УДК 552.3:550.42

ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОРОД АКАТУЕВСКГО МАССИВА ВОСТОЧНОГО ЗАБАЙКАЛЬЯ И СВЯЗАННЫХ С НИМИ ПОЛИМЕТАЛЛИЧЕСКИХ РУД

С.А. Сасим¹, С.И. Дриль²

Институт геохимии СО РАН, 664033, г. Иркутск, ул. Фаворского, 1а.

Акатуевский массив является эталонным интрузивным объектом шошонит-латитовой серии Восточного Забайкалья, с которым генетически связаны полиметаллические месторождения одноименной группы. Монцонитоиды массива обогащены LILE, LREE, U, Th при дефиците Nb, Ti, P. Породы массива слабо контаминированы коровым веществом, на что указывают величины ⁸⁷Sr/⁸⁶Sr₍₀₎= 0,70644-0,70677 и Nd_(t)=(-2,1)–(-0,2). Изотопные составы рудных свинцов месторождений Акатуевской группы свидетельствуют о смешении в рудах свинца пород самого массива и вмещающих карбонатных отложений.

Библиогр. 11 назв. Ил. 5. Табл. 2.

Ключевые слова: Акатуевский массив; шошонит-латитовая серия; геохимические характеристики; изотопный состав.

ISOTOPE-GEOCHEMICAL CHARACTERISTICS OF ROCKS OF AKATUY MAS-SIF IN EAST TRANS-BAIKAL AREA AND RELATED POLYMETALLIC ORES

S.A. Sasim, S.I. Dril

Institute of Geochemistry SB RAS, 1a Favorsky Str., Irkutsk, 664033.

The Akatuy massif is a reference intrusive occurrence of shoshonite-latite series of the Eastern Trans-Baikal area, genetically associated with polymetallic deposits of the similar group. The monzonitoids of the massif are rich in LILE, LREE, U and Th but scarce in Nb, Ti and P. The rocks of the massif are slightly contaminated with crustal substance, that is indicated by values ${}^{87}\text{Sr}/{}^{86}\text{Sr}_{(0)}=0,70644-0,70677$ and $\text{Nd}\epsilon_{(t)}=(-2,1)-(-0,2)$. The isotope compositions of ore leads of the Akatuy group deposits point to the mixing of rocks of the massif itself and host carbonate rocks in the lead ores.

11 sources. 5 figures. 2 tables.

Key words: Akatuy massif; shoshonite-latite series; geochemical parameters; isotope compositions.

Классическим примером магматических образований шошонит-латитовой серии в Восточном Забайкалье считается интрузивный акатуевский монцонитовый комплекс, проявленный в пределах северного борта Александрово-Заводской впадины. С породами этого комплекса связана полиметаллическая и золоторудная минерализация [4, 7]. Одним из наиболее известных участков проявления полиметаллических руд на территории Восточного Забайкалья являются свинцово-цинковые месторождения Акатуевской группы, которые генетически связаны с монцонитами одноименного массива и локализованы к северу от интрузии в карбонатных отложениях быстринской свиты.

Александрово-Заводская впадина расположена в пределах Аргунской структурно-формационной зоны Восточного Забайкалья или Аргунского террейна [5] и представляет собой рифтогенную депрессионную структуру, образовавшуюся в период перехода Монголо-Охотского пояса к внутриконтинентальному этапу развития в мезозойское время [1].

