- Французова В.И., Иванова Е.В., Антоновская Г.Н. Воздействие вибраций от ДЭС на геологическую среду и сооружения // Геологические опасности: Материалы 15 Всероссийской конференции с международным участием. –Архангельск: ИЭПС АНЦ УрО РАН, 2009. – С. 462-465.
- 5. Отчет о научно-исследовательской работе "Изучение закономерностей проявления сейсмичности и геодинамических процессов в северных окраинных зонах Восточно-Европейской платформы", 2008 г., № госрегистрации 0120.0604339. – 2008. – 113 с.
- 6. Юдахин Ф.Н., Капустян Н.К., Шахова Е.В. Исследования активности платформенных территорий с использованием микросейсм. Екатеринбург: УрО РАН, 2008. 132 с.
- Шахова Е.В., Юдахин Ф.Н., Антоновская Г.Н., Капустян Н.К. Опыт выявления кимберлитовых тел при микросейсмическом обследовании территории // Геологические опасности: Материалы XV Всероссийской конференции с международным участием. – Архангельск: ИЭПС УрО РАН, 2009. – С. 489-492.
- Горбатиков А.В., Степанова М.Ю., Кораблев Г.Е. Новый подход к исследованию геологической среды на основе использования фонового микросейсмического поля в диапазоне низких частот // Изменяющаяся геологическая среда: пространственно-временные взаимодействия эндогенных и экзогенных процессов: Мат. Междунар. конф. – Т. 2. – Казань: Казанск. гос. ун-та, 2007. – С. 19-23.
- Данилов К.Б., Юдахин Ф.Н., Французова В.И., Капустян Н.К., Шахова Е.В., Басакин Б.Г. Особенности проявления кимберлитовых тел в сейсмических полях (на примере трубки им. М.В. Ломоносова) // Экология арктических и приарктических территорий: Материалы международного симпозиума. CD. – Архангельск: ИЭПС УрО РАН, 2010.
- Шахова Е.В., Капустян Н.К. Микросейсмические исследования при изучении геологической среды // Проблемы мониторинга природной среды Соловецкого архипелага: Мат. IV Всерос. науч. конф. – Архангельск: ИЭПС УрО РАН, 2009. – С. 81-82.

ЭВОЛЮЦИЯ ЛИТОСФЕРЫ, ГЕОДИНАМИКА И МЕТАЛЛОГЕНИЯ КУКАСОЗЁРСКОГО СЕГМЕНТА СЕВЕРО-КАРЕЛЬСКОЙ ШОВНОЙ ЗОНЫ В ПОЗДНЕМ АРХЕЕ

Р.М. Юркова, Б.И. Воронин

Институт проблем нефти и газа РАН, г. Москва, Россия

В сообщении рассматривается эволюция структурно-формационных комплексов, как индикаторов геодинамического развития исследуемого региона (рис. 1). Рассмотрены магматические комплексы троньемитов-плагиогранитов, их гнейсового окружения и синтектонические метасоматиты.

Трондьемиты-плагиограниты залегает в виде тела линзовидной формы длиной 16-17 км, до 2 км. в поперечнике, вытянутого вдоль глубинного разлома, который чётко обозначен протрузиями серпентинизированных ультрабазитов. Соотношение породообразующих компонентов, структура и олигоклазовый состав плагиоклазов позволяет называть большую часть пород, образующих это тело, трондьемитами. Породы в разной степени структурно и вещественно преобразованы. Будины размером 1,8 х 0,4 м. цилиндрообразной формы наследовали первичную отдельность магматического тела. С несомненностью восстанавливается полистадийная история становления и метаморфизма трондьемитов-плагиогранитов. Она предстаёт в следующем виде:

1. В магматическую стадию при T $\geq 750^\circ$ C сформирован минеральный парагенезис: магнетит, диопсид, биотит, олигоклаз (23An %).

2. В автометаморфическую флюидно-пневматолитовую стадию в условиях высокой ступени амфиболитовой фации (T = 700-750° C) и повышенного флюидного давления были

образованы эденитовые роговые обманки в виде гомоосевых псевдоморфоз по диопсиду (табл. 1, графа 1).

