= геохимия =

УДК 552.32.6 (470.21)

ИЗОТОПЫ Nd, Sm, He В "СЕРЫХ ГНЕЙСАХ": ОГРАНИЧЕНИЕ УСЛОВИЙ ОБРАЗОВАНИЯ ИСХОДНЫХ РАСПЛАВОВ

© 2004 г. В. Р. Ветрин, И. Л. Каменский, А. А. Деленицин, С. В. Икорский

Представлено академиком О.А. Богатиковым 15.07.2003 г.

Поступило 17.07.2003 г.

Одной из актуальных проблем петрологии является происхождение ранней континентальной коры, сложенной главным образом плагиогнейсами тоналит-трондьемит-гранодиоритового состава ("серые гнейсы" [1]). В северо-восточной части Балтийского щита эти породы занимают площадь около 40 тыс. км² и являются главной составляющей гранит-зеленокаменных областей. Нами изучены геохимические особенности и изотопный состав Nd, Sm, Не в плагиогнейсах и выделенных из них амфиболах с целью ограничения условий образования исходных расплавов, получены данные о присутствии ювенильного гелия в составе флюида, захваченного при кристаллизации пород.

На Кольском полуострове "серые гнейсы" наиболее детально исследованы в северо-западном обрамлении палеопротерозойского Печенгского палеорифта, а также в разрезе архейского комплекса Кольской сверхглубокой скважины [2]. Главным типом пород на поверхности являются тоналит-трондьемитовые (дацит-риодацитовые) плагиогнейсы, первые из которых имеют интрузивное происхождение и вторые - первично вулканический генезис. Часть интрузивных комплексов имеет двухфазное строение с образованием более поздних лейкогранитов при внутрикоровой дифференциации тоналитовых расплавов. U-Рb-возраст цирконов из "серых гнейсов" и лейкогранитов определен в 2.8-2.84 млрд. лет и время метаморфизма – в 2.7 млрд. лет [3]. По результатам глубинного сейсмического зондирования "серые гнейсы" северо-западного обрамления Печенги прослеживаются далее к юго-востоку, где образуют преобладающую часть фундамента Печенгского палеорифта [4], и на глубинах 6842-12261 м пересечены Кольской сверхглубокой скважиной.

По химическому составу плагиогнейсы образуют ряд от высокоглиноземистых (>15% Al₂O₃) до менее распространенных низкоглиноземистых пород, обладающих различными концентрациями редкоземельных элементов (РЗЭ). Преобладающими среди них являются породы типа А – сильно фракционированные, крайне обедненные РЗЭ породы (Yb_n < 3, La_n = 30–80), включающие преимущественно лейкократовые плагиогнейсы. Для них характерно высокое содержание Sr и крайне низкое – тяжелых РЗЭ и Ү, сопоставимое или даже более низкое по сравнению с типичными архейскими тоналит-трондьемитовыми ассоциациями [5]. Тип В – умеренно фракционированный (La/Yb)_n = 20–30), деплетированный тяжелыми РЗЭ (Yb_n = 3-5) с повышенным содержанием легких РЗЭ (La_n = 90–130). Низкоглиноземистые гнейсы типа С представлены главным образом мезократовыми слабо фракционированными породами (La/Yb)_n = 7–28), обогащенными как легкими (La_n = 100–200), так и тяжелыми (Yb_n > 5) лантаноидами. Они характеризуются повышенными концентрациями Ті, Fe, высокозарядных элементов (Zr, Nb, Hf, Ta, Y, U, Th) и пониженным содержанием Sr.

Приведенные геохимические характеристики типов А и В "серых гнейсов" объясняются образованием исходных расплавов путем частичного плавления метабазитового субстрата типа TH1 [7] с образованием гранат-клинопироксенового (тип А) или гранат-амфиболитового (тип В) реститов. Для плагиогнейсов типа С предполагается плавление обогащенного источника и плагиоклаз-амфиболовый состав рестита [8]. Для всех типов плагиогнейсов характерен узкий интервал вариаций отношений ¹⁴⁷Sm/¹⁴⁴Nd (0.08-0.14), в целом близких к среднекоровой величине этого отношения (0.12, табл.1). Близость возрастных значений, определенных U-Pb-методом по циркону с цифрами модельного возраста $T_{\rm Nd}$ (DM–2st), вычисленными по двухстадийной модели [6], характеризует короткое время пребывания протолитов в коре, а также слабое фракционирование изотопов Sm и Nd во внутрикоровых процессах, за

Геологический институт

Кольского научного центра Российской Академии наук,

Апатиты Мурманской обл.

