УДК 553.319

ТИТАНОМАГНЕТИТ-ИЛЬМЕНИТОВОЕ ОРУДЕНЕНИЕ АРСЕНТЬЕВСКОГО ГАББРО-СИЕНИТОВОГО МАССИВА ЗАПАДНОГО ЗАБАЙКАЛЬЯ

Р.А. Бадмацыренова¹, Д.А. Орсоев², М.В. Бадмацыренов³, С.В. Канакин⁴

Геологический институт СО РАН, 670047, г. Улан-Удэ, ул. Сахьяновой ба.

Впервые изложены данные по минералогии, геохимии и генезису титаномагнетит-ильменитового оруденения Арсентьевского интрузива Западного Забайкалья. Выделены два генетических типа руд: сплошные титаномагнет-ильменитовые руды ликвационного генезиса и вкрапленные руды, образовавшиеся в результате кристаллизационной дифференциации базальтовой магмы.

Библиогр.16 назв. Ил.4. Табл.1.

Ключевые слова: рудообразование; ликвация; титаномагнетит; ильменит.

TITANOMAGNETITE-ILMENITE MINERALIZATION OF ARSENTIEVSKY GABBRO-SYENITE MASSIF, WESTERN TRANS-BAIKAL REGION

R.A. Badmatsyrenova, D.A. Orsoev, M.V. Badmatsyrenov, S.V. Kanakin

Geological Institute SB RAS, 6a Sakhyanova str., Ulan-Ude, 670047.

The authors are the first to present data on mineralogy, geochemistry and genesis of titanomagnetite and ilmenite mineralization of Arsentievsky intrusion of the Western Trans-Baikal region. They distinguish two genetic ore types: massive titanomagnetite and ilmenite ores of immiscible genesis and impregnated ores formed as a result of crystallization differentiation of basalt magma.

16 sources. 4 figures. 1 table. Key words: oregenesis; immiscibility; titanomagnetite; ilmenite.

Эндогенные титаномагнетит-ильменитовые руды представляют интерес в качестве объектов, изучение которых способствует решению ряда петрологических проблем. Одной из них является выяснение характера связи оруденения с щелочно-основными и основными комплексами пород и способа отделения обогащенных фосфором систем. Начиная со второй половины XX в. титаномагнетит-ильменитовые руды многих месторождений стали расцениваться как один из ведущих промышленных типов железорудного и ванадиевого сырья, а отдельные типы этих руд – как важный источник получения титана. Такие месторождения разведаны во многих странах мира – ЮАР, Канаде, Норвегии, КНР, Украине, но более всего – в России. Они известны на Урале, в Карелии, Восточном Саяне, Забайкалье, на Дальнем Востоке.

Габбро-сиенитовые ассоциации широко распространены в складчатом обрамлении Сибирской платформы. Они являются вмещающими для ряда полезных ископаемых, и в первую очередь – титана [2]. Одним из типичных

¹Бадмацыренова Роза Александровна, младший научный сотрудник, тел.: (3012) 433-275, факс: (3012) 433-024, e-mail: <u>brose@gin.bscnet.ru</u>

Badmatsyrenova Roza, Junior research worker, tel.: (3012) 433-275, fax: (3012) 433-024, e-mail: brose@gin.bscnet.ru

²Орсоев Дмитрий Анатольевич, кандидат геолого-минералогических наук, зав. лабораторией геодинамики.

Orsoev Dmitry, Candidate of Geological and Mineralogical sciences, Head of the Laboratory of Geodynamics.

³Бадмацыренов Мунко Владимирович, младший научный сотрудник.

Badmatsyrenov Munko, Junior research worker.

⁴Канакин Сергей Васильевич, старший научный сотрудник.

Kanakin Sergei, Senior research worker.

представителей этой ассоциации является Арсентьевский габбро-сиенитовый массив, с которым связано титаномагнетит-ильменитовое оруденение. Детальное изучение его позволяет ближе подойти к пониманию взаимосвязи магматических и рудообразующих процессов.

