УДК [552.322+550.42+553.411] (470.22)

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ И ЗОЛОТОРУДНАЯ МИНЕРАЛИЗАЦИЯ ПОЗДНЕАРХЕЙСКОГО ДИОРИТ-ГРАНИТ-ПОРФИРОВОГО КОМПЛЕКСА ТАЛОВЕЙС (КОСТОМУКШСКАЯ СТРУКТУРА, КАРЕЛИЯ)

Л. В. Кулешевич, А. В. Дмитриева

Институт геологии Карельского научного центра РАН

Обсуждается петрохимический состав и металлогеническая (рудно-геохимическая) специализация гранит-порфирового комплекса Таловейс, рудная минерализация и перспективы на золото Костомукшской структуры докембрийского зеленокаменного пояса северо-западной Карелии.

Ключевые слова: диорит-гранит-порфировый комплекс, Таловейс, геохимия, золото, докембрий.

L. V. Kuleshevich, A. V. Dmitrieva. GEOCHEMICAL CHARACTERISTICS AND GOLD MINERALIZATION OF THE LATE ARCHAEAN TALOVEIS DIORITE-GRANITE-PORPHYRY COMPLEX, KOSTOMUKSHA STRUCTURE, KARELIA

The authors discuss the petrochemical composition and metallogenic (ore-geochemical) specialization of the Taloveis diorite-granite-porphyry complex, ore mineralization and perspective for gold in a Precambrian greenstone belt (Kostomuksha structure) located in Northwest Karelia.

Key words: diorite-granite-porphyry complex, Taloveis, geochemical characteristics, gold, Precambrian.

В геологическом строении Костомукшской структуры, расположенной в западной Карелии, принимают участие гнейсы нюкозерской толщи, породы контокской и гимольской серий (рис. 1). Изучением ее строения и магматизма занимались ряд исследователей [Горьковец и др., 1981, 1991; Кожевников, 1982, 2000]. Контокская серия представлена амфиболитами по базальтам (ниемиярвинская свита), толщей сланцев по породам кислого и среднего состава (шурловаарская свита), амфиболитами по базальтам и вариолитовым андезибазальтам, метакоматиитами (рувинваарская

свита). В северо-восточной части структуры нижняя часть геологического разреза (контокская серия) сменяется породами гимольской серии с горизонтами железистых кварцитов, которые образуют крупнейшее Костомукшское железорудное месторождение.

Формирование вмещающих толщ имеет длительную историю: от 2,84–2,8 (породы контокской серии) до ~2,71 млрд лет (порфировые дайки, секущие гимольскую серию) [Лобач-Жученко и др., 2000; Samsonov et al., 1995]. Смятые и метаморфизованные вмещающие толщи секутся многочисленными дайками

Рис. 1. Схема геологического строения и размещения золоторудных объектов в Костомукшской структуре (сост. по материалам КГЭ):

1 – лампроиты; 2 – лампрофиры; 3 – габбро; 4 – порфировые дайки; 5 – Na-K-граниты (2,7–2,68 млрд л., массивы Восточный, Ниемиярвинский, Шурловаарский); 6 – геллефлинты; 7 – диориты – гранит-порфиры комплекса Таловейс (2,72 млрд л.); 8 – гранито-гнейсы обрамления; гимольская серия (9–11), свиты: 9 – сурлампинская, 10 – костомукшская, 11 – большозерская; контокская серия (12–16), свиты: 12 – шурловаарская, 13 – полосчатая железисто-кварцитовая толща восточного борта структуры, 14–15 – рувинваарская (14 – амфиболиты по базальтам, андезибазальтам, 15 – метакоматииты), 16 – ниемиярвинская свита (амфиболиты по базальтам); 17 – нюкозерская серия; 18 – разломы; 19 – железистые кварциты; 20 – рудопроявления золота: 1 – месторождение Таловейс, проявления 2 – Факторное, 3 – Берендей, 4 – Кургелампи, 5 – Восточное, 6 – Ниемиярви, 7 – Центрально-Костомукшское, 8 – Южно-Костомукшское, 9 – Западно-Рувинваарское, 10 – Рувинваарское

габбро и разновозрастными гранитоидами (см. рис. 1, 2). Дайки габбро имеют субширотное простирание, в более поздних складчаторазрывных деформациях бывают смещены и метаморфизованы. Возраст гранитоидов комплекса Таловейс ~2,72 млрд лет, массивов Восточного (гора Таловейс), Ниемиярвинского и Шурловаарского ~2,68 млрд лет, субсогласные тела геллефлинт и порфировые дайки внедрились ~2,707 млрд лет назад.

Комплекс Таловейс. С внутриструктурными гранитоидами массивов Факторный, Центральный, а также порфировыми дайками участков Таловейс и Берендей, объединенными в комплекс Таловейс, связано золотое оруденение Костомукшской структуры (см. рис. 1, 2) [Кулешевич и др., 2000; Фурман, 2001; Кулешевич, 2002, 2004; Минерально-сырьевая база..., 2005; Кулешевич, Фурман, 2009]. Оруденение было обнаружено В. В. Ушковым и изу-

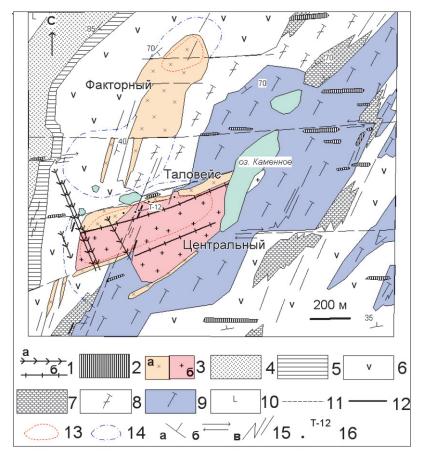


Рис. 2. Схема геологического строения участка Таловейс (сост. Л. В. Кулешевич с использованием материалов КГЭ):

1 – лампроиты (а), лампрофиры (б); 2 – габбро; 3 – диориты (а), гранит-порфиры (б); 4 – шурловаарская свита; 5 – железистые кварциты западной полосы; 6 – амфиболиты по базальтам (рувинваарская свита); 7 – вариолитовые метабазальты; 8 – тремолитовые сланцы по коматиитобазальтам; 9 – метакоматииты; 10 – амфиболиты (ниемиярвинская свита); 11 – разломы и смещения; 12 – кварцевые жилы; 13 – штокверки в диоритах и гранит-порфирах и 14 – вмещающих толщах; 15 – элементы залегания (а), сдвиговые зоны (б), складчатость, рассланцевание (в); 16 – рудные образцы

чалось геологами Карельской геологической экспедиции (КГЭ) [Ушков, 1984; Ушков и др., 1999; Фурман, 2001] и ЦНИГРИ в конце 90-х годов прошлого столетия.