№ об- разца	Порода	U–Рb- возраст, млн. лет	Sm, ppm	Nd, ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	εNd	T(DM)	T(DM)- 2st	⁴ He/ ³ He	Геохим. тип	(La/Yb) _n
67-4	Плагио- гнейс	2840	1.08	6.93	0.09416	0.510755	0.8	3040	3130	5.00E+06	A	72.1
76-1	То же	2810	1.91	12.17	0.09494	0.510776	0.5	3030	3120	1.00E+07	A	40.1
111-1	»	2825	2.15	15.25	0.08521	0.510617	1.1	2990	3100	1.05E+07	A	48.7
115/99	»	2825	2.24	16.50	0.08199	0.510589	1.8	2950	3050	1.00E+07	A	41.2
116-1	»	2805	0.96	4.14	0.14061	0.511627	0.5	3160	3060	7.75E+06	A	10.9
125-4	»	2805	2.61	19.87	0.0795	0.510487	0.4	3010	3140	2.60E+07	A	59.2
56-1	»	2840	2.18	11.50	0.11486	0.511242	2.7	2930	2940	3.03E+06	A	31.5
65-1	»	2840	6.41	38.97	0.09948	0.510934	2.3	2940	2995	7.14E+06	В	27.5
109/99	»	2825	2.34	9.85	0.14360	0.511703	1.1	3130	3020	1.39E+07	В	7.2
119-1	»	2805	2.748	16.343	0.1017	0.510877	0.0	3080	3150	2.60E+07	В	19.3
65-15	»	2840	5.20	24.50	0.12841	0.511329	-0.6	3240	3190	1.08E+07	С	6.5
1/98	»	2753	4.70	37.10	0.07670	0.510407	-1	3035	3190	1.00E+07	С	28.3
116-2	Лейко- гранит	2805	0.14	0.90	0.09534	0.510961	3.90	2810	2830	1.39E+06	A	22
125-8	То же	2805	2.63	17.93	0.0888	0.510799	3.1	2854	2905	4.35E+06	A	94.1
116-8	»	2805	1.41	7.97	0.10709	0.511048	1.4	2990	3030	3.08E+06	A	17

Таблица 1. Sm-Nd- и ⁴He-³He-изотопные данные для тоналитовых гнейсов и лейкогранитов обрамления Печенгского палеорифта

Примечание. Определения концентраций и изотопного состава Sm, Nd выполнены на масс-спектрометре "Финниган MAT-262". Значение стандартов La Jolla ¹⁴³Nd/¹⁴⁴Nd было 0.511833 ± 6 (*n* = 11) и JiNd1 = 0.512078 ± 5 (*n* = 10). Расчет двухстадийных модельных возрастов выполнен по методике Liew, Hoffman, 1988, при *t*₁ = 2700 млн. лет. Изотопный состав гелия определен при выделении газа методом дробления образцов на масс-спектрометре MI-1201, № 22–78.

верхний возрастной предел которых принят возраст регионального метаморфизма (T = 2.7 млрд. лет). Уменьшение в плагиогнейсах величины єNd от 2.7 до –1.0 свидетельствует об их формировании за счет протолитов различного состава, частично модифицированных добавками вещества верхней коры. Среднее значение єNd составляет 1.1 для плагиогнейсов типов A и B и уменьшается до –0.8 в породах типа C.

Одним из показателей процессов мантийнокорового взаимодействия является отношение ⁴He/³He, величина которого составляет $8.9 \cdot 10^4$ в породах верхней мантии (MORB) и увеличивается до ~ $5 \cdot 10^7$ в образованиях континентальной коры [9]. Поскольку время пребывания метабазитового протолита "серых гнейсов" в коре, установленное при изучении Sm–Nd-изотопной системы, было кратковременным, то можно полагать, что в гранитоидах, образованных при кристаллизации частичных выплавок из пород мантийного генезиса, мог сохраниться захваченный флюид, содержащий повышенные концентрации ювенильных компонентов.