Арсентьевский габбро-сиенитовый массив входит в группу титаноносных массивов, которые относятся к Моностойскому комплексу интрузивных пород. Первые упоминания о титаномагнетитовом оруденении в этих массивах относятся к концу XIX века, когда В.А. Обручевым были обнаружены шлиры «магнитного железняка» в породах Арсентьевского интрузива. В 1956-1958 гг. при проведении геологической съемки масштаба 1:200 000 Д.Д. Сагалуевым были закартированы массивы хр. Моностой. В эти же годы были организованы работы по поискам титана в пределах этого района и раз-

ведка Арсентьевского месторождения. Результаты этих работ отражены в отчетах В.Н. Гусельникова и др. (1959), С.М. Смирнова и др. (1957, 1958), Н.М. Ивченко и Л.Г. Извекова (1959). В 1968 г. на Арсентьевском и Оронгойском массивах были проведены поисково-оценочные работы Э.Л. Прудовским и др. (1968). Большой вклад в изучение петрологии, геохимии и рудоносности моностойского габбро-сиенитового комплекса внес О.А. Богатиков (1965, 1966, 1968, 1979). Этим интрузивам и связанному с ними оруденению посвящены работы С.М. Смирнова и А.И. Перелыгиной [6], О.А. Богатикова [1] и др.

Арсентьевский массив (рис. 1) расположен на юго-восточном склоне хребта Моностой, в 4-5 км к западу и северозападу от сел Арсентьевка и Сутой, расположенных на левом берегу р. Селенги. В плане он имеет овальную форму, слегка удлиненную в меридиональ-

Рис. 1. Схематическая карта Арсентьевского габбро-сиенитового массива (по Богатикову, 1965, с дополнениями и изменениями авторов):

1 – древние четвертичные отложения; 2 – сиениты; 3 – анортозиты и лейкогаббро; 4 – трахитоидные оливиновые габбро и мезогаббро, диоритизированные габбро, монцодиориты; 5 – ильменит-титаномагнетитовые массивные (а) и вкрапленные (б) руды; 6 – габбро, керсутитовые габбро, пироксениты; 7 – диориты, гранодиориты, монцониты; 8 – гранитогнейсы; 9 – элементы залегания трахитоидности; 10 – распадки ном направлении, и занимает площадь около 20 кв. км.

Сложен массив породами габброидной и сиенитовой серий. Габброиды слагают его южную часть, а сиениты северную. Породы первой серии образуют ряд от ультрамафических разновидностей (пироксенитов, перидотитов) до анортозитов, которые участвуют в концентрически зональном строении интрузива. Центральная часть его занята анортозитами, окаймленными лейкократовыми габбро и трахитоидными оливиновыми габброидами. Судя по магнитометрической съемке, интрузив продолжается в юго-западном направлении еще на несколько сотен метров. В целом габброидная часть интрузива в разрезе имеет, по-видимому, форму пологой асимметричной воронки с центром, несколько смещенным к югу. Сиениты относятся к более поздним образованиям. В пределах массива широко развиты жилы гранитных пегматитов и габбро-пегматитов, дайки кислых и средних пород.

В пределах северной полосы расслоенных габбро, названной рудной зоной № 1, выделены два основных участка, обогащенных рудными минералами. Восточный наиболее изученный участок располагается на левом склоне пади Шулута и на водоразделе падей Шулута и Аргалты между магистральными канавами № 25 на востоке и № 9 на западе. Западный участок этой полосы габброидов располагается в районе магистральных канав № 10 и № 30.

Второе крупное поле развития рудоносных габброидов находится южнее центральной части массива на водоразделе падей Шулута и Соленопадская и далее переходит на левый склон пади Шулута. Это поле изучено слабо, имеются лишь единичные мелкие горные выработки и проведена магнитометрическая съемка масштаба 1:5000.

Методика исследований. Для определения микроэлементного состава пород использовались методы рентгено-

флюоресцентного анализа (Rb, Sr, Ba, Zr, Nb, Y, элементы группы железа), нейтронно-активационного анализа (редкоземельные элементы, Ta, Hf, Th, U), масс-спектрометрии с индуктивносвязанной плазмой (для широкого круга элементов). Исследования проводились в лабораториях ИГХ СО РАН, ГИН СО РАН.

Анализы минералов выполнены на модернизированном микроанализаторе MAP-3 в ГИН СО РАН (при ускоряющем напряжении 20 кВ, токе зонда 40 нА, времени измерения 10 с и диаметре зонда 2-3 мкм) и электронном микроскопе LEO-1430 с энергодисперсионным спектрометром IncaEnergy-300. Расчёт составов минералов производился на основании алгоритмов, разработанных Ю.Г. Лаврентьевым (ОИГГМ СО РАН).

