпись к рис. 1.

может служить признаком коровой природы восстановленных флюидов.

В отличие от некогерентных в распределении более подвижных транзитных элементов наблюдается несколько иная картина. Их спектр в асфальтитах не согласован с кривыми относительного содержания металлов в кимберлитах (рис. 1). Обращают на себя внимание высокие концентрации V и явная "загрязненность" асфальтита из трубки "Удачная" Си, Zn и Mn, судя по всему, за счет рассолов осадочного чехла.

Совершенно иная ситуация отмечается в системе базальт–битум (рис. 2). Следует отметить два обстоятельства. Во-первых, на фоне слабого отрицательного тренда в распределении лантаноидов в базальте – $(La/Yb)_N = 1.7$ – наблюдается положительный тренд в битуме $(La/Yb)_N = 0.1$; во-вторых, параметр Eu* (Eu* = $2Eu_N/[Sm + Gd]_N$), используемый в ка-

	Битумы				
Элемент	трубка "Айхал"	трубка "Удачная"	базальт		
Se	0.2	0.1	1.54		
Sb	0.04	0.03	0.05		
Hg	0.06	0.18	-		
Re	-	0.012	0.0025		
Au	0.001	0.002	0.039		

Таблица 2. Содержание халькофильных элементов в углеродистых веществах (ppm)

честве условного критерия окислительно-восстановительной обстановки в той либо иной системе, составляет в базальте 1.02, а в битуме 1.53, что отражается в отчетливо выраженной положительной аномалии европия в спектре лантаноидов. Данный факт хорошо согласуется с исследованиями, проведенными в Институте экспериментальной минералогии РАН. Так, изучение распределения REE между водно-хлоридным флюидом и расплавом базальта, а также расплавом лампроита при $T = 1100 - 1200^{\circ}$ С в интервале 1–14 кбар в NNO-кислородном буфере показало, что для всех изученных *Р*–*Т*-условий флюид обогащается тяжелыми элементами относительно легких [5]. Вместе с тем поведение европия значительно отличается от остальных REE и определяется $f_{O_{\gamma}}$ в магме и кислотностью ее флюидов. При $f_{O_2} = QFM-2$ – QFM + 2 весь Еи в расплаве представлен трехвалентной формой, а во флюиде преобладает его двухвалентное состояние. При постоянной f_{0} повышение активности HCl в системе будет способствовать выносу из расплава во флюид двухвалентного европия, т.е. повышение кислотности среды (раствора, расплава) сдвигает реакции в сторону более восстановленных форм [4].

Спектр некогерентных элементов в системе базальт-битум также отличается от кимберлитовых парагенезисов: отсутствует конформность в распределении МЭ и отмечается значительная обогащенность битума цезием, вольфрамом, ураном, свинцом, молибденом, стронцием, гафнием. Отрицательная аномалия по ниобию в базальте свидетельствует о его контаминированности коровым материалом, результатом чего, по-видимому, является и повышенное содержание в битуме крупноионных литофилов – Cs, Rb, Sr, Pb (за счет добавки ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb), а также Hf несмотря на его малую подвижность. Вместе с тем контаминация не сказывается на распределении высокозарядных лантаноидов, содержание которых контролируется источником и характером дифференциации в системе расплав-флюид.

В отличие от несовместимых элементов спектры транзитных согласованы, причем содержания Mn, Co и Cu в битуме близки к их концентрациям в базальте.

Помимо перечисленных элементов во всех пробах углеродистых веществ присутствуют летучие МЭ и золото, причем максимальные количества Se, Sb, Au наблюдаются в асфальте из базальта (табл. 2).

Приведенный материал позволяет полагать, что изучаемые углеродистые вещества образовались абиогенным путем из газов в закрытой системе после охлаждения основной магмы и в гидротермальных растворах, формирующихся в процессе окисления постмагматических флюидов в открытой системе кимберлитовых трубок с сохранением генетической информации о источнике как магмы, так и флюидов.

Природа кимберлитового магматизма, механизм формирования трубок и взгляды на генезис углеродистых веществ в них широко освещены в литературе. По мере падения температуры расплавов с приближением к поверхности растет и газонасыщенность в связи с подтоком постмагматических растворов. Мезостазис кимберлитов сложился, как полагают, при T ниже 450°С. Изучение изотопного состава карбонатов показало, что он формировался под влиянием глубинного углерода со средним значением δ^{13} С –5.14‰ [6], а кислорода от +7.9 до +24.1% (Далдыно-Алакитский район). Кроме того, в трубках отмечены кальциты с очень легким углеродом (δ^{13} С до –45‰) и тяжелым кислородом (до +35.56‰) [6, 7, 9]. Начало кристаллизации крупнозернистых карбонатов определяется в 450-300°С при постоянном снижении температуры до 150-100°. В общем виде разнообразные и последовательные изменения кимберлитовых пород меняют изотопный состав их карбонатного компонента, сдвигая в разных направлениях фигуративные точки кимберлитов между полями карбонатов магматического, осадочного и "органического" происхождения. Кроме того, карбонатный компонент кимберлитовой магмы мог быть изначально неоднороден по изотопному составу углерода и кислорода.