Массив Центральный имеет размеры 250–400 x 1000 м. Его главные фазы представлены диоритами – кварцевыми диоритами и гранитпорфирами, близкими по времени внедрения. Диориты прорываются гранит-порфирами. В апикальной части гранит-порфиров встречаются ксенолиты диоритов и метаморфизованных вмещающих пород (рис. 3, A). В южной части массива канавами вскрыт крупный ксенолит биотитизированных хлорит-тальк-карбонатных сланцев по коматиитам с вкрапленностью пирита (рис. 3, Б).

Диориты и кварцевые диориты (1 фаза) имеют субмеридиональное и субширотное простирание, гранит-порфиры штока Центрального (2 фаза) – субширотное и погружаются на северо-восток. С ними связаны дайки тонкозернистых диоритовых порфиритов (микродиоритов), натриевых риодацитов и аплитов, которые прорывают апикальную часть массива Центрального и вмещающие толщи в эндоконтакте. Гранитоиды таловейсского комплекса были отнесены к санукитоидам – серии пород, выделяемых по повышен-

ной щелочности, магнезиальности (mg) и содержанию Ва и Sr [Samsonov et al., 1995; Lobach-Zhuchenko et al., 2005]. Гранит-порфиры прорываются более молодыми маломощными дайками лампрофиров и более поздними дайками лампроитов. Рифейские дайки лампроитов (1,23 млрд лет) имеют ССЗ простирание, секут гранит-порфиры массива Центрального и железистые кварциты Костомукшского месторождения.

Золоторудная минерализация ассоциирует с гранит-порфирами штока Центральный (месторождение Таловейс), кварцевыми диоритами штока Факторный (проявление Факторный), частично выходит за их пределы в амфиболиты (жила Ушкова), а в южной части площади приурочена к зонам с сульфидной вкрапленностью на контактах тонкозернистых даек андезидацитовых порфиритов (проявление Берендей) [Кулешевич и др., 2000]. В ореоле массивов Центральный и Факторный развиты изменения вмещающих пород (биотитизация, эпидотизация), сопровождающиеся пиритовой вкрапленностью и некоторым повышением содержания золота относительно фона. С Главной жилой ассоциирует рудное тело № 1 (см. рис. 3, А), южнее жилы находится участок пород с ксенолитами ме-

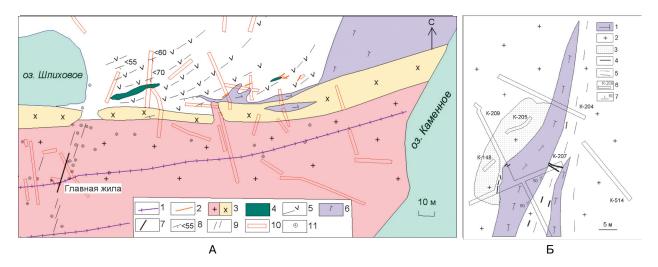


Рис. 3. Геологическая схема северного контакта штока Центрального участка Таловейс (A) и распространения ксенолитов метакоматиитов в южной части интрузии в контуре рудного тела № 2 (Б):

А. 1 – лампрофиры; 2 – дайки микродиоритов; 3 – комплекс Таловейс (а – диориты, кварцевые диориты, б – гранит-порфиры); 4 – габбро; 5 – амфиболиты по базальтам; 6 – метакоматииты; 7 – кварцевые жилы (и номера рудных тел); 8 – элементы залегания; 9 – зона рассланцевания; 10 – канавы; 11 – скважины. Б. 1 – метакоматииты; 2 – гранит-порфиры; 3 – зона окварцевания; 4 – кварцевые жилы и прожилки; 5 – зона рассланцевания; 6 – канавы; 7 – элементы залегания

такоматиитов и штокверк с многочисленными золото-пирит-кварцевыми прожилками – рудное тело № 2 (см. рис. 3, Б).

При проведении поисковых работ высказывались предположения о возможном «соединении» на глубине двух массивов – Факторного и Центрального. Однако скважины, пробуренные в промежутке между ними до глубины 150—200 м, не выявили этого, хотя между массивами в районе небольших озер наблюдаются интенсивные изменения вмещающих амфиболитов (биотитизация и эпидотизация) и сульфидная вкрапленность.

Вмещающие толщи участка Таловейс представлены хлорит-тальк-тремолитовыми и серпентин-тремолитовыми сланцами по ультраосновным породам, амфиболитами по коматиито-базальтам, базальтам и вариолитовым андезибазальтам (табл. 1/15-18, рис. 4). Вмещающие породы встречаются в ксенолитах апикальных частей массивов, входящих в таловейсский комплекс. Метаморфические преобразования в Костомукшской структуре достигали амфиболитовой фации, повышенное давление фиксируется в стрессовых структурах сжатия [Горьковец и др., 1991; Володичев и др., 2002], к локальным зонам деформаций приурочены метаморфогенные метасоматиты и окварцевание.

Петрохимические особенности таловейсского комплекса. Комплекс Таловейс имеет нормальную щелочность и дифференцирован от диоритов до гранитов (табл. 1/1–7). Характеристика пород комплекса проводилась

в сравнении с гранитами, прорывающими вмещающие толщи и в обрамлении Костомукшской структуры – массивами Ниемиярвинским, Восточным, Шурловаарским и геллефлинтами (табл. 1/8–13, рис. 5–6).

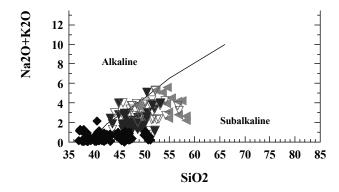


Рис. 4. Состав вмещающих пород контокской серии (южная часть Костомукшской структуры и участок Таловейс):

 метакоматииты, ▼ – амфиболиты по коматиито-базальтам, ∇ – амфиболиты по базальтам, ■ – амфиболиты по андезибазальтам

Для ведущих фаз таловейсского комплекса наблюдается корреляция по всем петрогенным компонентам. Содержание SiO_2 меняется от 55,34-57,7~% в диоритах до 67,4~% в гранит-порфирах; $\Sigma(Na_2O~+~K_2O)$ от 6,1-6,47 до 7,22~% (рис. 5,a,6). Породы имеют повышенную магнезиальность (mg = 0,48-0,54). Содержание MgO в них гораздо выше, чем в массивах Na-K и K-типов гранитов (табл. 1). Как предполагается, это

Таблица 1. Химический состав кислых интрузивных пород Костомукшской структуры и вмещающих их толщ