Петрографическая характеристика пород Арсентьевского массива. Основные породы, несущие повышенные концентрации титаномагнетита, ильменита, магнетита и иногда апатита, рассматриваются как комплексные железотитановые и фосфор-железотитановая руды. Они различаются между собой как по условиям локализации, так и по минеральному и химическому составам. С учетом этих признаков выделяются два типа руд: син- и эпигенетические. По количественному соотношению рудных и силикатных минералов сингенетические руды представлены вкрапленными и густовкрапленными разновидностями. По минеральному составу они делятся на титаномагнетит-ильменитовые и апатит-титаномагнетит-ильменитовые. В последних содержание апатита доходит до 10-15 об. %, но они, по сравнению с первыми, имеют подчиненное значение. Главные рудные минералы представлены магнетитом и ильменитом. Ряд признаков указывает на более позднюю кристаллизацию оксидно-рудных минералов по сравнению с силикатами и обогащенность летучими компонентами оксидного расплава, в частности, фосфором и фтором.

Эпигенетические массивные руды на 70-90 % сложены магнетитом, титаномагнетитом и ильменитом. Силикатные включения в них представлены оливином, плагиоклазом, пироксеном, керсутитом, биотитом. Нередко вокруг плагиоклаза на контакте с магнетитом развита амфиболовая каемка с эмульсиями магнетита и керсутита. В силикатных участках породы встречаются мелкие до 0,1 мм идиоморфные зерна магнетита с игольчатыми структурами распада ильменита, реже сростки магнетита и ильменита с включениями рутила. В массивных рудах часто отмечается появление зерен зеленой шпинели размером до 0,5 мм.

Ильменит во вкрапленных рудах наблюдается в виде трех генераций.

Свободный ильменит 1-й генерации представлен зернами с различной степенью идиоморфизма размером от 0.5 до 3 мм, обычно около 1 мм. В более крупных зернах ильменита заметно полисинтетическое двойникование и иногда видны тонкие (около 0.001 мм) вростки гематита (?), ориентированные параллельно спайности в ильмените. Некоторые рудные зерна

испытали, по-видимому, катаклаз, в связи с чем эти тонкие вростки изогнуты; иногда наблюдается изогнутость и двойников. Свободный ильменит часто содержит включения апатита и очень редко сульфидов. Обычно если свободный ильменит и титаномагнетит присутствуют примерно в равных количествах, что характерно для вкрапленных руд (рис. 2), то ильменит является более идиоморфным минералом по отношению к титаномагнетиту. С увеличением отношения титаномагнетит / ильменит разница в степени идиоморфизма между этими двумя минералами исчезает.

Ильменит 2-й генерации наблюдается в структуре распада твердого раствора. Подобные структуры пользуются очень широким распространением в основных породах Арсентьевского массива и отличаются большим разнообразием. Наиболее распространены пластинчатая и решетчатая структуры распада. Соотношения в них магнетитовой и ильменитовой составляющих крайне неравномерны. Так, если в массивных рудах это соотношение грубо можно оценить как 3:1, то в некоторых вкрапленных рудах присутствует почти чистый магнетит, а ильменит в нем представлен единичными тонкими плас-

Рис. 2. Взаимоотношение зерен магнетита и ильменита в рудах Арсентьевского массива: Ilm – ильменит; Mt – магнетит; Spl – шпинель; Ol – оливин; Px – пироксен; Chl – хлорит; Pl – плагиоклаз.

тинками толщиной 0.001-0.01 мм. В массивных рудах ильменит образует густые решетки распада в магнетите, ориентированные в основном согласно спайности минерала; толщина отдельных пластинок крайне неравномерна – от 0.001 до 0.1 мм. Обычно в центральной части зерна преобладает очень густая микрорешетчатая структура распада, образованная тонкими, пересекающимися пластиночками ильменита. Иногда в центральной части зерна теряется ориентировка ильменитовых пластинок, они сливаются друг с другом, образуются эмульсионная и петельчатая структуры. К периферии зерна пластинки становятся толще, а образуемая ими решетка реже. Менее распространены в рудах грубые прорастания ильменита и магнетита в виде пластин толщиной от 0.3 до 2.0 мм. Эта структура может быть названа грубопластинчатой. Боковые плоскости выделений ильменита обычно прямолинейны, а торцовые зазубрены.

