= ГЕОХИМИЯ =

УДК 550.42:551.71

АМФИБОЛИТ-ПЛАГИОГНЕЙСОВЫЙ КОМПЛЕКС ОНОТСКОГО БЛОКА, ШАРЫЖАЛГАЙСКИЙ ВЫСТУП: ИЗОТОПНЫЕ И ГЕОХИМИЧЕСКИЕ СВИДЕТЕЛЬСТВА ЭВОЛЮЦИИ КОНТИНЕНТАЛЬНОЙ КОРЫ В РАННЕМ АРХЕЕ

© 2004 г. О. М. Туркина

Представлено академиком В.В. Ревердатто 14.05.2004 г.

Поступило 28.05.2004 г.

Детальные исследования раннеархейских (>3 млрд. лет) комплексов ограничены немногими ключевыми районами их распространения в Гренландии, Северной Америке, Южной Африке, и многие аспекты эволюции древнейшей коры остаются дискуссионными. Прежде всего это касается роли субдукционного и плюмового магматизма в формировании коры и соотношения процессов роста и рециклинга при становлении ядер континентов в раннем архее [1, 2]. Изотопные и геохимические данные, полученные при исследовании древнейшего (~3.3 млрд. лет) на юго-западной окраине Сибирского кратона амфиболит-плагиогнейсового комплекса Онотского блока Шарыжалгайского выступа, дают новую информацию о процессах роста и эволюции архейской континентальной коры.

В Онотском блоке Шарыжалгайского выступа раннеархейские (3287±8 млн. лет) [3] плагиогнейсы и гнейсоплагиограниты слагают линейно-вытянутые блоки и пластины площадью до 10-12 км², имеющие тектонические контакты со стратифицированными метаосадочно-вулканогенными толщами Онотского зеленокаменного пояса. На отдельных участках плагиогнейсы слабо мигматизированы с формированием полосчатых мигматитов венитового типа и содержат редкие субпластовые тела амфиболитов (мощностью от первых до десятков метров). Более широко развиты массивные до слабо гнейсовидных средне-крупнозернистые биотитовые гнейсоплагиограниты, которые также содержат линзовидные и неправильной формы включения амфиболитов. На основании текстурно-структурных особенностей – мелко-среднезернистые отчетливо гнейсовидные структуры, подверженность гнейсов мигматизации и, напротив, более массивный облик гнейсоплагиогранитов - предполага-

Институт геологии

ется, что последние представляли собой магматические интрузивные образования. Структурное положение амфиболитов: субпластовые тела среди плагиогнейсов и неправильной формы включения в гнейсоплагиогранитах, позволяет заключить, что они близки по возрасту или несколько древнее плагиогнейсов и плагиогранитоидов. Аналогичные включения метабазитов весьма характерны для серогнейсовых комплексов древних щитов и рассматриваются в качестве реликтов наиболее ранней мафической коры, предшествующей становлению пород тоналит-трондьемитового ряда [4].

Плагиогнейсы (Пл + Кв + Би + Ап + Ци \pm Ро \pm \pm Му \pm Эп \pm Мг)^{*} представляют собой мелко-среднезернистые породы с гранобластовой структурой, которые по содержанию петрогенных элементов соответствуют высокоглиноземистым тоналитам и трондьемитам (табл. 1). Содержание в них редких элементов близко к среднему для архейских пород тоналит-трондьемит-гранодиоритовой серии (ТТГ) [5]. Плагиогнейсы обладают сильно фракционированным распределением РЗЭ с высоким (La/Yb)_nотношением (20-55) практически без европиевых аномалий (Eu/Eu* = 0.8–1.2) (рис. 1), а также повышенным содержанием Sr (220-370 г/т), обусловливающим высокое отношение Sr/Y (21-66). Все эти признаки типичны для архейских ТТГ [5]. Гнейсоплагиограниты имеют аналогичные плагиогнейсам минеральные парагенезисы и по составу отвечают преимущественно трондьемитам. В сравнении с плагиогнейсами они слабо обеднены CaO и Sr и обогащены тяжелыми РЗЭ, что определяет более низкие отношения $(La/Yb)_n$ (16–29) и Sr/Y (11–31).

