Отечественная геология

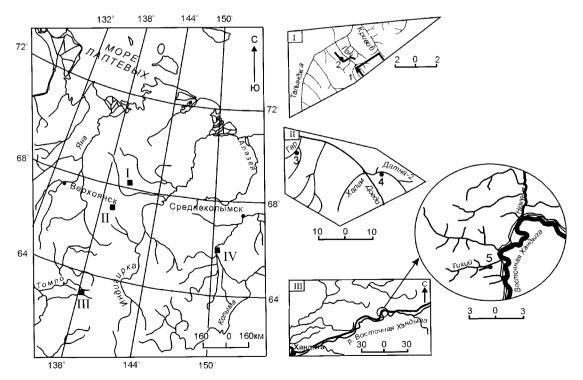
5/2005

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ГЕОЛОГИИ ЯКУТИИ

- 10. *Минюк П.С.* Палеомагнитные исследования верхней части разреза Мамонтова гора на р.Алдан // Геология кайнозоя Якутии. Якутск, 1982. С. 22—27.
- 11. *Милнок П.С.* Магнитостратиграфия кайнозоя Северо-Востока России. Магадан: СВКНИИ ДВО РАН, 2004.
- Миоцен Мамонтовой горы (стратиграфия и ископаемая флора). — М.: Наука, 1976.
- 13. Решения Межведомственного совещания по разработке унифицированных стратиграфических схем Якутской АССР. М.: Гостехиздат, 1963.
- Решения 2-го Межведомственного регионального стратиграфического совещания по докембрию и фанерозою Северо-Востока СССР. — Магадан: Изд-во СВТГУ, 1978.
- Решения 3-го Межведомственного регионального стратиграфического совещания по мезозою и кайнозою Средней Сибири. — Новосибирск, 1981.
- Фрадкина А.Ф. К стратиграфии палеогеновых и неогеновых отложений западной части Нижне-Алданской впадины (Якутия) // Палеопалинология Сибири. М.: Наука, 1980. С. 77—83.
- Фрадкина А.Ф. Палинофлоры неогена Северо-Востока Азии.
 — М., Наука, 1983.

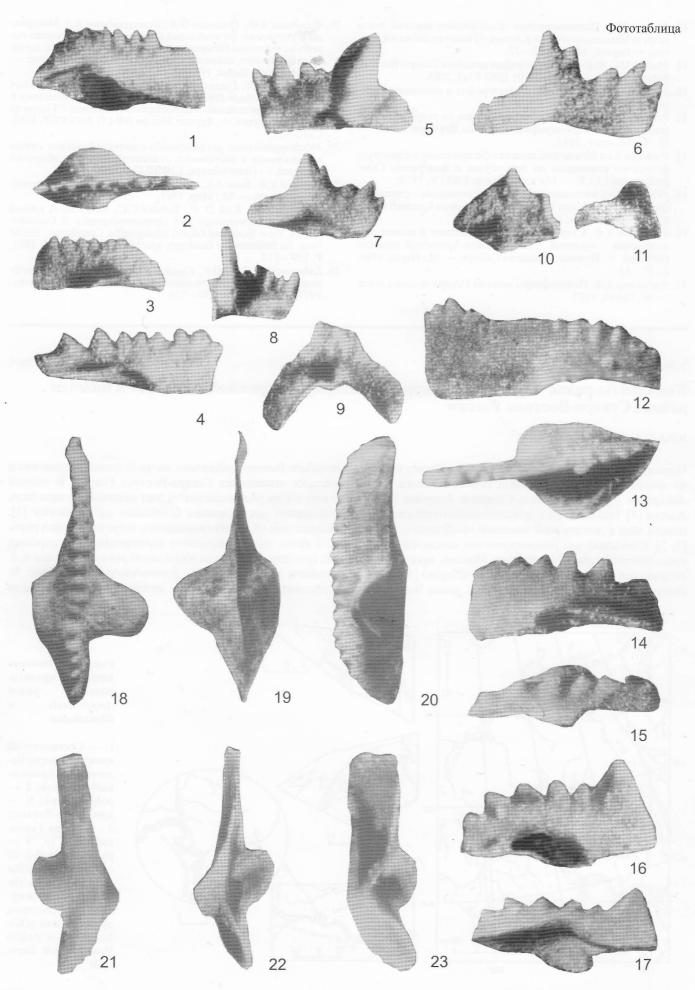
- 18. Фрадкина А.Ф., Гриненко О.В., Камалетдинов В.А. Материалы к уточнению региональной стратиграфической схемы палеогена и неогена Нижнеалданской впадины // Среда и жизны на рубежах эпох кайнозоя Сибири и на Дальнем Востоке. Новосибирск: Наука, 1984. С. 132—138.
- 19. Фрадкина А.Ф., Гриненко О.В, Камалетдинов В.А., Томская А.И. Региональная стратиграфическая схема палеогеновых и неогеновых отложений Нижнеалданской впадины // Геология кайнозоя Якутии. Якутск: Изд-во ЯФ СО АН СССР, 1982. С. 12—21.
- 20. Унифицированные региональные стратиграфические схемы палеогеновых и неогеновых отложений Западно-Сибирской равнины. Новосибирск: СНИИГГиМС, 2001.
- Харленд У.Б., Кокс А.В., Авеллин А.Г. и др. Шкала геологического времени. — М.: Мир, 1985.
- 22. Berggren W.A., Kent D.V., Swisher C.C., Aubry M. A revised cenozoic geochronology and chronostratigraphy // Geochronology Time Scale and Global Stratigraphic Correlation. SEBM (Soc. for Sedimentary Geology), special publication № 54. 1995. P. 129—212.
- 23. Labreque J.L., Kent D.V., Cande S.C. Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time // Geology. 1977. Vol. 5. № 6. P. 330—335.