Таблица 1

Компоненты	Трондьемиты			Плаги	огнейс	Синтектонический метасоматит		
	1	2	3	4	5	6	7	
SiO ₂	45,19	45,66	48,45	49,53	45,43	45,48	46,11	
Al $_2O_3$	12,88	14,01	13,87	13,24	13,75	16,83	17,21	
Ti ₂ O	0,61	0,94	0,76	1,10	0,52	0,39	0,47	
FeO	6,55	7,92	8,13	6,46	15,60	9,86	10,60	
MnO	0,41	0,59	0,43	0,45	0,39	0,12	0,12	
MgO	19,30	12,05	12,12	11,46	11,14	11,10	11,57	
CaO	10,85	12,80	11,75	11,24	7,95	10,99	10,82	
Na ₂ O	1,32	1,97	1,77	2,23	2,25	0,00	0,05	
K ₂ O	1,46	1,45	1,35	0,54	0,40	0,42	0,48	
Сумма	98,57	97,39	98,63	96,25	97,43	95,19	97,43	
Si	6,54	6,60	6,84	7,04	6,66	6,61	6,81	
Al ^{IV}	1,46	1,40	1,16	0,96	1,34	1,39	1,19	
Al^{VI}	0,73	0,98	1,14	1,26	1,04	1,49	1,81	
Ti	0,07	0,10	0,08	0,12	0,05	0,04	0,05	
Fe ²⁺	0,73	0,95	0,95	0,77	1,91	1,19	1,30	
Mn	0,04	0,07	0,05	0,05	0,04	0,02	0,02	
Mg	4,18	2,61	2,56	2,44	2,45	2,42	2,56	
Ca	1,16	1,97	1,78	1,72	1,25	1,71	1,71	
Na	0,36	0,56	0,47	0,61	0,65	0,00	0,02	
K	0,28	0,26	0,24	0,10	0,07	0,07	0,09	
Mg/Mg+Fe	0,98	0,73	0,73	0,76	0,56	0,67	0,66	
Название	3	3	3	2	1	1	1	

Содержание окислов (% масс.) и ионов (23 кислорода) в роговых обманка	X
по данным электронно-зондового микроанализа	

Примечание: название (Leake, 1978): 1 – магнезиальная роговая обманка, 2 – эденит, 3 – эденитовая роговая обманка

3. Далее в условия пластической объёмной перекристаллизации при становлении магматического тела в субсолидусном состоянии, в стадию амфиболитовой фации при повышенных давлениях (T = 500-550° C, P > 5кбар) продолжалась непсевдоморфное образование эденитовых роговых обманок с привносом ионов щелочей, железа, кремния, кальция, алюминия (табл. 1, графа 2).

4. В следующий этап происходили будинаж и разгнейсование под воздействием однонаправленного давления с формированием синезелёных магнезиальных, типично метаморфических роговых обманок в условиях эпидот-амфиболитовой или амфиболитовой фации (T = 500° C, P = 8 кбар) (табл. 1, графа 3). Неустойчивость вновь сформированной ассоциации, неравновесной с биотитом, ранними эденитовыми роговыми обманками и плагиоклазом привела к частичному замещению этих минералов магнезиальным хлоритом.

Комплекс плагиогнейсов, сформирован по представлению Ю.Й. Сыстра [3] по вулканогенно-осадочным слоям. Породы этого комплекса являются вмещающими для тела трондьемитов-плагиогранитов. Основу разреза комплекса составляют тонкополосчатые плагиогнейсы, для которых характерны тонкие (2-3 см) линзовидные, валообразные роговообманковые слойки. Результатом изучения этого комплекса является вывод о том, что тонкополосчатые плагиогнейсы обрамления не являются метаморфизованной частью блока трондьемитовплагиогранитов. Исходные породы были более щелочными, производными бимодальной вулканоплутонической серии. Возможно, это были породы спилит-кератофировой формации, характерной для примитивной (юной) островной дуги Западно-Тихоокеанской активной окраи-