Амфиболиты (Ро + Пл + Сф + Ап \pm Кв \pm Эп \pm \pm Руд) по содержанию главных элементов отвечают низкомагнезиальным (MgO 8.7–5.6 мас. %) базальтам толеитовой серии (табл.1). По характеру

Сибирского отделения Российской Академии наук, Новосибирск

^{*} Пл – плагиоклаз, Кв – кварц, Би – биотит, Ро – роговая обманка, Му – мусковит, Эп – эпидот, Ап – апатит, Ци – циркон, Мг – магнетит, Сф – сфен, Руд – рудный.

Компо- нент	1 (51-3)	2 (57-3)	3 (157-5)	4 (64-5)	5 (38-3)	6 (26-3)	7 (48-3)	8 (49-3)	9 (39-3)	10 (63-5)	11 (44-3)	12 (40-3)
SiO ₂	49.2	49.13	49.05	49.49	51.2	52.59	65.53	67.07	67.11	68.82	69.16	71.31
TiO ₂	0.95	0.97	1.39	1.30	1.41	0.99	0.45	0.47	0.44	0.46	0.40	0.37
Al ₂ O ₃	13.69	13.73	13.99	14.28	13.48	13.91	14.88	14.98	15.84	14.99	15.82	15.61
$Fe_2O_3^*$	13.27	14.47	14.32	15.61	18.15	12.54	6.02	5.58	6.37	4.24	4.45	2.03
MnO	0.211	0.241	0.22	0.247	0.244	0.179	0.097	0.079	0.123	0.073	0.058	0.09
MgO	7.62	6.8	7.31	6.32	6.16	5.55	1.6	1.54	1.79	1.97	1.23	1.23
CaO	11.88	11.66	9.97	9.38	5.4	9.74	3.71	3.14	1.37	2.21	1.84	1.66
Na ₂ O	2.72	2.22	2.44	1.15	1.63	3.17	6.52	4.57	4.9	3.62	5.79	5.36
K ₂ O	0.26	0.38	0.65	1.05	0.71	0.52	1.15	1.77	1.87	2.1	1.35	1.35
P ₂ O ₅	0.075	0.078	0.12	0.088	0.142	0.12	0.105	0.115	0.105	0.124	0.081	0.03
П.п.п.	0.3	0.56	0.84	1.04	0.77	0.26	0.02	0.16	0.02	1.37	0.22	0.7
Сумма	100.2	100.2	100.3	99.9	99.3	99.6	100.1	99.5	99.9	99.9	100.1	99.7
Th	0.34	0.29	0.73	0.84	1.09	0.74	4.19	5.56	4.63	4.7	5.2	5.33
Rb	3.7	8.0	16.0	28.0	9.4	11.5	54	99	129	89	65	64
Ba	26.5	64.7	79.0	61.0	80.2	28.8	226	355	257	168	105	234
Sr	153	124	111	116	117	95	320	258	177	219	372	257
La	3.38	3.06	5.5	4.3	6.94	5.09	19.37	23.12	23.73	26	21.30	24.06
Ce	7.85	7.71	13	11	15.98	11.45	38.11	43.95	42.70	47	38.67	41.77
Pr	1.27	1.21	2.3	1.9	2.34	1.68	3.95	5.29	4.89	5.8	4.52	4.84
Nd	6.01	6.23	10	9	10.68	7.91	11.91	16.41	14.36	19	12.74	14.37
Sm	1.85	2.10	3.1	2.7	3.33	2.40	2.30	3.02	2.17	3.1	2.06	2.52
Eu	0.76	0.84	1	1.1	1.12	0.97	0.59	0.71	0.66	0.79	0.46	0.65
Gd	2.78	2.81	4.5	4.3	4.25	3.29	1.36	1.90	1.69	2.7	1.12	1.74
Tb	0.44	0.47	0.78	0.77	0.72	0.54	0.17	0.24	0.26	0.33	0.14	0.22
Dy	3.17	3.33	5.2	4.9	5.15	3.74	1.32	1.52	1.22	1.8	0.60	1.32
Но	0.73	0.74	1.1	1.1	1.08	0.82	0.20	0.27	0.20	0.33	0.07	0.23
Er	2.22	2.31	3.3	3.2	3.48	2.57	0.49	0.77	0.63	0.91	0.36	0.96
Tm	0.34	0.37	0.47	0.54	0.51	0.41	0.06	0.12	0.08	0.14	0.05	0.12
Yb	2.13	2.24	3.4	3.3	3.33	2.63	0.37	0.69	0.43	0.85	0.26	0.61
Lu	0.37	0.36	0.47	0.46	0.55	0.37	0.06	0.08	0.07	0.16	0.03	0.10
Zr	20.5	18.2	95.0	90.0	49.8	19.5	229	288	144	211	290	136
Hf	0.80	0.69	2.4	2.2	1.41	0.76	4.41	4.74	2.95	4.8	4.71	3.19
Та	0.17	0.17	0.39	0.29	0.27	0.22	0.02	0.22	< 0.01	0.82	<0.01	1.07
Nb	2.73	2.87	5.2	4.1	4.63	4.41	3.09	5.45	4.78	6.2	2.62	12.02
Y	21.7	22.5	31.0	30.0	35.1	25.4	6.21	9.13	7.67	10	2.77	7.56
$(La/Yb)_n$	1.1	0.9	1.1	0.9	1.4	1.3	35.2	22.6	37.1	20.6	55.0	26.7