•			' '			,	. ,	, ,		•
Компонент	1	2*	3	4*	5	6*	7	8	9	10
SiO ₂	57,70	55,34	60,51	60,10	67,34	67,41	75,38	70,92	73,94	67,85
TiO ₂	0,58	0,74	0,52	0,59	0,33	0,37	0,10	0,11	0,16	0,45
Al ₂ O ₃	16,56	17,41	15,96	15,87	14,81	15,29	13,18	16,61	12,73	15,34
Fe ₂ O ₃	1,96	3,68	1,64	2,89	1,04	1,90	0,40	0,46	1,26	1,16
FeO	4,53	4,1	3,86	3,21	1,94	2,11	1,46	0,60	1,15	2,37
MnO	0,11	0,10	0,09	0,08	0,06	0,05	0,02	0,02	0,02	0,04
MgO	3,84	4,50	3,36	3,86	1,90	2,00	0,74	0,51	0,63	0,78
CaO	5,70	5,37	4,88	4,31	3,06	2,56	1,59	2,16	0,89	1,83
Na₂O	3,83	4,53	4,14	4,79	4,24	4,61	6,00	6,79	3,49	3,82
K₂O	2,26	1,94	2,39	1,76	2,98	2,32	0,46	0,90	4,91	4,91
P ₂ O ₅	0,31	0,09	0,29	0,16	0,16	0,17	0,06	0,06	0,08	0,24
H ₂ O	0,10	0,25	0,11	0,07	0,06	-	0,11	0,06	0,1	0,13
ппп	2,23	3,25	1,97	1,85	1,63	1,26	0,42	0,01	0,43	0,81
сумма	99,70	99,82	99,75	99,53	99,62	100,05	99,91	99,54	99,79	99,72
n	1	14	4	42	3	28	2	1	1	2
Na ₂ OK ₂ O	6,09	6,47	6,53	6,55	7,22	6,93	6,46	7,69	8,4	8,73
Na,O/K,O	1,69	2,33	1,73	2,72	1,42	1,99	13,04	7,5	0,71	0,77
al	1,60	1,42	1,80	1,59	3,03	2,54	5,07	10,6	4,19	3,56
mg	0,52	0,52	0,53	0,54	0,54	0,48	0,42	0,48	0,33	0,29
A/CNK	1,19	1,2	1,15	1,16	1,14	1,23	1,22	1,18	1,07	1,55
Компонент	11	12	13	14	15	16	17	18	19	20
SiO ₂	75,26	71,81	73,46	48,12	47,74	41,00	42,00	58,68	48,12	38,80
TiO ₂	0,05	0,25	0,19	1,0	1,0	0,13	0,42	0,67	0,86	3,96
Al_2O_3	13,1	14,41	13,8	14,03	13,80	2,54	7,60	14,0	7,67	6,72
Fe ₂ O ₃	0,32	0,71	1,0	1,98	6,35	3,72	4,30	1,43	2,01	4,88
FeO	0,43	1,33	0,57	10,77	8,33	3,68	7,04	6,75	8,14	4,52
MnO	0,009	0,04	0,02	0,209	0,177	0,06	0,106	0,134	0,265	0,094
MgO	0,62	0,47	0,42	8,27	7,26	36,80	26,11	6,07	17,57	14,75
CaO	0,74	1,46	0,65	9,73	9,96	0,01	5,52	6,64	7,55	7,88
Na₂O	4,08	3,78	3,8	3,60	3,38	0,03	0,30	2,76	0,36	0,21
K₂O	4,56	4,67	5,0	0,19	0,21	0,03	0,03	0,21	3,76	6,03
P ₂ O ₅	0,03	0,11	0,07	0,09	0,12	0,03	0,05	0,04	0,80	1,25
H ₂ O	0,06	0,26	0,17	0,11	0,13	0,20	0,21	0,21	0,28	2,64
ппп	0,49	0,53	0,65	1,45	1,35	11,54	6,03	1,94	2,43	7,60
сумма	99,75	99,83	99,8	99,55	99,87	99,76	99,71	99,78	99,98	99,83
n	1	2	1	1	1	1	1	1	1	1
Na ₂ OK ₂ O	8,64	8,45	8,8							
Na ₂ O/K ₂ O	0,9	0,81	0,76							
al	9,56	5,74	6,93							
<u>mg</u>	0,61	0,30	0,34							
A/CNK	1,06	1,15	1,12							

Примечание. Таловейский комплекс диоритов–гранит-порфиров: 1-2 – диориты, 3-4 – кварцевые диориты, 5-6 – гранит-порфиры, 7 – дайки Na-аплитов, секущие гранит-порфиры. 8 – геллефлинты Костомукшского карьера. Na-K-гранитоиды, массивы: 9-10 – Шурловаарский, 11-12 – Восточный, 13 – Ниемиярвинский. 14 – метагаббро, дайки. 15 – метабазальты. 16 – ультрабазиты. 17 – карбонат-хлорит-тальк-тремолитовые сланцы по коматиитам. 18 – вариолитовые метаандезиты (центральная часть подушек). 19 – лампрофиры. 20 – лампрофиты. 19 – лампрофиры. 19 – лампрофиры.

может быть связано с выплавлением их из метасоматизированной мантии, что характерно для санукитоидов. Породы комплекса относятся к метаглиноземистым, отношение A/CNK = 1,14— 1,23; формировались они в постколлизионной обстановке (рис. 5, в, г). Тонкозернистые аплиты, секущие шток Центральный, близки по составу геллефлинтам и плагипорфирам, секущим гимольскую серию, но отличаются микрокомпонентным составом (табл. 1/7–8, табл. 2).

По своим петрохимическим характеристикам комплекс Таловейс отличается от гранитов массивов Восточного и Ниемиярвинского (см. табл. 1, рис. 5). Лампрофиры и дайки более поздних лампроитов, секущие гранит-порфиры массива Центрального и железистые кварциты Костомукшского железорудного месторождения, имеют высокую К-щелочность, магнезиальность и титанистость (см. табл. 1/19–20).