Иногда выделения ильменита теряют пластинчатую форму, становятся аллотриоморфными, выполняют промежутки между зернами магнетита, проникают внутрь зерен. Такой ильменит выделялся, по-видимому, позднее, чем ильменит тонких эмульсионных включений. Эта структура наиболее характерна для массивных руд, хотя в качестве второстепенной она проявляется и во вкрапленных рудах.

Ильменит 3-й генерации в виде включений в силикатах пользуется незначительным распространением.

Магнетит (свободный) встречается в виде: 1) пылевидного магнетита, связанного с серпентинизированным оливином и с биотитом; 2) тонких (0.01-0.2 мм) прожилков, секущих титаномагнетит и породообразующие минералы.

Наиболее высокое количество TiO₂ (6.48 мас.%) содержит магнетитовая фаза титаномагнетита из сплошной руды, микроструктура которого образо-

вана тонким срастанием магнетита, ильменита, шпинели и ульвошпинели (?). Магнетитовая фаза титаномагнетита, обладающая решетчатым или груборешетчатым строением из вкрапленных руд, содержит заметно меньше двуокиси титана (0.18-0.91 мас. %). Высокую концентрацию титана в магнетитовой фазе можно объяснить существованием микросрастаний магнетита. ильменита и ульвошпинели, не выявленных при недостаточной разрешающей способности микроанализатора. Еще ниже содержание титана (0.06-0.08 мас. %) в магнетитовой фазе титаномагнетита из габбро.

При пересчете этих анализов на нормативные ильменит и магнетит остается значительный остаток FeO, что, повидимому, объясняется вхождением в титаномагнетит ульвошпинели. Даже при пересчете всего титана на молекулу ульвошпинели в некоторых анализах избыток FeO все же остается, возможно, обязанный присутствию железомагнезиальной шпинели, которая, как уже отмечалось, действительно обнаруживается под микроскопом.

Содержание двуокиси титана в ильмените, образующем пластинчатые включения в титаномагнетите, изменяется в пределах 48.68-53.31 мас. %. Шпинелевая фаза содержит от 0.1 до 0.4 мас.% двуокиси титана. Марганец преимущественно связан с ильменитом (0.52-1.57 мас. %) и в меньшей степени - с магнетитом (0.07-0.19 мас. %). Содержание магния в магнетите из руд значительно выше (до 1.57 мас. %), чем в феррогаббро и габбро (0.08 мас. %). Мд концентрируется в пластинках ильменита из сплошных руд, где его содержание достигает 7.94 мас. %. Алюминий в магнетитовой фазе из сплошных руд содержится до 1.73 мас. %, тогда как в породах максимальное содержание его достигает 0.11 мас. %. Ильменит беден примесями алюминия (0.06 мас. % Al₂O₃), и только в структурах распада твердого раствора в сплошных рудах присутствует до 5.55 мас. % Al₂O₃. Основная часть алюминия в титаномагнетитах связана с присутствием шпинелевой фазы.

Проведен сравнительный анализ химического состава выделенных типов руд (таблица). Установлено, что при очень высоких содержаниях главных компонентов (TiO₂, Fe₂O₃ и FeO) сплошные руды по отношению к вкрапленным характеризуются повышенными концентрациями (г/т) V (1400-1600), Zn (200-500), Cr (21-36) и низкими - Sr (60-210), Со (73-112) и Р₂О₅ (0.06-0.21 мас. %). Выявленные различия в составах руд наглядно иллюстрируются на диаграммах соотношения петрогенных элементов (SiO₂, Al₂O₃, MgO, Fe₂O₃+FeO, TiO₂, Na₂O+K₂O) и элементов-примесей (рис. 3). Сплошные и вкрапленные руды образуют обособленные поля, однако, на диаграммах TiO₂-V TiO₂-И Fe/(Fe+Mg) они формируют совместный положительный тренд, указывающий на единый источник рудогенных элементов при формировании син- и эпигенетических руд массива. Этот процесс происходил с активным участием летучих, о чем свидетельствует прямая корреляция между TiO₂ и P₂O₅ во вкрапленных рудах с повышенными содержаниями апатита. При этом их можно разделить на безапатитовые и апатитовые подгруппы. Для пород габброидной серии характерна приуроченность оруденения к апатитсодержащим и керсутитсодержащим разностям, которые можно считать индикаторами оруденения. С учетом этих данных на графике зависимости содержания P2O5 от TiO2 видно, что с возрастанием в породе фосфора до 1% параллельно возрастает и концентрация рудного компонента. В дальнейшем количество титана постепенно уменьшается. С увеличением содержания в габброидах апатита и керсутита от 0.3 до 10% параллельно увеличивается содержание Fe-Ti рудных минералов. Максимальная концентрация рудного компонента в породах отмечается при содержании суммы апатита и керсутита в пределах 10-15%. При более высоком их содержании концентрация рудного компонента падает.