Таблица 1. Содержание петрогенных (мас. %) и редких (г/т) элементов в представительных пробах амфиболитов и плагиогнейсов Онотского блока

Примечание. 1–6 – амфиболиты первого (1, 2) и второго (3–6) геохимических типов; 7–12 – плагиогнейсы. В скобках – номер образца. Петрогенные элементы определены рентгенофлуоресцентным методом, редкие элементы методом индукционно-связанной плазмы с масс-спектрометрическим окончанием (ICP-MS) в Аналитическом центре ОИГГМ СО РАН (г. Новосибирск) и Институте земной коры СО РАН (г. Иркутск). Fe₂O₃^{*} – общее железо. Все пробы отобраны в левобережье р. Онот в районе ее притоков рек Алзагайка и Бибой и горы Камчадал.

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 5 2004

Рис. 1. Распределение РЗЭ в плагиогнейсах. ТТG – средний состав архейских ТТГ [5].

Th Nb La CeNd Sr Sm Hf Eu Ti Gd Tb Y Yb Lu

Рис. 2. Мультиэлементные спектры амфиболитов. Нормировано к примитивной мантии (РМ) [6]. *1* и 2 – средние составы базальтов из верхней и нижней частей разреза плато Онтонг-Джава [7].

Рис. 3. Диаграмма Nb/La_{pm}–Nb/Th_{pm} для амфиболитов. 1, 2 – амфиболиты первого (1) и второго (2) геохимического типа; 3 – примитивная мантия (PM) и 4 – базальты срединно-океанических хребтов (N-MORB) по данным [6]; 5 – средний состав плагиогнейсов Онотского блока (TTG); 6 – позднеархейские базальты зеленокаменного пояса Сумозеро–Кемозеро, Балтийский щит [9]; 7 – средний состав базальтов из верхней и нижней частей разреза плато Онтонг-Джава [7]. Отношения нормированы к примитивной мантии [6].