Акатуевский комплекс представлен многочисленными трещинными интрузивными телами размером от 0,1 до 45 км², наиболее крупным из которых

¹Сасим Сергей Александрович, инженер, тел.: (3952) 42-60-34, e-mail: <u>sasim@igc.irk.ru</u> Sasim Sergei, Engineer, tel.: (3952) 42-60-34, e-mail: <u>sasim@igc.irk.ru</u>

²Дриль Сергей Игоревич, зав. аналитическим отделом, тел.: (3952) 42-60-34, e-mail: <u>sdril@igc.irk.ru</u> Dril Sergei, Head of the Analytical Department, tel.: (3952) 42-60-34, e-mail: sdril@igc.irk.ru

является Акатуевский массив, залегающий в виде лакколитообразного тела (рис. 1). По разнообразию типов пород, образующих три фазы внедрения [4, 7], Акатуевский массив может рассматриваться как эталонный объект, отражающий важнейшие геохимические черты шошонит-латитовой серии Восточного Забайкалья. Образования первой фазы распространены в северной краевой части массива и представлены оливиновыми и пироксен-амфиболовыми монцонитами. Это массивные мелко-, среднезернистые породы, имеющие гипидиоморфнозернистую структуру. Породы первой фазы испытали сильное контактовое воздействие при формировании пород второй (главной) фазы Акатуевского массива, которая слагает основную его часть. Она представлена массивными среднезернистыми биотитамфиболовыми монцонитами и реже кварцевыми монцонитами с гипидиоморфнозернистой монцонитовой И структурами. Большое своеобразие породам первой и второй фаз придают крупные (1-5 см²) листочки биотита, ориентирующиеся по плоскостям различного направления, вдоль которых развита тонкая трещиноватость. Благо-

Рис. 1. Схема геологического строения северного борта Александрово-Заводской впадины [2, 3]:

1 — четвертичные образования; 2-4 — Акатуевский массив: 2 — третья (заключительная) фаза, 3 — вторая (главная) фаза, 4 — первая (ранняя) фаза); 5 — средневерхнеюрские вулканогенные образования кайласской свиты; 6 — нижне-среднеюрские терригенные образования; 7 — карбонатные породы нижнекембрийской быстринской свиты; 8 — верхнепалеозойские гранитоиды ундинского комплекса; 9 — разломы даря этому порода легко раскалывается на сложные многогранники. Образования третьей (заключительной) фазы внедрения представлены дайками и дайкообразными телами сиенитов с полнокристаллически-порфировой структурой. Большинство даек и дайкообразных тел третьей фазы сконцентрированы вокруг массива.

Изотопный K-Ar возраст пород Акатуевского массива [7] составляет 166 млн лет для пород первой фазы, 157-147 млн лет для пород главной фазы и 147-118 млн лет для пород заключительной фазы. Таким образом, возрастной интервал формирования всей интрузивной серии составляет около 40 млн. лет, что необычно много для процесса становления трещинной интрузии. Нельзя исключить, что предыдущими исследователями [7] в состав пород третьей фазы Акатуевского массива были включены дайковые и субвулканические образования трахибазальт-риолитовой рифтогенной серии раннемелового возраста, широко развитой в пределах Александрово-Заводской впадины. Это могло привести к неоправданному расширению возрастного интервала формирования массива.

Судя по химическому составу (табл. 1, 2), породы Акатуевского массива образуют непрерывный сериальный тренд по кремнекислотности в пределах 52,03-62,68 вес. % SiO₂ от оливиновых монцонитов через кварцевые монцониты к сиенитам. По соотношению кремнекислотности и суммарной щелочности они могут быть отнесены к умеренно-щелочному ряду [6], при этом содержания К₂О возрастают от 3,12 до 4,89 вес. % с ростом кременесодержания пород (см. табл. 1). Отношение K₂O/Na₂O в исследуемых породах изменяется в широких пределах – от 0,49 до 1,78, что вместе с высокой калиевостью и относительно низкими содержаниями TiO₂ (<1,2 вес %) позволяет отнести их к шошонит-латитовой серии (рис. 2). Для пород массива характерна отрицательная корреляция FeO, TiO₂, MgO, CaO с кремнесодержанием, выраженная достаточно плавными сериальными трендами, характерными для серии последовательных дифференциатов.