С целью проверки этого предположения были определены концентрации и изотопный состав гелия с выделением газа при плавлении и дроблении пород и минералов по методикам, опубликованным ранее [10, 11]. Концентрации ³Не в гелии, выделенном из "серых гнейсов" и лейкогранитов методом плавления, изменяются от 4 · 10⁻¹⁴ до $9 \cdot 10^{-12}$ см³/г, и отношение ⁴He/³He для большинства образцов $(3 \cdot 10^7 - 3 \cdot 10^8)$ существенно не отличается от величины этого отношения, принятого для континентальной коры $(5 \cdot 10^7)$. В амфиболе из "серых гнейсов", имеющем более высокие концентрации ³Не, минимальное значение отношения ${}^{4}\text{He}/{}^{3}\text{He}$ составляет (1.5–2) · 10⁷ (рис.1), что также находится в пределах величин этого отношения в породах верхней коры. Для всех образцов пород и амфиболов соотношение измеренных (изм) и рассчитанных (расч) для возраста 2.8 млрд. лет концентраций изотопов Не меньше единицы (рис. 2), что свидетельствует о преобладающем радиогенном происхождении обоих изотопов гелия в результате ядерных реакций с участием U, Th, Li [12].

Концентрации ³Не, выделенного методом дробления из флюидных включений в породах и минералах [11], в 2–20 раз ниже концентраций этого изотопа при извлечении газа методом плавления образцов (см. рис. 1), при котором извлекается весь гелий, находящийся в породе. Величина отношения ⁴Не/³Не во флюидных включениях достигает

ДОКЛАДЫ АКАДЕМИИ НАУК том 395 № 2 2004

 $3 \cdot 10^6$ в плагиогнейсах и $1.4 \cdot 10^6$ в лейкогранитах. что значимо ниже величины этого отношения в породах коры, и может рассматриваться, вероятно, как свидетельство вклада ювенильного ³Не в состав захваченного флюида. Если это так и концентрации изотопов гелия во включениях не зависели от содержания U, Th, Li – элементов, генерирующих в породе радиогенные изотопы ⁴He* и ³Не*, то следует, по-видимому, ожидать отсутствия зависимостей между редкоэлементным составом пород и величиной отношения ⁴He/³He. Этому предположению противоречат выявленные обратные корреляционные связи между редкоэлементным составом выделенных геохимических типов "серых гнейсов" и рассматриваемой величиной отношения изотопов гелия. Особенно отчетливо эти зависимости проявлены на графиках $(La/Yb)_n - {}^{4}He/{}^{3}He$ и єNd – ${}^{4}He/{}^{3}He$, определяющих увеличение величины отношения ⁴Не/³Не от относительно деплетированных плагиогнейсов типа А к породам группы С, обогащенным некогерентными элементами (рис. 3). Следовательно, изотопный состав гелия во флюидных включениях также был модифицирован добавками радиогенных изотопов Не, образованных в результате распада U и Th, рассеянных в кристаллических решетках породообразующих и акцессорных минералов. На диаграмме в координатах $(U + 0.18 \text{Th})/^{3}\text{He} - {}^{4}\text{He}/^{3}\text{He}$ [13] точки состава пород и амфиболов располагаются на различном расстоянии правее эволюционной линии, представляющей собой изохрону для возраста 2.8 млрд. лет (рис. 4). Возле нее находится поле составов амфиболов, длинной осью расположенное параллельно эволюционной линии. Локализация точек составов вблизи изохроны определяется, вероятно, малыми потерями гелия из структуры минерала. В то же время расположение точек на значительном расстоянии от оси ординат затрудняет определение величины исходного отношения ⁴He/³He, в различной степени модифицированного добавкой радиогенного изотопа ⁴Не*. Такой же вывод следует и для пород, гелий из которых выделен методами плавления и дробления образцов. Положение точек составов в обоих полях определяется зависимостью отношения ${}^{4}\text{He}/{}^{3}\text{He}$ от концентраций U и Th, увеличение которых происходит в направлении от "серых гнейсов" типа A к породам групп B и C. Следовательно, наиболее низкие значения отношения ⁴He/³He в гелии, выделенном из флюидных включений в породах группы A_{1} – (3.0–1.4) · 10⁶ – могут рассматриваться лишь как верхний предел величины этого отношения в гелии, захваченном при кристаллизации расплавов "серых гнейсов" и лейкогранитов. Если принять величину отношения ⁴Не/³Не в верхней мантии с возрастом 2.8 млрд. лет как ~ $4 \cdot 10^4$ [14], концентрации ювенильных изо-

ДОКЛАДЫ АКАДЕМИИ НАУК том 395 № 2 2004

Рис. 1. Диаграмма в координатах ³He – ⁴He/³He. Ромбы, квадраты и треугольники – плагиогнейсы геохимических типов соответственно *A*, *B* и *C*, кружки – лейкограниты, маленькие ромбы – амфиболы. Темные и светлые точки – результаты определения концентраций и изотопного состава гелия при выделении газа соответственно методами плавления и дробления образцов.