По микрокомпонентному составу гранитоиды Костомукшской структуры можно разбить на несколько геохимических типов (см. табл. 2): 1 – комплекс Таловейс (с повышенным содержанием Ва, Sr, халькофильных элементов, золота). Для гранитоидов этого комплекса отдельно

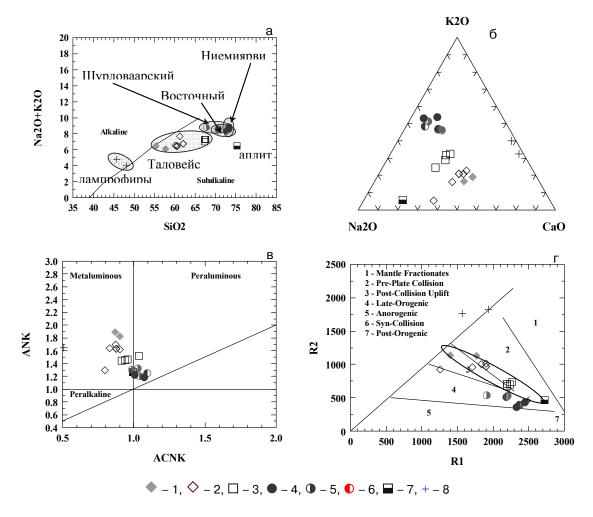


Рис. 5. Петрохимические диаграммы гранитоидов Костомукшской структуры:

Комплекс Таловейс (1–3): 1 – диориты, 2 – кварцевые диориты, 3 – гранит-порфиры. К-граниты, массивы: 4 – Ниемиярви, 5 – Шурловаарский, 6 – Восточный. 7 – дайки Na-аплитов, секущие гранит-порфиры. 8 – лампрофиры, секущие гранит-порфиры массива Центрального. ANK=Al₂O₂/(Na₂O+K₂O), ACNK=Al₂O₂/(CaO+Na₂O+K₂O), R1=4Si-11(Na+K)-2(Fe+Ti), R2=6Ca+2Mg+Al

рассматривается геохимия измененных и окварцованных пород с рудными ассоциациями; 2 – тип Шурловаарский (субщелочной комплекс с высоким содержанием Ba, Sr, Zr, Y, Hf, Σ REE); 3 - тип Ниемиярвинский (и южная часть массива Восточного). Граниты этого комплекса содержат повышенные концентрации Rb, Ba, Th. С ними связаны аплиты, обогащенные Mo, Nb, Pb; 4 - тип редкометалльный (северная часть Восточного массива, гора Таловейс) выделяется высоким содержанием Li, Rb, Cs, Nb, Ta, Sn, Zn, повышенным – Bi, Te, сопровождается грейзенизацией. С ними связаны золотосодержащие Ві-Те-Мо-рудопроявления Восточное и Кургелампи в восточной части структуры. Аплиты и геллефлинты приведены для сравнения, они отличаются низким содержанием всех рудогенных элементов (см. табл. 2/8).

Распределение редкоземельных элементов, **Ba**, **Sr**. Сумма REE во всех типах по-

род комплекса Таловейс не превышает 160–226 ррт (см. табл. 2, рис. 6). Для них характерен фракционированный спектр распределения редких земель, отмечается обогащение в области легких элементов и обеднение тяжелыми с небольшими положительными аномалиями Gd и Yb (см. рис. 6, а). Подобие спектров наблюдается также и для других гранитов Костомукшской структуры — массивов Ниемиярви и Восточного, но по микрокомпонентному составу они сильно различаются между собой (см. табл. 2). Диориты и гранит-порфиры обогащены Ва 810–1230 ррт и Sr 560–844 ррт, для них установлена корреляция Ba-Sr (см. рис. 6, г).

Среди собственных минералов REE в диоритах и гранит-порфирах встречаются монацит и более поздний бастнезит. Их количество несколько увеличивается вблизи рудных прожилков в околорудно-измененных породах. Ва кон-

центрируется в породообразующих силикатах, но его повышенные концентрации бывают связаны с поздними гидротермальными процессами преобразования пород и появлением барита в ореоле жил и в рудных ассоциациях.

Таблица 2. Содержание микроэлементов (ppm) в кислых интрузивных породах Костомукшской структуры

Элемент 1		2 3		4	5	6	7	
Li	29,56	35,5	38,55	857,04	39,15	11	15,33	
Rb	64,15	119,3	256,8	1560	205,5	158,8	101,84	
Cs	6,24	6,6	1,84	78,5	3,5	1,96	0,9	
Ва	1206,3	1351	670,7	403,4	833,3	14,3	2783,9	
Sr	830,1	695,6	71,7	1,92	257,8	20,44	533,7	
Υ	12,2	9,6	15,31	4,55	14,4	4,9	20,96	
Zr	152,9	158,4	196,3	27,5	138,3	45,1	224,25	
Hf	4,25	4,8	3,3	1,26	5,06	2,61	6,41	
Ta	0,34	0,6	1,5	2,37	1,87	3,25	0,96	
Nb	4,02	5,4	19,4	82,29	15,3	27,5	11	
Th	10,33	12,8	36,6	7,03	22,4	15,85	0,03	
Мо	0,92	1,6	0,31	1,1	0,96	57	1,16	
W	0,89	2,3	0,28	0,89	0,28	0,46	0,29	
Sn	0,59	1,2	2,73	17,8	2,64	0,48	2,24	
As	10,11	62,9	120,6	120	261,6	148,2	342,7	
Sb	0,37	1,6	0,15	0	0,55	0	2,58	
Te	0,1	0,1	0,68	1,35	1,08	0,67	1,25	
Bi	0,17	0,14	0,04	0,12	0,06	0,05	0,03	
Pb	17,37	59,2	22,44	23,22	48,3	98,44	52,77	
Co	16,84	11,4	1,82	31,63	3,75	2,4	4,63	
Ni	26,61	27, 9	8,65	17,14	11,7	27,2	14,19	
Cu	31,25	24,5	7,41	21,54	17,34	22,37	26,29	
Zn	80,64	84	24	750,14	59,1	22,37	65,17	
Cd	2,34	2,4	1,98	0,57	0,51	0,62	0,83	
ΣREE	191,48	159,6	195,31	140,31	215,92	12,18	342,7	
n	3	2	2	2	3	1	3	

Примечание. N – количество образцов. Комплекс Таловейс: 1 – диориты, 2 – гранит-порфиры. 3 – массив Ниемиярви, граниты. Массив Восточный: 4 – редкометалльные граниты (гора Таловейс), 5 – граниты, 6 – молибденсодержащие аплитовидные граниты. 7 – массив Шурловаарский, граниты.

В процессе геологических исследований высказывалось мнение о существовании генетической связи субширотных даек габбро (см. табл. 1/14) с диорит-гранит-порфировым комплексом Таловейс, занимающим близкую структурную позицию. Однако геохимия габброидов и иное распределение в них REE не подтверждают этого (см. рис. 6, в). Дайки габброидов и вмещающие их основные породы (метабазальты и амфиболиты, в том числе с наложенной сульфидной минерализацией в ореоле массива Центрального) имеют совершенно иные спектры распределения REE, характерные для океанических базальтов (MORB). Габбро, прорывающее граниты массива Восточного, незначительно обогащены легкими REE, что, по-видимому, связано с их контаминацией компонентами гранитов.