УДК 564.8:551.734(571.56—11)


© В.В.Баранов, Т.С.Альховик, 2005

Конодонты родов Amydrotaxis Klapper et Murphy и Gigantholus Baranov в нижнем девоне Северо-Востока России

В.В.БАРАНОВ, Т.С.АЛЬХОВИК


Представители рода Amydrotaxis Klapper et Murphy описаны из лохковских отложений запада Нового Южного Уэльса Австралии [5], штата Невада Северной Америки [3, 6] и Аляски [4]. Описание рода и мультиэлементный состав типового вида с достаточной полнотой приведены в работах [3, 5]. Считается, что раннелохковские амидротаксисы — представители вида A. corniculans Mawson, произошли от вида-предка Ozarkodina remscheidensis (Ziegler) [5]. В.В.Баранов [1] к роду Amydrotaxis относит A. privus Baranov и A.

maxillaris Baranov, найденные, соответственно, в пражских и эмсских отложениях Северо-Востока России. В данной статье состав рода расширен за счет включения в него вида, описанного под названием Ozarkodina nativa Baranov [1]. Возраст этих видов обосновывается, встречающимися вместе с ними, видами-индексами стандартных конодонтовых зон (рисунки 1, 2). Виды Amydrotaxis privus, A. nativus и A. maxillaris образуют единую филетическую линию (рис. 3). Поскольку в нижнепражских отложениях представители

Pис. 1. Местонахождение представителей родов Amydrotaxis и Gigantholus:

I — Селенняхский кряж: 1 — разрез Неличен—Ледниковый-Кривой, 2 разрез Гон-1; II хребет Тас-Хаяхтах: 3 — разрез Геремганджа---Гер, 4 разрез Датна-II-2; III хребет Сетте-Дабан: 5 — разрез Тихий; IV — Юкагирское плоскогорье, правобережье р.Колыма: 6 — разрез Известковый Карьep-II

рода Amydrotaxis пока не обнаружены, предковым видом A. privus, по всей вероятности, следует считать вид Amydrotaxis johnsoni (Klapper) в morph, описанный из верхнего лохкова (зона pesavis) шт.Невада [3]. A. privus по строению базальной полости с асимметричными боковыми лопастями сближается с раннелохковским A. corniculans. От предкового вида он отличается широкими асимметричными боковыми лопастями и крупными зубцами на верхней поверхности листа. Во второй половине фазы inversus от него отделяется A. nativus. У данного вида сохраняются форма базальной полости и асимметрия боковых лопастей, значительно уменьшается высота зубцов и в передней части листа обособляются четыре зубца. Эти зубцы тесно сближены и значительно выше остальных зубцов. В конце раннего девона (фаза patulus) от A. nativus произошел A. maxillaris. По сравнению с предковым видом у него возникает инверсия базальной полости, уменьшаются размеры боковых лопастей, сокращается число зубцов и увеличивается их высота. Зубцы передней части листа сливаются, образуя один крупный зубец.