ны [4]. Такое сопоставление может быть принято исходя из концепции формирования Северо-Карельской зоны в ходе эволюции островных дуг [5, 6]. Магматические минералы и магматическая стадия в гнейсах не прослеживаются. Предполагается, что это были глубинные блоки или протолиты бимодальных гнейсов, метаморфизованных на глубине в условиях амфиболитовой фации (T = 500° C, P = 8 кбар) с образованием эденита (табл. 1, графа 4). В последующем породы этого комплекса подверглись объёмной рекристаллизации в процессе подъёма протолита в несколько регрессивном режиме при T = 475° C, P = 5 кбар. Подъём пластичных блоков был субсинхронен с подъёмом трондьемитовой магмы, поэтому не наблюдалось ороговикование. В дальнейшем при становлении плагиогнейсового комплекса породы испытали пластическое течение в условиях прогрессивного метаморфизма амфиболитовой фации ($T = 520^{\circ}$ C, P = 8 кбар). Формировались синезелёные магнезиальные роговые обманки (табл. 1, графа 5). Происходила дифференциация вещества при обособлении линз роговых обманок и повышения основности плагиоклазов (от 19 до 25 % Ап), а также образование биотита. Эти преобразования происходили субсинхронно с будинажем и разгнейсованием трондьемитов. Такое структурно-вещественное преобразование можно представить, исходя из литературных аналогий, в зоне надвига [7].

В преддуговых бассейнах сформировались флишоидные комплексы, которые в ходе метаморфических изменений амфиболитовой фации сохранили ритмичное строение, характерное для турбидитов. Эти комплексы с севера – северо-востока примыкают к одинаково метаморфизованным плаогиогнейсам. Их положение в какой-то мере может маркировать пограничную область островная дуга-желоб [4].

Комплекс синтектонических высокоглинозёмистых метасоматитов сформирован за счёт тонкополосчатых кристаллосланцев, образованных в свою очередь по пакетам параллельных даек островодужного типа, если судить по палимсестовым структурам. Палимсетовыми структурами зафиксированы зоны закалки и разноразмерные центральные части извилистых и дугообразных полудаек. Метасоматиты залегают в зоне долго живущего глубинного разлома в виде крутозалегающих (70-75°) моноклинально сжатых слоёв с продольными и диагональными сдвигово-надвиговыми разрывами. Метасоматиты локально приурочены к апикальным частям малых (4 м в поперечнике) складок запрокинутых к северу и северо-востоку. Специфический состав в этой породе имеют роговые обманки (табл. 1, графы 6, 7). Они отличаются высоким содержанием ионов Al, скоординированных преимущественно в октаэдрических позициях ленточной структуры амфиболов. Это позволяет с использованием барометра Лика-Рааза [8] говорить о повышенных давлениях в условиях нижней ступени амфиболитовой фации. С использованием гранат-амфиболового термометра Л.Л. Перчука [9] температуры образования этой пары минералов оценивается в интервале 550-650° С. Давление может быть выше 8 кбар по данным И.И. Московиченко [10], однако, это не является доверительным значением, поскольку не учитывается давление флюидов, а, кроме того, мы имеем дело с условими метасоматоза, а не регионального метаморфизма, для которых сотавлены термобарометры.

Изучение показало, что метасоматиты полистадийно формировались в зоне разноглубинных сдвигово-надвиговых деформаций на регрессивном этапе развития эндогенной системы в шовной зоне при интенсивной фильтрации глубинных восстановительных флюидов предположительно в позднеребольский этап тектогенеза. Взрывоподобный выброс глубинных флюидов декомпрессионной природы в присдвиговых зонах растяжения прогнозирует E.H. Терехов [11]. В условиях амфиболитовой фации динамотермального метаморфизма (T = 550-610° C, P = 5-8 кбар) формировались высокоглинозёмистые стресс минералы: дистен, ставролит, мусковит политипа $2M_1$. Гранаты, как крупные до гигантозернистых, так и мелкие зёрна в основной массе представлены альмандином с переменным содержанием пироповой молекулы, от 16,5 % до 42,3 % в прямой зависимости от степени метасоматических преобразований. Характерен высокоалюминиевый (алюминий больше 2,5 ф.е.) хлорит. Плагиоклазы представлены андезином (33-36 An %). Привнос алюминия мог осуществляться только восстановительными флюидами. Струйное движение флюидов с инертным алюминием, а также Mg, Fe, Si зафиксировано в текстурных особенностях крупно-гигантокристаллических гранатовых метасоматитов. Активная фильтрация флюидов способствовала интенсификации тектонических движений, в том числе шарьяжеобразованию без изменения напряженного состояния пород, без повышения давления, что прослеживается в мусковит-хлоритовый этап пластического метасоматоза (табл. 2).