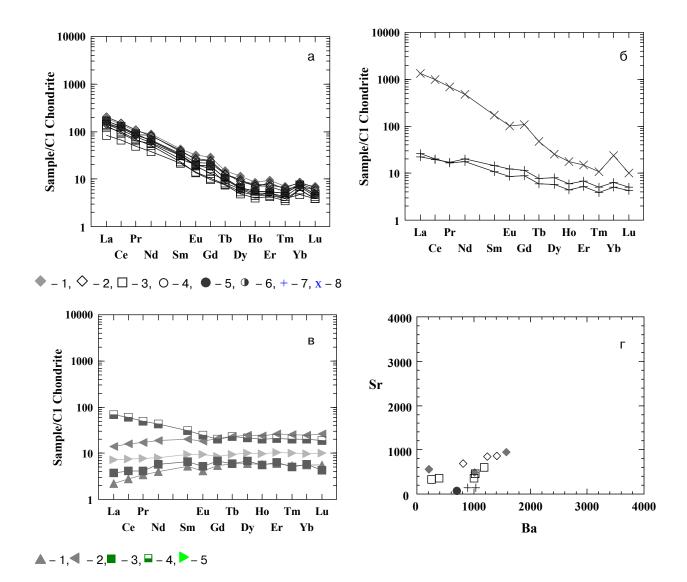
Лампрофиры, секущие гранит-порфиры, в распределении REE имеют некоторое подобие с диоритами и гранит-порфирами комплекса,

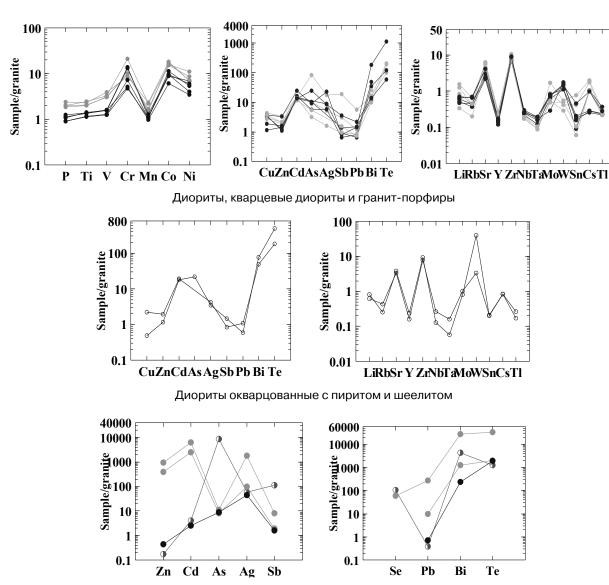
но более низкое их содержание и слабо дифференцированные спектры, что бывает характерно для основных пород (см. рис. 6, б). В отличие от них рифейские дайки лампроитов выделяются максимально высокими концентрациями всех редких земель и имеют резкофракционированное их распределение во всем интервале (см. рис. 6, б), что характерно для щелочных пород, содержащих монацит, ксенотим и поздние REE-карбонаты. В своем внешнем ореоле воздействия они могут оказывать существенное влияние на вмещающие их породы, выраженные в интенсивной биотитизации и обогащении REE.

Распределение литофильных и халькофильных элементов в гранитоидах и рудах массива Центрального комплекса Таловейс представлено на рис. 7 и в табл. 3. Отчетливо видно обогащение гранитоидов Cr, Co, Ni, Zr, Sr. Для руд и пород с вкрапленной рудной минерализацией наблюдаются следующие тенденции: обогащение 1) W, Bi, Te либо 2) As, (Bi, Te, Ag); 3) Zn, Cd, Ag, Bi, Te, Pb (в полиметаллических рудах); 4) и 5) Bi, Te, Ag (в золото-сульфиднокварцевых прожилковых рудах).

Метасоматические изменения пород. Внедрение массивов Факторного и Центрального сопровождалось эпидотизацией вмещающих базитов и хлорит-тальк-тремолитовыми изменениями ультрабазитов. В эндоконтакте по амфиболитам образуются биотит, эпидот, актинолит, карбонат. В участках с сульфидами фон и ореол золота несколько повышенный – 0,01–0,4 г/т. В отличие от этих интрузивов формирование массива Восточного (гора Таловейс в юго-восточной части Костомукшской структуры) сопровождалось грейзенизацией вмещающих пород.

Изменения самих диоритов и гранит-порфиров комплекса Таловейс происходили по типу пропилитизация-березитизация. Породы содержат бедную вкрапленность пирита. В западной и северо-западной части штока Центрального, а также в северной части Факторного гранитоиды насыщены сетью разноориентированных полевошпат-кварцевых прожилков с пиритом. Ранние изменения сопровождаются кварцем, альбитом, микроклином, эпидотом, серицитом, незначительным количеством пирита (до 1-3 %) и более позднего кальцита. Содержание Аи в гранит-порфирах с убогой вкрапленностью пирита колеблется (0,01-0,5 г/т), реже до 5 г/т). Область штокверка представлена сетью разноориентированных полевошпат-кварцевых прожилков (0,3-1 см). Прожилки выполняют сколовые (пр. CB 40°, C3 320°) и концентрические тре-




Рис. 6. Распределение РЕЕ, Ва и Sr в породах комплекса Таловейс (а), лампрофирах, лампроитах (б), габбро и вмещающих метабазальтах (в)

а, б, г: 1 – диорит, 2 – кварцевый диорит, 3 – гранит-порфир, 4 – гранит (массив Восточный), 5 – гранит (массив Ниемиярви), 6 – гранит (гора Таловейс), 7 – лампрофир, 8 – лампроит. в: 1 – амфиболиты по базальтам, 2 – метабазальты (в северном экзоконтакте массива Центральный), 3 – габбро (широтные дайки), 4 – габбро, измененные, 5 – амфиболиты с пиритом в экзоконтакте массива Центральный

щины. В них обычен пирит (5–10 %) и установлено золото: от 0,1 до 2–10 г/т (Центральный), 0,4–6,4 г/т (Факторный) [Фурман, 2001; Минерально-сырьевая база..., 2005].