Вместе с тем состав остаточных газов характеризуется явно повышенной ролью восстановленных компонентов, которые служили основой для синтеза сложных УВ уже в гидротермальных условиях. Их активное участие в постмагматическом процессе отмечено начиная уже с 420°С, что явилось причиной появления дисперсной вкрапленности сульфидов в породах в результате восстановления сульфатной серы δ^{34} S = 16.8–39.2‰ (при δ^{34} S сульфатов кембрийских вод 24–34‰) [9]. Изотопный состав углерода вязких, жидких и твердых битуминозных веществ изменяется также в широких пределах от δ^{13} C = –5 до –34.1‰ [3,

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 3 2004

7, 8], и их выделение из гидротермальной системы приходится на интервал температур 160–100°С, при этом катализаторами синтеза могли быть микроэлементы флюида.

В изучаемых нами образцах изотопный состав углерода в сингенетической ассоциации кальцит + + битум в трубке "Удачная" следующий: +24.5% и – 34.16% соответственно; битума в трубке "Айхал" -40.76%, а в кальцит-битумной минерализации миароловых пустот базальта –1.17 и –30.19%. Подобная изотопная гетерогенность обусловлена, по данным [7], одновременным образованием карбонатов и углеводородов из одного источника в условиях крайней неравновесности систем, компоненты для которых и соответствующие катализаторы присутствуют в постмагматических продуктах эволюции кимберлитовых магм.

Таким образом, при внедрении ультраосновных магм различной щелочности может возникать восстановительный режим протекания процессов, сопряженных с магматизмом, или формирующийся при инверсии редокс-потенциала в пневматолитогидротермальную стадию, что и происходит в изучаемых нами объектах.

Для толеит-базальтовой формации в отличие от ультрабазитов более характерны водородно-углекислые газы и намного меньшая газонасыщенность в результате интенсивной трансвапоризации магм при подъеме. Но и здесь может возникать восстановленный постмагматический режим дегазации, если изначально магма обладает низкой f_{0_2} . Последнее и отмечается в массивах габбро-долеритовой трапповой формации Сибирской платформы. В массивах описаны самородные Al, α -Fe, Zn, Sn, Рb, Cu, Cd, природные сплавы Ni и Fe с Cu. Присутствие металлов почти всегда сопровождается проявлениями муассанита, графита, когенита и троилита [10], т.е., как и в ультраосновных породах, в продуктах дифференциации мафитовых магм отмечены проявления восстановленных газов, углеродистых веществ и самородных металлов, свидетельствующие о возникновении восстановительных обстановок в связи с процессами развития основного магматизма.

Таким образом, характер распределения МЭ в битумах позволяет судить о особенностях фракционирования элементов в системах ультраосновной-щелочной, основной расплав-восстановленный флюид при инверсии редокс-потенциала в пневматолито-гидротермальную стадию развития магматогенно-вулканогенных процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бескровный Н.С. Нефтяные битумы и углеводородные газы как спутники гидротермальной деятельности. Л.: Недра, 1967. 208 с.
- Бескровный Н.С. В кн.: Особенности глубинного строения земной коры и теоретические обоснования неорганического генезиса нефти. Киев: Наук. думка, 1982. С. 268–289.
- 3. Воронцов А.Е., Развозжаева Э.А., Сынгаевский Е.Д. и др.// Геохимия. 1986. № 2. С. 226–235.
- 4. Жариков В.А., Горбачев Н.С. // ДАН. 1993. Т. 330. № 3. 363–365.
- 5. Горбачев Н.С. В сб.: XIV Российское совещание по экспериментальной минералогии: Тез. докл. Черноголовка, 2001. С. 38.
- 6. Галимов Э.М., Уханов А.В. // Геохимия. 1989. № 3. С. 337–348.
- 7. Мамчур Г.П., Меньник Ю.М., Харькив А.Д. и др. // Геохимия. 1980. № 4. С. 540–546.
- Кравцов А.И., Войтов Г.И., Иванов В.А. и др. // ДАН. 1976. Т. 228. № 5. С. 1204–1207.
- 9. Братусь М.Д., Зинчук Н.Н., Кроузе Г.Р. и др. // Геохимия. 1998. № 3. С. 264–270.
- 10. Олейников Б.В., Окручин А.В. // Зап. ВМО. 1981. Ч. 110. В. 2.
- 11. Evensen N.H., Hamilion P.J., O'Nions R.K. // Geochim. et cosmochim. acta. 1978. V. 42. P. 1199–1212.
- 12. San S.S., Mc Donough W.F. // Geol. Soc. London. Spec. Publ. 1989. V. 42. P. 313–345.
- 13. *Taylor S.R., Mc Lennan S.M.* The Continental Crustits Composition and Evolution. Oxford: Blackwell, 1985.