В.В.Баранов в 1995 г. [2] из эмсских отложений Северо-Востока России описал монотипический Gigantholus с типовым видом G. repostus Baranov. Мультиэлементный состав этого вида пока не установлен. Роды Amydrotaxis и Gigantholus образуют единую филогенетическую линию, развитие которой происходило в позднем прагии и эмсе (см. рис. 3). На рубеже пражского и эмсского веков A. privus дает начало первому представителю рода Gigantholus — виду G. repostus, от которого в раннем эмсе (фаза excavatus) произошел второй представитель этого рода — G. kolymaensis sp. nov. Ранее он был отнесен В.В.Барановым к виду Eognathodus sulcatus Philip [1]. G. repostus отличается от предкового вида: крупными размерами, базальной полостью, занимающей всю нижнюю часть листа и наибольшей ее глубиной, сдвинутой ближе к середине листа, крупными асимметричными лопастями, большим числом крупных бугров на верхней части листа. По сравнению с предковым видом у G. kolymaensis задняя часть листа изгибается вбок и вниз, инвертируется базальная полость, уменьшаются размеры боковых лопастей. Зубцы в задней части листа разделены мелкой продольной бороздкой.

Изученная коллекция конодонтов хранится в Геологическом музее Института геологии алмаза и благородных металлов (ГМ ИГАБМ) СО РАН (г.Якутск) под № 182 (см. фототаблицу).

Amydrotaxis Klapper et Murphy, 1980 Amydrotaxis privus Baranov, 1991

Фототаблица, фиг. 1—11

Amydrotaxis privus: Баранов, 1991, с. 27, табл. 1, фиг. 14—18; табл. 2, фиг. 1, 2.

Голотип — ИГАБМ СО РАН, 182/460, Ра элемент; Северо-Восток России, хр.Сетте-Дабан, правобережье р.Восточная Хандыга, разрез Тихий; нижний девон, пражский ярус, ледниковский горизонт, зона pireneae.

Описание. Раэлемент: крупный спатогнатиформный с прямым или слабозагнутым листом, с крупными зубцами, высота которых уменьшается к заднему краю. Всего насчитывается 8—10 зубцов. Базальная полость занимает всю нижнюю часть листа, в задней части она имеет наибольшую глубину и ширину. В направлении переднего края от нее отходит базальный желобок. Лопасти базальной полости крупные асимметричные.

Распространение. Нижний девон, пражский ярус, зона pireneae, ледниковский и галкинский горизонты Северо-Востока России, Селенняхский кряж и хр.Сетте-Дабан.

Материал. 29 Ра элементов различной сохранности найдены в пяти местонахождениях: хр.Сетте-Дабан, правобережье р.Восточной Хандыги, руч.Тихий, разрез Тихий, обр. S–15/14 — 22 экз., Селенняхский кряж, правобережье р.Талынджа, водораздел ручьев Неличен и Ледниковый, разрез Неличен—Ледниковый—Кривой, обр.СЛ–116 — 1 экз., обр. СЛ–121 — 1 экз., обр. СЛ–123 — 7 экз.

Amydrotaxis nativus Baranov, 1991

Фототаблица, фиг. 12, 13

Оzarkodina nativa: Баранов, 1991, с. 29, табл. 2, фиг. 5, 6. Голотип — ИГАБМ СО РАН, 182/420, Ра элемент; Северо-Восток России, хр.Тас-Хаяхтах, р.Датна-ІІ, разрез Датна-ІІ-2; нижний девон, эмсский ярус, геремганджинский горизонт, зона patulus.

Описание. Ра элемент: крупный, листовидный. В передней части листа возвышаются 4—5 зубчиков, из которых два средних крупные. В задней части расположено до 11 слившихся зубчиков, из них 4 последних крупные. Базальная полость занимает всю нижнюю часть листа. От нее в переднем направлении отходит базальный желобок. Боковые лопасти широкие, асимметричные.

Распространение. Нижний девон, эмс, зоны inversus—patulus, николаевский и геремганджинский горизонты Северо-Востока России, хр. Тас-Хаяхтах.

Материал. 17 Раэлементов найдены в двух местонахождениях: руч. Гер, левый приток р. Геремганджи, разрез Геремганджа—Гер, обр. Т—43/3—7 экз., р. Датна-II, разрез Датна-II-2, обр. Т—64/7—10 экз.