Кроме разноориентированных прожилков шток Центральный по субмеридиональной зоне разбит линейными трещинами (простирание ССВ 10–20°), они и фиксируют зону сдвига. Центральная ССВ шир-зона выполняется Главной кварцевой жилой, мощность которой от 0,1–2 до 7–10 м. В зальбандах жилы развиты кварц, альбит, микроклин, мусковит, эпидот, хлорит. С Главной кварцевой жилой связано золото-пирит-кварцевое (малосульфидное) оруденение – наиболее богатый тип руд месторождения Тало-

вейс. Жила имеет крутое СВ падение и разветвляется на глубине. Она состоит из белого кварца, а в зальбандах содержит обломки рассланцованных и измененных гранит-порфиров и пирит. В околожильных метасоматитах преобладает альбит, микроклин, кварц, мелкочешуйчатая слюда, реже эпидот, хлорит, кальцит. Золоторудная минерализация тяготеет к зальбандам жилы. Рудное тело-1 прослежено на глубину 50 м и по простиранию на 100 м, его мощность участками иногда оценивается до 10 м, по работам КГЭ [Фурман, 2001; Минерально-сырьевая база..., 2005; Кулешевич, Фурман, 2009]. Среднее содержание Аи составляет 4,5–5,6 г/т, мак-

Рудные образцы: кварцевые жилы со сфалеритом (серые), арсенопиритом (черно-белые) и золото-сульфидно-кварцевые (черные)

Рис. 7. Распределение микрокомпонентов в диоритах, гранит-порфирах и рудных образцах массива Центрального комплекса Таловейс (нормализовано относительно среднего состава гранитов по Н. Л. Овчинникову [Скляров и др., 2001. С. 24])

симальное – 32–60 г/т. В южной части участка на продолжении шир-зоны выделено рудное тело-2 мощностью от 2–3 м до 10–20 м (C-65, глубина 40 м), его протяженность 100 м, по падению – 80 м. Содержание Au 1,6-4,26 г/т (ср. 3,5 г/т).

По данным изучения газово-жидких включений из кварца Главной жилы и прожилков было установлено, что $T_{\text{обр.}}$ прожилков штокверка и кварца-1 и -2 из жилы составляла ~360–380° [Кулешевич, Васюкова, 2005]. В Главной жиле золото отлагалось при снижении температуры и вскипании растворов, что сопровождалось образованием более позднего мелкозернистого флюидонасыщенного кварца-3 при $T=190-140\,^{\circ}\text{C}$ и снижении давления почти до 0,1 кбар.

Рудная минерализация и распределение рудогенных элементов. С диоритами и гранит-порфирами массива Центрального связано несколько типов руд и вкрапленная рудная минерализация (рис. 8, 9). В диоритах установлены: 1 – пиритовая и шеелит-пиритовая вкрапленная и 2 – арсенопиритовая вкрапленно-прожилковая минерализация. Эти типы рудной минерализации (см. рис. 8/1–4) наиболее высокотемпературные и малозолотоносные. С пиритом или арсенопиритом встречаются Ag-Pb-Bi-S-сульфосоли. Рудная минерализация в диоритах выделяется высокими концентрациями W или As, повышенными Bi, Sb, Ag (табл. 3, рис. 9).

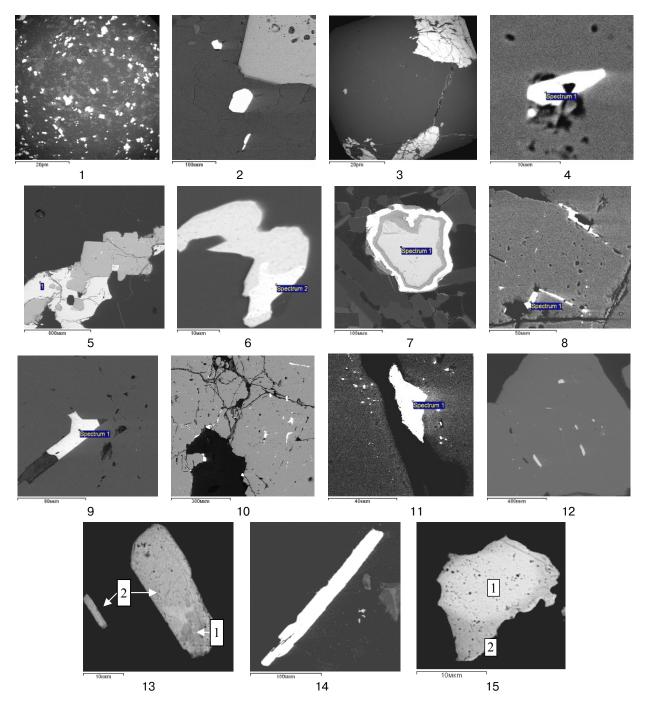


Рис. 8. Рудная минерализация в диоритах и гранит-порфирах:

Шеелит-пиритовая вкрапленность, 1-й тип руд: 1 – общий вид; 2 – пирит (серый) и шеелит (белый). Арсенопиритовая вкрапленность, 2-й тип руд: 3 – арсенопирит (белый) в кварце; 4 – трежерит (sp. 1) в арсенопирите (серый). Пирит-сфалеритовые прожилковые руды: 5 – пирит (серый), сфалерит (белый); 6 – срастание галенита (светло-серый) и хедлейита (sp. 2), 7 – зональное зерно: пирит (sp. 1), замещается гематитом (темно-серый) и баритом (белый). Прожилковые руды штокверка: 8 – пирит с включениями галенита (sp. 1) и тонкого золота (белое), 9 – золото (sp. 1). Рудная минерализация Главной жилы: 10 – золото в пирите; 11 – золото (белое) в трещинке в пирите; 12 – включения пластинок петцита (белые) в пирите; 13 – срастание петцита (белый) и гессита (светло-серый); 14 – кристалл пильзенита; 15 – золото (1), электрум (2)

К гранит-порфирам 2-й фазы приурочены прожилковые руды штокверка и субмеридиональная Главная золото-кварцевая жила. С ними связаны продуктивные типы руд: 3 – прожилковое золото-пирит-кварцевое оруденение штокверка; 4 – золото-пирит-кварцевые (мало-

сульфидные) руды Главной жилы и реже встречается 5-й тип — золотосодержащие галенитпирит-сфалеритовые руды. Полисульфидные прожилковые руды (см. рис. 8/5, 6) были вскрыты в канаве К-74. Они содержат сфалерит, пирит, галенит, халькопирит, висмут, вистается в биль и размения в канаве К-74.