Повышенная щелочность пород Акатуевского массива определяет и высокие содержания в них таких крупноионных литофильных элементов, как Rb, Ba и Sr (см. табл. 2). Содержания Rb Таблица 1

Фаза массива	первая		вторая			третья	
Проба	Ак-6-4	Ак-6-3	Ак-6-1	Ак-12-2	Ак-4	Ак-1	Ак-13
SiO ₂	52,96	52,03	58,23	60,85	61,73	62,33	61,49
TiO ₂	1,09	1,20	0,84	0,70	0,72	0,75	0,33
Al ₂ O ₃	16,71	17,19	17,59	17,19	16,02	16,00	16,67
Fe ₂ O ₃ *	7,78	8,07	5,56	4,64	4,80	5,70	3,04
MnO	0,11	0,12	0,09	0,07	0,07	0,09	0,18
MgO	5,32	4,63	2,36	2,14	2,78	2,10	0,94
CaO	6,05	7,08	3,28	3,38	3,70	4,66	5,84
Na ₂ O	4,83	4,38	6,20	5,54	4,53	3,59	5,96
K ₂ O	3,83	3,71	4,48	4,25	4,37	3,27	4,15
P_2O_5	0,75	0,80	0,66	0,48	0,31	0,18	0,15
ΠΠΠ	0,41	0,55	0,49	0,46	0,77	1,12	0,73
Сумма	99,84	99,75	99,77	99,68	99,80	99,78	99,48
Na ₂ O+K ₂ O	8,66	8,09	10,68	9,79	8,90	6,86	10,11
K ₂ O/Na ₂ O	0,79	0,85	0,72	0,77	0,97	0,91	0,70

Содержание петрогенных окислов (вес. %) в породах Акатуевского массива

Примечание. Анализы проб выполнены в Институте геохимии СО РАН г. Иркутска в 2006-2007 гг. методом рентгенофлуоресцентного анализа. Пробы Ак-6-4 и Ак-6-3 взяты из пироксенамфиболовых монцонитов; пробы Ак-6-1, Ак-12-2 и Ак-4 – из биотит-амфиболовых монцонитов; проба Ак-1 – из амфиболового сиенита; проба Ак-13 – из сиенита.

Рис. 2. Шошонит-латитовая специфика пород Акатуевского массива на диаграмме K₂O-Na₂O [10, 11]: 1-3 – породы ранней (1), главной (2) и заключительной (3) фаз массива

в оливиновых монцонитах и амфиболпироксеновых монцонитах ранней фазы лежат в пределах 101,8-119,7 г/т, возрастая в целом в биотит-амфиболовых монцонитах главной фазы до 89,5-180,8 г/т и несколько понижаясь в сиенитах заключительной фазы (60,7-141,4 г/т). Для пород всех фаз Акатуевского массива характерны высокие содержания бария (735-2358 г/т) и стронция (471-2486 г/т), которые положительно коррелируются между собой.

Все типы пород Акатуевского массива характеризуются высокими суммарными содержаниями редкоземель-

Таблица 2

Содержание рассеянных элементов	(вес. %) в пор	одах Акатуевского массива
---------------------------------	----------------	---------------------------