распределения редких элементов амфиболиты, имеющие близкое к хондритовому (La/Yb),-отношение (0.9-1.4) и не фракционированные субгоризонтальные мультиэлементные спектры, нормированные по примитивной мантии (рис. 2), сопоставимы с современными базальтами океанических плато [7] и их аналогами из позднеархейских зеленокаменных поясов Канадского и Балтийского щитов [8, 9]. Особенности редкоэлементного состава позволяют выделить среди амфиболитов два типа. Породы первого типа относительно обеднены Ті, РЗЭ, Тһ, Zr, Nb, Y и имеют близкие к примитивно-мантийным отношения немобильных элементов (Nb/La ~ 0.8–0.94; Nb/Th ~ 8.1–9.9; Th/La ~ 0.1). На субгоризонтальных спектрах амфиболитов второго типа слабо проявлена отрицательная аномалия Nb (Ta), и они отличаются более низким отношением Nb/Th (4.2-7.1) и повышенным Th/La (0.13-0.2) (рис. 3). Изменение указанных отношений может объясняться вкладом корового материала, относительно обогащенного Th и обедненного Nb, в результате контаминации первичного базитового расплава на коровом уровне или рециклинга сиалического материала в область магмогенерации при субдукции. Диапазон вариаций Nb/Th-отношения в амфиболитах от максимальных значений (10) до 4 по модели бинарного смешения соответствует вкладу корового материала, аналогичного по составу тоналитовым гнейсам Онотского блока, от 0 до 10%. Для единственной пробы амфиболитов ε_{Nd} = +2.4, что свидетельствует о происхождении первичного базитового расплава из деплетированного мантийного источника.

Плагиогнейсы и гнейсоплагиограниты характеризуются диапазоном значений ε_{Nd} (+0.4...–1.7) от близких к CHUR (однородный хондритовый резервуар) до отрицательных величин, а их модельный возраст *T*(DM) составляет ~3.6 млрд. лет, что указывает на формирование пород преимущественно из источника с длительной коровой предысторией (табл. 2).

Особенности изотопного состава Nd плагиогнейсов и редкоэлементных характеристик амфиболитов свидетельствуют о том, что формирование их протолитов происходило при участии древнего корового материала. Для плагиогнейсов сиалический источник был, по-вилимому. доминирующим. Для оценки его вклада в образование плагиогнейсов применена модель смешения [10] корового компонента, соответствующего континентальной коре с модельным возрастом 3.7 млрд. лет и параметрами: $\varepsilon_{Nd} = -2.8$ и Nd 11–19 г/т, и мантийного компонента, отвечающего выплавке из деплетированной мантии с возрастом 3.3 млрд. лет, с параметрами: ε_{Nd} = +2.8 и Nd 10 г/т. При указанных изотопно-геохимических характеристиках конечных членов смешения ряд значений є_{Nd} (+0.4...-1.7), установленный для плаги-

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 5 2004

№ пробы	Порода	Nd, r/т	Sm, г/т	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	<i>T</i> (DM), млн. лет	$\epsilon_{\rm Nd}$
173-5	Гнейсоплагиогранит	19.98	3.19	0.096430	0.510390 ± 4	3560	-1.1
63-5	Плагиогнейс	18.56	3.08	0.100214	0.510476 ± 10	3564	-0.9
48-5	То же	9.97	1.29	0.078295	0.509955 ± 15	3568	-1.7
1	Тоналит [3]			-	-	3470	+0.4
157-5	Амфиболит	9.99	3.06	0.184999	0.512490 ± 14	3488	+2.4

Таблица 2. Sm–Nd-изотопные данные для пород амфиболит-плагиогнейсового комплекса Онотского блока

Примечание. При расчете ε_{Nd} на время 3.3 млрд. лет и *T*(DM) использованы следующие значения изотопных отношений для CHUR: ¹⁴⁷Sm/¹⁴⁴Nd = 0.1967 и ¹⁴³Nd/¹⁴⁴Nd = 0.512638 и DM: ¹⁴⁷Sm/¹⁴⁴Nd = 0.2136 и ¹⁴³Nd/¹⁴⁴Nd = 0.51315. Изотопный состав определен в Геологическом институте КНЦ РАН (г. Апатиты).

огнейсов, может быть получен при доле корового материала в области плавления от 30 до 70%.