Таблица 3. Содержание микрокомпонентов в рудах и околорудных измененных породах, шток Центральный (ppm)

Nº	Co	Ni	Cu	Zn	As	Мо	Ag	Cd	W	Pb	Bi	Sb	Te
1	18,1	24,9	29	84,7	16,4	1,3	0,2	2,64	0,92	22,4	0,16	0,62	0,1
2	9,6	20,7	18,5	63,5	38,9	1,1	0,32	2,32	3,2	41,9	0,14	0,7	0,06
3	25,8	28	4,94	45	34,2	1,2	0,13	3,1	86,9	11,32	0,76	0,29	0,49
4	8,8	12,7	55,2	37316	17,9	1,4	67,4	1053	0,54	5188	276	1,63	33,1
5	5,8	29,4	48,9	15216	12,9	4,11	3,72	415	0,65	189,2	12,8	0,38	2,1
6	7,9	18,2	22,4	75,9		1,54	0,16	3,3	7,41	20,42	0,49	0,17	0,18
7	15,6	39	43,8	133	133,1	2,6	0,67	2,56	1,22	107,5	0,16	3,8	0,21
8	11,3	19	35,7	43,5		1,13	0,34	2,5	3,4	12,4	0,35	0,18	0,12
9	9,2	13,6	13,7	57,3	8,9	0,46	0,22	2,6	3,1	20,5	0,81	0,12	0,25
10	6,2	12	32,6	48,2	8,9	0,43	0,22	2,76	3,9	15,3	0,48	0,13	
11	9,6	13	37,2	131	14,9	0,93	0,87	4,1	2,43	27,2	1,8	0,16	1,12
12	4	28,5	26,5	17,2	14,0	4,35	1,68	0,44	0,68	13,5	2,4	0,32	1,91
13	20	28,1	28,2	6,72	13612	3,4	2,3	0,68	1,1	7,4	43	22,2	4,08

Примечание. $Ppm = \Gamma/T$. 1 – кварцевые диориты. 2–3 – диориты с шеелит-сульфидной минерализацией (обр. T-3, T-3-1). 4–5 – золотосодержащая галенит-сфалерит-пирротиновая минерализация (K-74/1, K-74/2), 6 – сфалерит-пиритовая минерализация (K-74/4). 7 – гранит-порфир (обр. T-8/2). 8–9 – золото-сульфидная прожилковая минерализация в гранит-порфирах (обр. T-12/3, T-12/3a). 10–12 – малосульфидная золото-кварцевая жила Главная (T-12-4, T-12-5). 13 – арсенопиритовые руды.

мутин, хедлейит и реже золото. После формирования рудная минерализация подвергалась окислению: встречаются зональные кристаллы пирита, замещенные гематитом, баритом и затем вновь гематитом (см. рис. 8/7). Сфалеритовые прожилковые руды выделяются по высоким концентрациям элементов-спутников — Рb, Cd, Ag, Bi, Te (см. табл. 3, рис. 9), но в ассоциациях с высоким содержанием пирита содержание этих элементов снижается.

Кварцевый штокверк представлен маломощными прожилками. Они содержат пирит с многочисленными мелкими включениями галенита и золота, реже халькопирита и Ag-Pb-Bi-сульфосолей, проникающих в пирит по микротрещинкам (см. рис. 8/8, 9).

Состав малосульфидных руд Главной жилы подобен прожилковым рудам штокверка и отличается лишь незначительно повышенным содержанием Te, Bi, Ag, Pb (см. табл. 3, рис. 8/10-15, рис. 9). Среди рудных минералов - спутников золота в кварцевой жиле установлены галенит, халькопирит, гессит, реже встречаются теллурожозеит, теллуровисмутит Ві, Те, хедлейит Ві, Те, пильзенит Ві, Те, висмут, сульфоцумоит, Ag-Pb-Bi-S-сульфосоли, алтаит и акантит. Минералы золота представлены высокопробным золотом (с пробностью >850 - 73 %), петцитом AuAg₃Te₂, реже электрумом, калаверитом (Au,Ag)Te₂ и мутманнитом AuAgTe₂ [Кулешевич и др., 2013]. Количество наиболее низкотемпературных Au-Ag-Te фаз (с $T_{ofp} \sim 50$ °C) отчетливо увеличивается в Главной жиле меридиональной зоны. Пульсационный характер растворов и снижение температуры образования до 50 °C подтверждается данными изучения газово-жидких включений [Кулешевич, Васюкова, 2005].

Заключение

В Костомукшской структуре выделяются несколько типов гранитоидов - комплекс Таловейс, Ниемиярвинский, Восточный, Шурловаарский. Каждый тип гранитоидов имеет свою определенную геохимическую специализацию. Массивы диоритов и гранит-порфиров комплекса Таловейс, перспективные на золото, сформировались на постколлизионном этапе развития (см. рис. 5, г). Они обычно бывают приурочены к ССВ зонам и узлам ССВ-СЗ деформаций в пределах Костомукшской структуры. Изменения в их ореоле обычно зависят от состава вмещающих пород и по РТ-параметрам ниже метаморфизма вмещающих толщ, достигающего амфиболитовой фации. Массивы сопровождаются штокверками и секутся линейными ССВ кварцевыми жилами, выходящими иногда во вмещающие толщи. Околожильные изменения отвечают условиям пропилитов-березитов, оруденение формировалось в несколько стадий и связано с пульсационным поступлением растворов с температурой, меняющейся от 380-340 °C до 140-50 °C. Поздний кварц в зальбандах жил, ассоциирующий с золотом, насыщен многочисленными газово-жидкими включениями. Флюидный режим рудоотложения менялся от хлоридных, углекислотноводных растворов с примесью метана на начальном этапе до существенно водных в конце процесса [Кулешевич, Васюкова, 2005]. Эта смена режима условий рудообразования сопровождалась сменой ассоциаций золотосульфидных - золото-серебро-теллуровыми (золото-пиритовой рудной минерализации выделениями гессита, петцита, электрума). Увеличение количества таких рудогенных

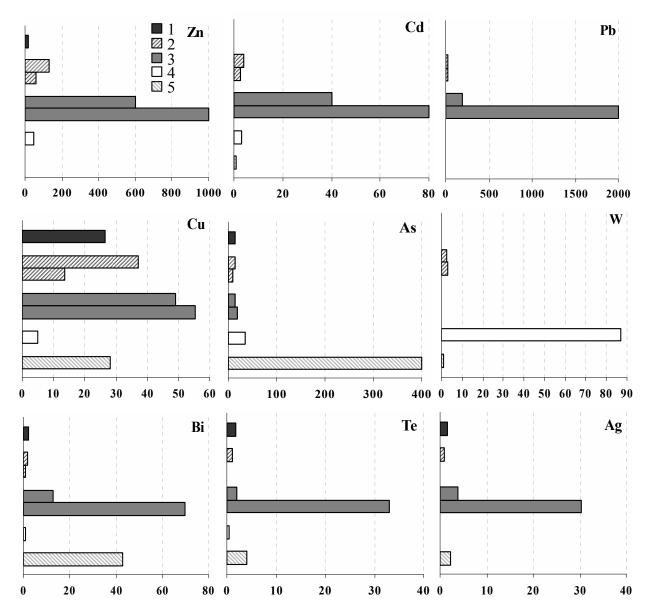


Рис. 9. Содержание некоторых элементов в рудах и зонах минерализации штока Центрального (в ppm):