Таблица 2

Стадии	Условия	Ассоциации минералов	Т, град	Р, кбар
Деформационная	Сдвигово-надвиговые деформации на регрессивнм этапе развития эндоген- ной системы в разломной межблоко- вой (шовной) зоне. Дискретная лока- лизация тектонитов, Поступление глубинных флюидов.	Роговая обманка, гранаты, дистен, мусковит, ильме- нит	550-610	≥8
Динамотермаль- ная флюидная	Дегазация в виде мантийных струй. Восстановительные флюиды. Интен- сивный высокоглинозёмистый мета- соматоз	Гранаты, ставро- лит, дистен, био- тит, мусковит, хлорит турмалин, графит	от 600-650 до 650-700	4-6
Динамотермаль- ная регрессивная	Активная роль пластических дефор- маций при падении температуры ме- тасоматических процессов	Мусковит, хлорит, кварц, клиноцои- зит	500	< 5
Фильтрационная	Движение кремнистых флюидов в деформационно-проницаемых зонах вмещающих пород. Частичное или полное метасоматическое замещение исходных пород новообразованными ассоциациями минералов. Метасома- тические слои и жилы слюдистых кварцитов.	Кварц, мусковит, халькопирит	200-350	2-4

Последовательность и условия формирования синтектонических метасоматитов

За счёт флюидного давления оправдано образование запрещённого в условиях амфиболитовой фации хлорита. Результаты исследований свидетельствуют, что наложенные метасоматические преобразования тонкополосчатых кристаллосланцев связаны с локальным флюидно-термальным воздействием на эти породы (при участии востановительных флюидов) в связи с деформациями по сдвиговым зонам, проявленным в зоне глубинного разлома. Тепло и флюиды, вероятно, были продуцированы магмой высокоглиноземистой, шошонитовой серии, о чем свидетельствует привнос Al, Ca, Si, Ti и щелочей. В режиме быстрого высокотемпературного сгорания восстановительных газов, что характерно для архейской истории Земли, происходило формирование дисперсных шунгита и графита. Плотные флюидные потоки преимущественно кремнезёмистые на заключительной стадии флюидодвижения способствовали выносу дисперсных частиц шунгита и графита в субповерхностные слои с образованием углеродистых сланцев.

В пограничной гранулит-гнейсовой области формировались анортозит-габброноритовые комплексы, становление которых связано с процессами надвига в зоне разлома, разделяющего крупные блоки позднееархейской коры с различной историей развития. Черные рудные компоненты в синтектонических метасоматитах представлены ильменитами, которые наследуют, в основном, состав ильменитов исходных пород, в частности плагиогнейсов (табл. 3). Отличие состоит в том, что ильмениты синтектонических метасоматитов в ряде случаев имеют более высокое содержание TiO₂ и низкое MnO (табл. 3).

Таблица 3

Компо- ненты	1	2	3	4	5	6	7	8
SiO ₂	0.13	0.00	0.02	0.24	0.03	0.11	0.09	не опр.
Al_2O_3	0.14	0.00	0.04	0.13	0.09	0.08	0.07	не опр.
TiO ₂	51.16	51.03	0.05	52.34	53.30	53.02	50.72	54.02
FeO	44.03	44.05	92.89	45.05	44.50	44.88	44.80	43.95
MnO	3.44	0.00	0.05	0.02	0.08	0.09	0.06	0.13
MgO	0.24	0.00	0.03	0.73	0.04	0.06	0.05	2.42
Cr_2O_3	0.17	0.00	0.08	0.03	0.03	0.02	0.02	0.20
Сумма	99.31	95.08	93.16	98.53	98.07	98.26	95.81	100.72
Ti	1.00	1.01	0.00	1.00	1.02	1.02	1.01	1.00
Fe ²⁺	0.90	0.97	0.98	0.95	0.95	0.96	0.98	0.90
Fe ³⁺	нет	нет	1.95	0.00	0.00	0.00	0.00	0.00
Mn	0.07	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Mg	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.09
Cr	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Сумма	1.98	1.98	2.95	1.98	1.97	1.98	1.99	1.99

Содержание окислов (% мас.) и ионов ильменита [3(O)] и магнетита [4(O)] по данным электронно-зондового микроанализа