Amydrotaxis maxillaris Baranov, 1991

Фототаблица, фиг. 14—17

Amydrotaxis maxillaris: Баранов, 1991, с. 26, табл. 1, фиг. 1—4

Голотип — ИГАБМ СО РАН, 182/456, Ра элемент; Северо-Восток России, хр. Тас-Хаяхтах, р. Датна-II, разрез

Фиг. 1—11. Amydrotaxis privus Baranov. 1, 2 — голотип 182/460 (×48), 3 — экз. 182/461 (×48), Ра элемент, вид сбоку, 4 — экз. 182/465 (×48), Ра элемент, вид сбоку, 5—7 — Рь элементы: 5 — экз. 182/410 (×48), 6 — экз. 182/464 (×48), 7 — экз. 182/462 (×48), 8 — экз. 182/411 (×48), фрагмент элемента М, 9 — экз. 182/466 (×48), фрагмент элемента Sa, 10 — экз. 182/467 (×48), фрагмент элемента М, 11 — экз. 182/468 (×48), фрагмент элемента Sc; хр.Сетте-Дабан, руч.Тихий; ледниковский горизонт, зона pireneae. Фиг. 12, 13. Amydrotaxis nativus (Вагапоv). 12 — голотип 182/420 (×60), Ра элемент, 12 — вид сбоку, 13 — вид сверху; хр.Тас-Хаяхтах, р.Датна-II; геремганджинский горизонт, зона patulus. Фиг. 14—17. Amydrotaxis maxillaris Baranov. 14, 15 — экз. 182/455 (×48), 14 — вид сбоку, 15 — вид сверху, 16, 17 — голотип 182/456 (×48), 16 — вид сбоку, 17 — вид снизу; хр.Тас-Хаяхтах, р.Датна-II; геремганджинский горизонт, зона patulus. Фиг. 18—20. Gigantholus repostus Baranov. 18—20 — голотип 182/298 (×28): 18 — вид сверху, 19 — вид снизу, 20 — вид сбоку; Селенняхский кряж, руч.Гон; николаевский горизонт, зона kitabicus. Фиг. 21—23. Gigantholus kolymaensis Baranov et Alkhovik. 21—23 — голотип 182/500 (×35): 21 — вид сверху, 22 — вид снизу, 23 — вид сбоку; Юкагирское плоскогорье, правый борт р.Колыма, разрез Известковый Карьер-II, николаевский горизонт, зона excavatus

— глинистые, 4 — углеродисто-глинистые, 5 — алевритистые; 6 — доломиты; 7 — мергели; 8 — мергели углеродистые; 9 — - аргиллиты; *10* — сланцы

Apyc	Стандартная кодонтовая шкала	Филозона	Филогенетическая линия
Эмсский	patulus	maxillaris	s ivus Iaris
	serotinus	nativus	olus wnaensis A. nativus A. maxillaris
	inversus	kolymaensis	Gigantholus G. repostus G. kolymaensis A. privus A. nativ
	nothoperbonus		
	excavatus	repostus	
	kitabicus		
Пражский	pireneae	privus	
	kindlei	johnsoni	
	sulcatus		
Лохковский	pesavis		

Puc. 3. Схема филогенетического развития родов Amydrotaxis и Gigantholus

Датна-II-2; нижний девон, эмсский ярус, геремганджинский горизонт, зона patulus.

О п и с а н и е. Ра элемент: крупный спатогнатиформный с очень крупными редкими зубцами, из которых передний зубец крупнее остальных. Зубцы разделены глубокими промежутками. Всего насчитывается 6 зубцов. Базальная полость занимает всю нижнюю часть листа. От нее в направлении переднего края отходит продольный желобок. Боковые лопасти узкие, асимметричные.

Материал. 10 Ра элементов найдены в типовом местонахождении, обр. T-64/11.

Распространение. Нижний девон, верхний эмс, зона patulus, геремганджинский горизонт Северо-Востока России, хр.Тас-Хаяхтах.