1 – золото-сульфидно-кварцевые руды, Главная жила (5-й тип); 2 – вкрапленно-прожилковые руды штокверка (4-й тип); 3 – Аи-содержащая сфалерит-пирротин-пиритовая минерализация (3-й тип); 4 – шеелит-пиритовая минерализация (1-й тип); 5 – арсенопирит-кварцевые жилы (2-й тип)

элементов, как Те, Ві, Ад, Рb, и появление минералов – спутников золота в малосульфидно-кварцевых жильных и штокверковых рудных объектах порфирового типа может служить минералого-геохимическим индикатором при поисках золота в Карелии. При этом наблюдается смена более высокотемпературных рудных ассоциаций (с шеелитом, арсенопиритом), сульфидами полиметаллов, затем прожилковых типов, содержащих пирит с высокопробным золотом (проба >850) и более низкотемпературными Au-Ag-Te-ассоциациями, представленными петцитом AuAg₃Te₂, калаверитом (Au,Ag)Te₂, мутманни-

том $AuAgTe_2$, реже электрумом. Золотое оруденение относится к мезотермальному типу, с температурой образования 380-50 °C.

В связи с площадным развитием кварцевых жил и прожилков в апикальных частях массивов Центральный и Факторный, установленной зональностью оруденения, нахождением на верхних уровнях эрозионного среза более низкотемпературных минералов теллуридов золота и серебра, свидетельствующих о верхнерудном срезе, можно предполагать о возможно большем размахе штокверка и его перспективности, а также необходимости доразведки.

Литература

Володичев О. И., Кузенко Т. И., Козлов С. С. К структурно-метаморфическому изучению метавулканитов контокской серии Костомукшской структуры // Геология и полезные ископаемые Карелии. Петрозаводск, 2002. С. 15–26.

Горьковец В. Я., Раевская М. Б. и др. Геология и металлогения района Костомукшского железорудного месторождения. Петрозаводск: Карелия, 1981. 143 с.

Горьковец В. Я. и др. Геология и метаморфизм железисто-кремнистых формаций Карелии. Л.: Нау-ка. 1991. 176 с.

Кожевников В. Н. Условия формирования структурно-метаморфических парагенезисов в докембрийских комплексах. Л., 1982. 184 с.

Кожевников В. Н. Архейские зеленокаменные пояса Карельского кратона как аккреционные орогены. Петрозаводск, 2000. 222 с.

Кулешевич Л. В. Кислый магматизм и золотое оруденение Костомукшской структуры // Геология и полезные ископаемые Карелии. Петрозаводск, 2002. С. 59–72.

Кулешевич Л. В. Эволюция эндогенных режимов и стадийность золотого рудообразования в Костомукшской структуре // ДАН. 2004. Т. 396, № 6. С. 808–812.

Кулешевич Л. В., Васюкова О. В. Условия формирования золоторудного месторождения Таловейс в докембрии Карелии // ДАН. 2005. Т. 403, № 6. С. 848–851.

Кулешевич Л. В., Лавров О. Б., Дмитриева А. В. Типоморфные минеральные ассоциации руд докембрийского месторождения золота Таловейс (Карелия) / Руды и металлы. № 4. 2013. С. 9–15.

Кулешевич Л. В., Фурман В. Н. Золоторудное месторождение Таловейс в Костомукшской докембрийской зеленокаменной структуре (Карелия) // Геология рудных месторождений. 2009. № 1. С. 58–76.

Кулешевич Л. В., Фурман В. Н., Коротаева Н. Н. Золоторудное проявление Берендей (Южно-Костомукшское рудное поле) // Геология и полезные ископаемые Карелии. Петрозаводск, 2000. Вып. 2. С. 50–59.

СВЕДЕНИЯ ОБ АВТОРАХ:

Кулешевич Людмила Владимировна

ведущий научный сотрудник, к. г.-м. н. Институт геологии Карельского научного центра РАН, ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910

эл. почта: kuleshev@krc.karelia.ru

Дмитриева Антонина Васильевна

аспирант

Институт геологии Карельского научного центра РАН, ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910

эл. почта: dmitrievaa-v@yndex.ru

Лобач-Жученко С. Б., Арестова Н. А. и др. Стратиграфический разрез Костомукшской структуры Карелии (верхний архей), реконструированный на основе геохронологических, геохимических и изотопных данных // Стратиграфия. Геологическая корреляция. 2000. Т. 8, № 4. С. 3–10.

Минерально-сырьевая база Республики Карелия / В. П. Михайлов и др. Петрозаводск: Карелия, 2005. 278 с.

Скляров Е. В. и др. Интерпретация геохимических данных / Учебное пособие под ред. Е. В. Склярова. М.: Интермет Инжиниринг. 2001. 288 с.

Ушков В. В. Уточнение перспектив золотоносности Костомукшского рудного района // Отчет по теме «Типизация зеленокаменных поясов Карело-Кольского региона и оценка перспектив их рудоносности». Фонды КГЭ. Петрозаводск. 1984.

Ушков В. В., Кулешевич Л. В., Рыбаков С. И. Золотометалльное оруденение // Металлогения Карелии. 1999. С. 191–206.

Фурман В. Н. Отчет о результатах поисковых работ на золото, проведенных в южной части Костомукшской структуры в 1998–2001 гг. Фонды КГЭ. 2001.

Lobach-Zhuchenko S. B., Rollinson H. R., Chekulaev V. P. et al. The Archaean sanukitoid series of the Baltic Shiield: geological setting, geochemical characteristics and implications for their origin // Elsevier. 79. (2005). 107–128. http://www.elsevier.com/locate/lithos (дата обращения: 12.10.2013).

Samsonov A. V., Puchtel I. S., Bibicova E. V., Zhuravlev D. Z. Petrology and geochronology of felsic volcanic and plutonic rocks of the Kosomuksha greestone belt, W Karelia // Precambrian of Europe. Abstracts. MAEGS 9. St.-Petersburg: IPGG RAS. 1995. P. 95.

Sun S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc. Spec Publ. Magmatism in the ocean basins. Eds. A. D. Saunders, M. J. Norry. 1989. Vol. 42. P. 313–345.

Kuleshevich, Lyudmila

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St, 185910 Petrozavodsk, Karelia, Russia e-mail: kuleshev@krc.karelia.ru

Dmitrieva, Antonina

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St, 185910 Petrozavodsk, Karelia, Russia e-mail: dmitrievaa-v@yndex.ru