Апатит в феррогаббро и рудах распространен неравномерно, содержание его изменяется в значительных пределах и иногда возрастает настолько, что руды становятся апатит-ильменит-титаномагнетитовыми. Присутствие апатита в основных породах и рудах может дать информацию о составе летучих компонентов. Апатит из габброидов и руд Арсентьевского массива относится к фторапатитам. Содержание фтора в рудах (1-2 мас.%) заметно меньше, чем в габброидах и вкрапленных рудах (2-3.5 мас. %). По-видимому, именно высокая концентрация фтора и фосфора в соединении с повышенной щелочностью первичной базальтовой магмы явилась главным фактором начала ее ликвании и образования рудных скоплений. РЗЭ в апатитах из габброидов Арсентьевского массива обнаруживают обычный для базальтов характер распределения: от тяжелых лантаноидов к легким направленно увеличивается их относительная концентрация, степень разделения умеренная (La/Yb=21-36), отчетливо проявлен европиевый минимум. Вместе с тем, апатит из руд по сравнению с апатитом из габброидов не обнаруживает европиевого минимума. Полученные данные не противоречат ликвационной гипотезе образования титаномагнетитильменитовых руд с апатитом [3].

Полученные данные позволяют сделать некоторые выводы об условиях формирования руд Арсентьевского массива, в частности, о флюидном режиме и температуре кристаллизации руд.

Флюидный режим. Широкое развитие магматической роговой обманки и апатита (F-апатит) указывает на относительную обогащенность магмы водой и летучими компонентами и определяет ее повышенную щелочность. Кроме того, в породах Арсентьевского массива отмечается биотит. По разным оценкам

Химический состав сингенетических (вкрапленных) руд (окислы в мас. %, элементы-примеси в г/т.)