Примечание. Минералы: 1-2 и 4-8 – ильмениты, 3 – магнетит. Породы: 1 – плагиогнейсы, 2, 4-8 – синтектонические метасоматиты, 3 – троньдъемиты. Суммарное железо представлено в форме FeO. Разделение на Fe^{2+} и Fe^{3+} исходя из теоретического состава

Таблица 4

Содержание элементов (% мас.), атомные (2 S) и мольные пропорции в сульфиде синтектонического метасоматита по данным электронно-зондового микроанализа

Компоненты	Fe	Cu	S	Сумма	Fe ²⁺	Cu	S	Сумма	CuFeS ₂
Содержание	32.70	29.61	31.92	92.04	0.58	0.46	1.00	2.04	100

Образование Fe-Cu сульфидов в синтектонических метасоматитах связано с заключительной стадией флюидодвижения в шовной зоне. Плотные преимущественно кремнезёмистые флюидные потоки способствовали гидротермально-метасоматическому преобразованию синтектонических метасоматитов (табл. 2). Сульфиды представлены халькопиритом (табл. 4). Халькопирит развивается по крупным зёрнам и порфиробластам (до 5-8 см) альмандина и образует гнездовидные и прожилковые скопления в основной массе породы. Вкрапленное гнездовидно-прожилковое оруденение и рассеянные зёрна халькопирита характерны также для новообразованных мусковит-кварцевых слоёв и жил (табл. 2). Образование этих слоёв и жил связано с внедрением субвулканических тел риолит-дацитов в заключительный этап магматизма в шовной зоне. В целом структурные и минеральные парагенезисы синтектонических метасоматитов свидетельствуют о существовании в Северной Карелии на рубеже архея и протерозоя длительно напряженных и флюидопроводящих блоков сдвиговонадвиговых тектонитов, сопряженных с разломами глубокого (до мантии) заложения.

Рис. 1. Конвергентная складчатая структура Кукасозерского сегмента Северо-Карельского пояса (стадия Ds²) [1]. 1 – коллизионная сутура; 2 – оси складок, бергштрихами показано падение осевых поверхностей

ЛИТЕРАТУРА

- Бабарина И. И. Стадии формирования Кукасозёрского сегмента Северо-Карельского пояса Бальтийского щита // Тектоника, геодинамика и процессы магаматизма и метаморфизма. – М.: ГЕОС, 1999. – С. 54-58.
- Leake B.E. Nomenclature of amphiboles // Amer. Miner. V. 63. № 11/12. 1978. P. 1023-1058.
- 3. Сыстра Ю.И. Тектоника Карельского региона. Л.: 1991. 176 с.
- 4. Юркова Р.М., Воронин Б.И. Подъём и преобразование мантийных углеводородных флюидов в связи с формированием офиолитового диапира // Генезис углеводородных флюидов и месторождений. М.: ГЕОС, 2006. С. 56-67.
- 5. Бибикова Е.В., Самсонов А.И., Щипанский А.А. и др. Хизоварская структура Северо-Карельского зеленокаменного пояса как аккретированная островная дуга позднего архея: изотопно-геохронологические и петрологические данные // Петрология. – Т. 11. – № 1. – 2003. – С. 289-320.
- Слабунов А.И. Беломорский неоархейский коллизионный ороген // Беломорский подвижный пояс и его аналоги: Мат. научн. конф. – Петрозаводск: ин-т КарНЦ РАН, 2005. – С. 277-282.
- 7. Мак-Грегор В.Р. Трондьемиты, дациты и связанные с ними породы. М.: Мир, 1983. С. 131-156.
- 8. Raase P. Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism // Contr. Mineral. Petrol. V. 45. № 3. 1974. P. 231-236.
- 9. Перчук Л.Л. Сосуществующие минералы. Л: Недра, 1971. 413 с.
- 10. Московиченко И.И., Турченко С.М. Высокобарические комплексы докемрия в складчатых поясах фанерозоя. М.: Наука, 1982. 160 с.
- Терехов Е.Н. Структурные закономерности размещения и геохимические особенности метасоматитов эпохи эксгумации беломорского комплекса // Беломорский подвижный пояс и его аналоги: Мат. научн. конф. – Петрозаводск: ин-т КарНЦ РАН, 2005. – С. 300-302.