Род Gigantholus Baranov, 1995 Gigantholus repostus Baranov, 1995

Фототаблица, фиг. 18—20

Gigantholus repostus: Баранов, 1995, с. 28, табл. 2, фиг. 1—3

Голотип — ИГАБМ СО РАН, 182/298, Ра элемент; Северо-Восток России, Селенняхский кряж, правобережье р.Талынджи, руч.Гон, разрез Гон-1; нижний девон, эмский ярус, николаевский горизонт, зона kitabicus.

Описание. Ра элемент: гигантский до 2,5 мм длиной, слабо изогнутый листовидный конодонт с куполовидной поверхностью, на которой расположен один ряд поперечно вытянутых бугров примерно одинакового размера. Всего насчитывается около 20 бугров. Промежутки между ними узкие и мелкие. Нижний край прямой. Базальная полость занимает всю нижнюю поверхность листа. Она резко расширяется в задней половине, где имеет наибольшую глубину и ширину, затем плавно сужается к заднему концу. До переднего конца

листа прослеживается базальный желобок. Боковые лопасти округлые, крупные и асимметричные.

Распространение. Нижний девон, эмсский ярус, зона kitabicus, николаевский горизонт; Северо-Восток России, Селенняхский кряж.

Материал. 3 Ра элемента найдены в двух местонахождениях на правобережье р.Талынджа: руч.Гон, разрез Гон-1, обр. СЛ–97 — 2 экз., обр. СЛ–99 — 1 экз.

Gigantholus kolymaensis Baranov et Alkhovik, sp. nov. Фототаблица, фиг. 21—23

Eognathodus sulcatus: Баранов, 1995, с. 27, табл. 3, фиг. 1. Название вида — от р.Колыма.

Г о л о т и п — ИГАБМ СО РАН, 182/500, Ра элемент; Северо-Восток России, Юкагирское плоскогорье, р.Колыма, разрез Известковый Карьер-II; нижний девон, эмсский ярус, николаевский горизонт, зона nothoperbonus.

О п и с а н и е. Листовидный конодонт с инвертированной базальной полостью на заднем конце. Задняя часть листа изогнута вбок и вниз. Наибольшая глубина базальной полости расположена в задней трети. К переднему и заднему краям отходят бороздки. В задней части расположены два ряда низких бугорков, разделенных слабо выраженной продольной бороздкой.

С равнение. Отличается от типового вида, описанного выше, изогнутой вбок и вниз задней частью листа, инвертированной базальной полостью и, соответственно, меньшими размерами боковых лопастей, низкими ребрами на поверхности листа, разделенными в задней его части мелкой продольной бороздкой.

Распространение. Нижний девон, эмсский ярус, зоны excavatus — (?) serotinus, николаевский и (?) геремганджинский горизонты; Северо-Восток России, Селенняхский кряж и Юкагирское плоскогорье.

Материал. 12 элементов найдены в трех местонахождениях: Юкагирское плоскогорье, правобережье р.Колыма, разрез Известковый Карьер-ІІ, обр. К—8 — 6 экз, Селенняхский кряж, правобережье р.Талынджа, руч.Кривой, разрез Неличен—Ледниковый—Кривой, обр. СЛ—156 — 5 экз., обр. С—173 — cf. 1 экз.

Работа выполнена в рамках международного проекта IGCP 499.

СПИСОК ЛИТЕРАТУРЫ

- 1. Баранов В.В. Конодонты и зональная стратиграфия нижнего девона Восточной Якутии // Региональная геология и полезные ископаемые Якутии. Якутск: изд-во Якутск. гос. ун-та, 1991. С. 24—36.
- Баранов В.В. Девонские конодонты Северо-Востока Азии // Региональная геология Якутии. — Якутск, 1995. С. 26—43.
- Klapper G., Murphy M.A. Conodont zonal species from the delta and pesavis Zones (Lower Devonian) in central Nevada // N. Jb. Geol. Paleontol. 1980. Vol. 8. P. 490—504.
- Lane H.R., Ormiston A.R. Siluro devonian biostratigraphy of the Salmontrout River area, east-central Alaska // Geologica et Palaeontologica. 1979. Vol. 13. P. 39—96.
- Mawson R. Early Devonian (Lochkovian) conodont faunas from Windellasma, New South Wales // Geologica et Palacontologica. 1986. Vol. 20. P. 39—71.
- Murphy M.A., Matti J.C. Lower Devonian conodonts (hesperius-kindlei Zones), central Nevada // Univ. Calif. Publ. Geol. Sci. 1982. Vol. 123. P. 1—82.