Окислы	Номера проб											
	60-02	58a-02	50c-02	50-02	53/1-02	52/2-02	54-02	52-02	52/3-02	65/1-02	56-01	51-02
SiO ₂	41.70	38.70	43.00	43.00	40.20	44.60	36.60	44.00	44.10	41.20	41.30	8.6
TiO ₂	2.70	3.22	3.58	3.59	4.92	5.08	5.22	5.34	5.38	5.93	3.00	14.66
Al ₂ O ₃	16.25	14.50	14.80	14.50	14.20	16.20	10.15	15.40	15.80	14.20	15.30	6.7
Fe ₂ O ₃	6.96	9.20	5.96	8.25	5.81	4.45	10.82	5.01	3.79	11.26	7.69	32.08
FeO	7.22	8.38	9.77	8.80	9.61	8.72	11.03	8.30	9.80	5.75	8.19	28.88
MnO	0.15	0.18	0.19	0.20	0.20	0.17	0.22	0.17	0.17	0.21	0.16	0.38
MgO	5.95	7.00	6.46	6.53	6.50	5.08	7.74	6.05	5.33	6.39	5.50	5.26
CaO	12.20	12.24	10.07	10.00	11.16	10.07	13.04	10.57	9.38	10.49	11.60	1.32
Na ₂ O	2.85	2.64	3.14	2.88	3.07	3.33	1.67	3.12	3.25	2.80	2.86	0.37
K ₂ O	0.42	0.46	0.64	0.90	0.47	0.77	0.42	0.85	0.66	0.74	0.47	0.13
P_2O_5	2.28	2.17	0.33	0.28	2.52	0.20	1.51	0.21	0.25	0.30	2.25	0.31
ппп	1.04	1.21	1.64	1.51	1.32	1.08	1.26	0.94	1.90	0.73	1.25	1.19
Сумма	99.72	99.90	99.58	100.44	99.98	99.75	99.68	99.96	99.81	100.00	99.57	99.88
Ni	15	24	48	52		20	26	17	16		17	54
Co	42	44	43	36	41	41	47	45	39	25	57	140
Cr	75	80	73	82	50	120	140	140	100	140	130	93
V	280	290	330	320	240	270	550	290	300	94	430	1800
Окислы	Номера проб											
	22-01	286-01	28в-01	28г-01	28д-01	29-01	29a-01	296-01	29в-01	29г-01	30-01	52/6-02
SiO ₂	4.8	2.7	2.8	3.6	3.2	4.7	8.1	4.4	4.2	3.2	4	6.6
TiO ₂	14.6	15.6	16	16.22	15.46	15.1	13.33	15.43	15.62	15.65	16.22	14.66
Al_2O_3	6.8	6.4	6.05	6.3	6.7	6.6	6.05	6.3	6.5	6.9	6.6	6.9
Fe ₂ O ₃	38.71	41.29	41.19	38.8	41.17	38.95	34.85	38.5	38.56	36.51	34.63	35
FeO	26.38	36.76	26.73	27.3	26.69	26.8	25.56	27.2	26.35	29.98	30.7	27.93
MnO	0.35	0.39	0.4	0.44	0.35	0.38	0.39	0.37	0.4	0.38	0.42	0.39
MgO	5.64	5.08	5.26	5./1	5.13	5.35	8.5	5.4	6.06	4.55	5.58	5.89
CaO N= O	0.7	0.37	0.43	0.55	0.34	0.88	0.88	0.7	0.73	0.14	0.7	1.2
K O	0.11	0.08	0.12	0.18	0.09	0.10	0.18	0.15	0.17	0.1	0.19	0.29
P.O.	0.00	0.04	0.00	0.08	0.04	0.08	0.13	0.05	0.08	0.03	0.08	0.12
	1.93	0.03	0.1	1.07	0.00	1.33	1.82	1.2	0.1	1.79	0.10	13
Сумма	100.15	99.63	99.82	100.4	100.03	100.44	99.89	99.8	99.73	99.33	99.93	100.46
Ni	100.15	75	74	50	50	68	57	80	70	64	55	48
Co	200	260	230	220	230	240	240	240	260	260	240	150
Cr	25	180	100	110	100	70	40	170	60	80	130	88
V	2200	2100	2000	1900	1900	1900	2000	1600	1700	1900	1900	1900
Окислы	Номера проб											
	16a-01	165-01	17a-01	23-01	20-01	15-01	21-01	30a-01	306-01	52/4-02	52/5-02	52/7-02
SiO ₂	41.60	42.60	41.00	41.70	44.50	43.20	32.80	3.7	5	5	2.5	2.8
TiO ₂	3.18	3.62	3.66	3.69	3.74	3.92	7.40	15.7	15.21	15.35	15.68	15.01
Al_2O_3	14.40	15.80	15.60	15.20	15.90	15.60	10.95	6.6	6.8	7.3	6.6	7.05
Fe ₂ O ₃	6.14	4.84	5.94	7.10	3.24	3.94	7.66	36.13	35.47	35.04	37.17	37.38
FeO	9.75	8.70	8.97	10.75	8.54	8.39	13.71	30.02	28.92	30.06	31.2	30.29
MnO	0.23	0.23	0.20	0.17	0.18	0.21	0.27	0.41	0.34	0.39	0.35	0.4
MgO	6.28	5.40	5.68	6.15	5.36	5.90	7.37	4.81	5.34	5.02	4.29	4.69
CaO	11.00	9.52	9.52	10.27	10.50	10.40	11.62	0.7	0.7	0.7	0.37	0.3
Na ₂ O	3.00	3.16	3.36	2.70	3.29	3.20	1.32	0.16	0.14	0.29	0.14	0.16
K ₂ O	0.32	1.37	0.67	0.50	0.96	1.15	1.92	0.06	0.06	0.08	0.06	0.13
P_2O_5	2.12	2.75	3.26	0.53	2.29	2.10	3.37	0.18	0.18	0.15	0.18	0.15
ппп	1.99	2.09	2.33	1.59	1.26	1.55	1.81	1.05	1.73	1.04	0.92	1.487
Сумма	100.01	100.08	100.19	100.35	99.76	99.56	100.20	99.52	99.89	100.42	99.36	99.84
Ni	18	10	18	29	10	20	15	32	33	81	17	98
Co	110	83	74	130	61	- 74	140	230	140	180	180	17/0
Cr	110	/6	51	42	67	51	520	/0	/3	110	81	93
V	240	180	200	620	230	260	520	1900	1800	2000	2000	2000

Рис. 3. Вариационные диаграммы для руд Арсентьевского массива: 1 – вкрапленная руда; 2 – массивная руда.