Рис. 2. Диаграмма в координатах ${}^{4}\text{He}_{\text{изм}}/{}^{4}\text{He}_{\text{расч}}$ ${}^{3}\text{He}_{\text{изм}}/{}^{3}\text{He}_{\text{расч}}$. Остальные условные обозначения см. рис. 1.

Рис. 3. Диаграмма в координатах 4 He/ 3 He – ϵ Nd. Стрелкой показан тренд уменьшения величины ϵ Nd при увеличении отношения 4 He/ 3 He.

топов гелия в изученных "серых гнейсах" и лейкогранитах по отношению к радиогенным изотопам этого элемента составляют не менее 1–3%, и смешивание мантийного гелия с гелием земной коры могло происходить в пропорции ~1: (80–35).

Рис. 4. Диаграмма в координатах ${}^{4}\text{He}/{}^{3}\text{He} - (U + + 0.18\text{Th})/{}^{3}\text{He}.$

Таким образом, в позднеархейских плагиогнейсах установлено присутствие мантийного флюида, захваченного гранитоидными расплавами при парциальном плавлении метабазитов, имевших короткую коровую предысторию.

Авторы благодарны И.Н. Толстихину за критические замечания, а также Д.Д. Новикову и М.А. Ганнибал за помощь в проведении изотопных анализов гелия.

Исследования проведены при финансовой поддержке РФФИ (гранты 99–05–65158, 00–05– 72032, 01–05–64671, 02–05–64394, 03–05–64169).

СПИСОК ЛИТЕРАТУРЫ

 Тоналиты, дациты и связанные с ними породы / Под ред. Ф. Баркера. М.: Мир, 1983. 488 с.

- 2. Ветрин В.Р., Туркина О.М., Ладден Дж., Деленицин А.А. Петрология. 2003. Т. 11. № 2. С. 196–224.
- 3. Levchenkov O.A., Levsky L.K., Nordgulen O. et al. // Norg. geol. unders. Spec. Publ. 1995. № 7. P. 7–27.
- Сейсмогеологическая модель литосферы Северной Европы: Лапландско-Печенгский район / Под ред. Н.В. Шарова. Апатиты: КНЦ РАН, 1997. 226 с.
- 5. *Martin H.* Archean Crustal Evolution. Amsterdam: Elsevier, 1994. P. 205–259.
- 6. *Liew T.C.*, *Hofmann A.W.* // Contribs Mineral. and Petrol. 1988. V. 98. № 2. P. 129–138.
- Конди К. Архейские зеленокаменные пояса. М.: Мир, 1983. 390 с.
- 8. *Turkina O., Vetrin V.R., Kremenetsky A.A.* The Results of the Study of the Deep Substance and Physical Processes in the Kola Superdeep Borehole Section down to a Depth of 12261 m. Apatity, 2000. P. 58–61.
- 9. *Mamyrin B.A., Tolstikhin I.N.* Helium Isotopes in Nature. Amsterdam: Elsevier Sci. Publ., 1984. 267 p.
- Каменский И.Л., Толстихин И.Н., Шарков И.В., Пушкарев Ю.Д. // Геохимия. 1984. № 3. С. 439–443.
- 11. Икорский С.В., Каменский И.Л. XV симпозиум по геохимии изотопов: Тез. докл. М., 1998. С. 115.
- Morrison P., Pine J. // Ann. N.Y. Acad. Sci. 1955. V. 62. P. 69–92.
- 13. Zartman R.E., Wasserburg G.J., Reynolds J.H. // Geophys. Res. 1961. V. 66. P. 277–306.
- 14. Толстихин И.Н., Каменский И.Л., Марти Б. и др. Идентификация вещества нижнемантийного плюма в девонских щелочно-ультраосновных-карбонатитовых комплексах Кольского полуострова на основании изучения изотопии благородных газов и радиоактивных элементов. Апатиты; Нанси; Брюссель, 1999. 97 с.