Большая доля корового компонента, обусловливающая изотопный состав плагиогнейсов, не согласуется с возможностью их формирования в субдукционной обстановке, когда рециклинг континентального материала связан с субдукцией осадков. Скорее в данном случае можно предполагать наличие раннеархейской сиалической коры с возрастом ≥ 3.6 млрд. лет, выступавшей в качестве одного из источников кислых расплавов. Реликты этой древней коры могли служить и контаминантом при формировании протолитов амфиболитов. Отсутствие связи с субдукционными обстановками при формировании магматических предшественников амфиболитов доказывается тем, что эти породы по характеру мультиэлементных спектров и величинам отношений немобильных редких элементов обнаруживают несомненное сходство с современными базальтами океанических плато и базальтами из позднеархейских зеленокаменных поясов плюмового происхождения [7-9]. Напротив, в отличие от островодужных базальтов [9], отчетливо обедненных Nb $(Nb/Nb^* = 0.3-0.6)^*$ в сравнении с близкими к нему по величинам коэффициентов распределения рестит/расплав несовместимыми элементами, изученные амфиболиты характеризуются отсутствием или очень слабо выраженной отрицательной аномалией Nb (Nb/Nb* = 0.8–1.1). Величина индикаторного La/Nb-отношения в изученных амфиболитах (1.1–1.4) соответствует диапазону для базальтов океанических плато и зон спрединга (<1.4), тогда как для основных вулканитов субдукционных обстановок этот параметр всегда больше 1.4 [1]. Важно отметить, что в отличие от современных аналогов и позднеархейских базальтов зеленокаменных поясов Канадского и Балтийского щитов в раннеархейских амфиболитах Онота не проявлено обогащение Nb относительно Th и, соответственно, Th/Nb-отношения близки или ниже, чем примитивно-мантийные величины (рис. 3). Рост указанного отношения в вулканитах океанических островов или плато может быть объяснен вкладом в область магмообразования рециклированного реститового материала субдуцированной океанической коры, испытавшей дегидратацию и/или частичное плавление и, следовательно, относительное обеднение Th [11]. Отсутствие геохимических признаков вклада реститового материала океанической коры в продуктах основного магматизма Онотского блока, сопоставимость редкоэлементного состава амфиболитов с базальтами океанических плато свидетельствуют скорее в пользу плюмового, а не субдукционного механизма формирования мафической коры в раннем архее данной провинции.

Для образования раннедокембрийских ТТГ-комплексов обычно привлекается две модели: субдукционная, предполагающая плавление погружающейся в зоне субдукции океанической плиты [5], и модель плавления метабазитового или тоналитового источника в основании утолщенной коры [12, 13]. Индикаторным для субдукционных ТТГ-комплексов являются относительно пониженная кремнекислотность и повышенная магнезиальность (Mg# > 50), которые объясняются взаимодействием первичного расплава с мантийными перидотитами [13]. Исследованные плагиогнейсы, подобно многим ранне- и позднеархейским ТТГ-комплексам, имеют низкий магнезиальный номер (Mg# = 20-40). Изотопный состав Nd онотских плагиогнейсов свидетельствует в пользу внутрикорового плавления базитового и сиалического материала при образовании их протолитов. Низкие концентрации тяжелых РЗЭ и Ү в онотских ТТГ указывают на наличие граната среди реститовых фаз, что соответствует по экспериментальным данным плавлению метабазитовых и тоналитовых субстратов при P > 10 кбар. Таким образом, изотопные и геохимические параметры плагиогнейсов не только доказывают наличие более древней коры ко времени формирования их протолитов, но и свидетельствуют о том, что ее вероятная суммар-

^{*} Nb/Nb*=0,3618· Nb/ _√(Th × La), по [9].

ная мощность, обеспечивающая необходимые по давлению условия образования кислого расплава, составляла не менее 35 км. В качестве вероятных моделей формирования утолщенной коры рассматриваются нагромождение и обдукция океанической коры или аккреция океанических плато, мощность которых для архея оценивается более 30 км [9]. Для эволюции коры Онотского блока, исходя из подобия редкоэлементного состава амфиболитов вулканитам океанических плато и специфики изотопного состава плагиогнейсов, указывающей на их длительную коровую предысторию, более вероятной могла быть аккреция океанического плато с фрагментом древней сиалической коры.