[7, 15] концентрация воды в базальтовых магмах составляла от 4 мас. %, а кристаллизация магматического амфибола возможна при содержании воды не менее 3 мас. % [10]. Надежность этих оценок определяется данными о высоких содержаниях Na₂O, которые заведомо выше 3 мас. %, необходимых для кристаллизации паргасита [9, 15]. Сингенетические руды массива содержат в себе большое количество апатита. вплоть до образования апатит-титаномагнетит-ильменитового оруденения. Экспериментальные исследования показывают, что при содержании 1-2 мас. % Р₂О₅ можно получить составы, близкие к природным, и насыщенный железом расплав, который можно рассматривать как источник железа при формировании

магматических магнетитовых месторождений. Во вкрапленных рудах массива отмечается содержание P_2O_5 до 3,5 мас. %. Содержание F в апатите достигает 3 мас. %. Также в рудах отмечается вкрапленность сульфидов. Согласно С.М. Смирнову и др. [6] на глубине (скв. № 3) количество сульфидов возрастает до 15-20 об. %.

Zhou et al. [16], Jiang, Chu [11] при изучении расслоенного интрузива Панши-хуа показали, что присутствие сульфидов и апатита говорит о том, что S, P, F, возможно были теми составляющими, которые способствуют процессам ликвации. Благоприятные для концентрирования фосфора условия в процессе ликвации можно ожидать в силикатносолевых (например, в силикатно-карбо-

натных) расплавах [4], а также в таких расплавах, где фосфор не является необходимым для возникновения ликвации компонентом (высокожелезистые магмы). В качестве примера можно привести габброидные комплексы с приуроченной к ним апатит-ильменитовой и титаномагнетитовой минерализацией, которая, по мнению некоторых исследователей [13, 5, 14], связана с ликвационным расшеплением остаточных расплавов на салический и мафический, где последний представляет по существу уже рудную магму с содержанием P₂O₅ 7-8%.

Температура кристаллизации. Применение геотермометра [8] с использованием программы ILMAT [12] для близких по времени образования минеральных пар титаномагнетит-ильменит позволило определить температуру их кристаллизации (634°С – вкрапленные руды, 620°С – массивные) и летучесть кислорода (-17,43 и -20,34 lgfO соответственно), отвечающие условиям буфера QFM.

Результаты микрозондового анализа показывают, что магнетиты, ильмениты, амфиболы и биотиты сплошных руд значительно богаче TiO2, Al₂O₃ и MgO, заметно обогащены Na₂O, чем минералы вкрапленных руд, а апатит содержит меньше фтора. Установлено, что при очень высоких содержаниях главных компонентов (TiO₂, Fe₂O₃ и FeO) сплошные руды по отношению к вкрапленным характеризуются повышенными концентрациями (г/т) V (1400 - 1600), Zn (200 - 500), Cr (21 - 36) и низкими – Sr (60 - 210), Co (73 - 112) и P₂O₅ (0.06 - 0.21 мас. %).Полученные результаты позволи-ли придти к выводу о том, что кристал-лизация сплошных руд происходила позже оруденелых габбро. Рудный рас-плав внедрялся по тектоническим зонам в уже практически раскристаллизован-ное габбро, поэтому его остывание про-исходило быстрее принципу закал-ки) (по и субсолидусные превращения, В

частности, распад твердого раствора титаномагнетита, не были такими полными, как в габброидных породах. На самостоятельное и более позднее формирование массивных руд указывают и значительно более низкие, чем во вкрапленных рудах, величины отношения Cr/V и Ni/Co, являющиеся индикаторами стадийности рудообразования. По химическому составу руды Арсентьевского массива относятся к железотитан-ванадиевым.

Анализ полученных данных показывает, что главным в проблеме рудообразования были не источники рудных металлов, а механизмы их избирательной концентрации в магматических системах. В процессе становления массива имела место ликвация с обособлением оксидных фаз от силикатных расплавов (рис. 4). В целом массив рассматривается как единая расслоенная серия пород, явившаяся результатом дифференциации и последующей ликвации базитового расплава, изначально обогащенного железом, титаном и фосфором.

Согласно данным микрозондового анализа магнетиты, ильмениты, амфиболы и биотиты сплошных руд значительно богаче TiO₂, Al₂O₃ и MgO, заметно обогащены Na₂O по сравнению с минералами вкрапленных руд, а апатит содержит меньше фтора. При этом ильменит и магнетит из структур распада твердого раствора по сравнению с их зернистыми обособлениями заметно обогащены Al₂O₃ и MgO. Поскольку массивные и сингенетические руды имеют тесную пространственную связь, то в целом оруденение имеет ликвационно-кристаллизационный генезис.

Работа выполнена при финансовой поддержке программы ОНЗ РАН 2.1.

Библиографический список

1. Богатиков О.А. Петрология и металлогения габбро-сиенитовых комплексов Алтае-Саянской области. – М.: Наука, 1966. – 365 с.

2. Кислов Е.В., Гусев Ю.П., Орсоев Д.А., Бадмацыренова Р.А. Титаноносность Западного Забайкалья // Руды и металлы. – 2009. – № 4. – С 3-12.

3. Кривенко А.П., Пономарчук В.А. О генезисе апатитовых месторождений Восточной Сибири (по данным инструментального нейтронно-активационно-го анализа апатитов) // Микроэлементы как индикаторы геологических процессов. – Новосибирск: Ин-т геологии и геофизики, 1982. – 113 с.

4. Кригман Л.Д., Крот Т.В. Стабильная фосфатно-алюмосиликатная ликвация в магматических расплавах // Геохимия. – 1991. – №11. – С. 1548-1560.

5. Маракушев А.А. Проблемы генезиса расслоенных интрузивов // Контактовые процессы и оруденение в габброперидотитовых интрузиях. – М.: Наука, 1979. – С. 5-29.

6. Смирнов С.М., Перелыгина А.И. О некоторых основных чертах строения и рудоносности массивов основных и средних пород в хребте Моностой (Бурятская АССР) // Изв. высш. учебн. завед. Геология и разведка. – 1959. – № 6. – С. 3-12.

7. Anderson A.T. Significance of hornblende in calc-alkaline andesites and basalts // Amer. Mineral. – 1980. – V. 65. – P. 837-851.

8. Anderson D.J., Lindsley D.H. New (and final!) models for the Ti-magnetite-Ilmenite geothermometer and oxygen barometer // EOS Transactions. – 1985. – V. 66. – P. 416.

9. *Cawthorn R.G., O'Hara M.J.* Amphibole fractionation in calc-alkaline magma series // Amer. J. Sci. – 1976. – V. 276. – P. 309-329.

10. Holloway J.R., Burnham C.W. Melting relation of basalt with equilibrium water pressure less then total pressure // J. Petrology. $-1972. - N \ge 3. - P. 1-29.$

11. Jiang N., Chu X. A magnetiteapatite deposit in the Fanshan alkaline ultramafic complex, Northern China // Economic Geo-logy. $-2004. - V.99. - N_{\odot}$ 2. - P.397-408.

12. Lepage L.D. ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry // Computers & Geosciences. – 2003. – V. 29. – P. 673-678.

13. McBirney A.R., Nakamura Y. Immiscibility in late-stage magmas of the Skaergaard intrusion, Carnegie Institution of Washington Year Book 73, for 1973-1974, 348-352, 1974.

14. Ripley, E. M., Severson, M. J. & Hauck, S. A. Evidence for sulfide and Fe– Ti–P-rich liquid immiscibility in the Duluth Complex, Minnesota // Economic Geology. - 1998. – V. 93. – P. 1052–1062.

15. Sisson T.W., Grove T.L. Experimental investigations of the role of H_2O in calc-alkaline differentiation and subduction zone magmatism // Contrib. Mineral. Petrol. – 1993. – V. 113. – P. 143-166.

16. Zhou M.-F., Robinson P.T., Les-her C.M., Keays R.R., Zhang C.-J., Malpas J. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe–Ti–V Oxide Deposits, Sichuan Province, SW China // J. of Petrology. – 2005. – V. 46. – № 11. – P. 2253-2280.

Рецензент кандидат геолого-минералогических наук, ведущий научный сотрудник Института геохимии СО РАН А.С. Мехоношин