Следует отметить, что аналогичные онотским плагиогнейсам изотопные характеристики, указывающие на участие древнего континентального материала в образовании их протолитов, установлены для целого ряда ТТГ-комплексов: Алданского щита с возрастом ~3.3 млрд. лет ($\varepsilon_{Nd} = +0.6...-3.2$) [14], кратона Сан-Франциско, Бразилия с возрастом ~3.4 млрд. лет ($\varepsilon_{Nd} = -0.7...-2.4$) [2], Балтийского щита, датированных 3.17 млрд. лет ($\varepsilon_{Nd} = +1.0...-2.0$) [15], и других регионов. Совокупность этих изотопных данных доказывает, что уже в раннем архее был сформирован значительный объем сиалической коры, последующий рост и рециклинг которой и привел к становлению древних ядер континентов.

Таким образом, изотопно-геохимические особенности плагиогнейсов и амфиболитов свидетельствуют о том, что рост и эволюция коры Онотского блока в архее включали проявление базитового магматизма, формирование тектонически утолщенной коры в результате аккреции океанического плато с фрагментом древней сиалической коры и последующее внутрикоровое плавление с образованием протолитов плагиогнейсов. Предлагаемая модель подчеркивает важную роль плюмового магматизма и корового рециклинга в образовании континентальной коры в раннем архее.

Автор признателен Т.Б. Баяновой, А.А. Деленицину (Геологический институт КНЦ РАН, г. Апатиты), И.В. Николаевой и С.В. Палесскому (ОИГГМ СО РАН, г. Новосибирск), В.В. Марковой и С.В. Пантеевой (Институт земной коры СО РАН, г. Иркутск), выполнившим определения редкоэлементного и изотопного состава пород.

Работа выполнена при финансовой поддержке РФФИ (гранты 03–05–64936, 04–05–64301) и НШ-1573.2003.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Condie K.C. // Tectonophysics. 2000. V. 322. P. 153– 162.
- Martin H., Peucat J.J., Sabate P. et al. // Precambr. Res. 1997. V. 82. P. 35–62.
- Бибикова Е.В., Левицкий В.И., Резницкий Л.З. и др. В сб.: Геология, геохимия и геофизика на рубеже XX и XXI веков. Иркутск: ИЗК СО РАН, 2001. С. 175–176.
- Богатиков О.А., Симон А.К., Пухтель И.С. В кн.: Ранняя кора: ее состав и возраст. М.: Наука, 1991. С. 15–26.
- 5. *Martin H*. In: Archean Crustal Evolution. Amsterdam: Elsevier, 1994. P. 205–259.
- Sun S.-S., McDonough W.F. // Geol. Soc. London Spec. Publ. 1989. V. 42. P. 313–345.
- Mahoney J.J., Storey M., Duncan R. et al. // Proc. Ocean Drilling Program. Sci. Results. 1993. V. 130. P. 3–22.
- Kerrich R., Polat A., Wyman D.A. et al. // Lithos. 1999. V. 46. P. 163–187.
- Puchtel I.S., Hofmann A.W., Amelin Yu.V. et al. // Geochim. et cosmochim. acta. 1999. V. 63. P. 3579– 3595.
- DePaolo D.J. Neodymium Isotope Geochemistry. B.: Springer, 1988. 187 p.
- 11. Hofmann A.W. // Nature. 1997. V. 385. P. 219-229.
- 12. Whalen J.B., Percival J.A., McNicoll X.J. et al. // J. Petrol. 2002. V. 43. P. 1551–1570.
- 13. Smithies R.H., Champion D.C. // J. Petrology. 2000. V. 41. P. 1653–1671.
- 14. Котов А.Б., Ковач В.П., Сальникова Е.Б. и др. // Петрология. 2001. Т. 3. № 1. С. 99–110.
- 15. Чекулаев В.П., Лобач-Жученко С.Б., Левский Л.К. // Геохимия. 1997. № 8. С. 805–816.

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 5 2004