Фаза массива	первая		вторая			третья	
Проба	Ак-6-4	Ак-6-3	Ак-6-1	Ак-12-2	Ак-4	Ак-1	Ак-13
U (г/т)	9	4	12	5	8	6	6
Th	37	17	70	24	48	22	25
Zr	510	291	725	332	378	274	318
Hf	8	6	13	8	8	6	7
Ba	1265	2658	1051	1600	916	735	1855
Sr	1736	2486	1175	1877	904	471	1712
Cs	-	8	8	7	11	7	5
Rb	120	101	120	102	181	115	106
Ni	89	38	35	31	108	5	21
Nb	H.o.	6	15	7	16	4	13
Y	20	23	18	13	24	24	14
Pb	37	28	36	33	30	16	48
La (г/т)	104,38	93,83	96,31	105,99	93,32	31,76	56,48
Ce	212,02	191,23	209,46	209,16	156,46	63,17	112,50
Pr	22,73	22,81	21,16	22,01	18,75	7,21	11,98
Nd	79,65	81,55	70,55	71,66	65,50	25,69	42,00
Sm	11,77	15,75	10,85	10,77	9,69	5,04	5,91
Eu	2,73	3,17	2,12	1,99	1,72	1,40	1,65
Gd	9,15	9,94	7,03	6,95	7,45	5,24	4,36
Tb	0,89	1,08	0,71	0,68	0,80	0,75	0,61
Dy	4,86	5,02	3,94	3,91	4,65	5,47	3,19
Но	0,79	0,87	0,72	0,86	0,93	0,90	0,63
Er	2,15	2,71	1,73	2,15	2,64	2,62	1,73
Tm	0,30	0,35	0,30	0,32	0,33	0,45	0,33
Yb	1,81	1,86	1,90	2,00	2,20	2,52	2,19
Lu	0,23	0,30	0,23	0,32	0,33	0,42	0,33
$\Sigma_{\rm REE}$	453,45	430,48	427,02	438,78	364,77	152,65	243,88
La/Yb(N)	41,38	36,27	36,36	38,00	30,40	9,04	18,52
Eu*	60,71	75,68	52,57	52,10	49,80	29,21	29,93
Eu/Eu*	0,78	0,72	0,70	0,66	0,59	0,83	0,95

Примечание. Анализы выполнены методом ICP MC в Институте геохимии CO PAH, г. Иркутск. Н.о. – элемент не определялся. Сокращения: см. табл.1

ных элементов (см. табл. 2) и обогащенными нормированными спектрами распределения REE (рис. 3). Породы первой фазы массива имеют наибольшие значения Σ_{REE} (373-453 г/т) и высокую степень преобладания легких редких земель над тяжелыми (La/Yb_(N) = 31,06при отчетливо проявленной 41,38) отрицательной европиевой аномалии (Eu/Eu* = 0,72-0,78). Последнее служит указанием на то, что расплавы, формировавшие оливиновые монцониты и амфибол-пироксеновые монцониты первой фазы, были фракционированными относительно полевого шпата, концентрировавшего в своей структуре Еи.

Для пород второй (главной) фазы массива величина $\Sigma_{\rm RFE}$ несколько уменьшается и лежит в пределах 300-427 г/т. Нормированный спектр лантаноидов становится менее дифференцированным (La/Yb_(N) = 19,50-41,42), а отрицательная европиевая аномалия углубляется (Еи/Еи* = 0,59-0,86). Уменьшение величин Σ_{REE} и La/Yb(N) в породах главной фазы внедрения массива по сравнению с породами первой фазы авторы склонны связывать с процессом кристаллизационной дифференциации расплава, в котором кроме силикатных фаз, представленных оливином, клинопироксеном, амфиболом, плагиоклазом и, возможно, K-Na полевым шпатом, значимое участие принимал апатит. Этот акцессорный минерал резко обогащен легкими лантаноидами и присутствует в виде многочисленных включений в железо-магнезиальных минералах монцонитоидов.

Породы третьей (заключительной) фазы имеют самые низкие суммарные содержания REE (Σ_{REE} =152-268 г/т) и наименее дифференцированные нормированные спектры редких земель – La/Yb_(N) = 8,69-32,62. Величина отрицательной европиевой аномалии в большинстве пород этой фазы незначительна (Eu/Eu* = 0,82-0,94).

Сравнение составов пород первой и второй фаз Акатуевского массива со средними составами базальта океанических островов (OIB) и внутриплитного континентального базальта Азии (КБА) на мультикомпонентной диаграмме (рис. 4) показывает следующее. Монцонитоиды массива существенно обогащены по сравнению с OIB и КБА такими группами элементов, как LILE (K, Rb, Ba, Sr), легкие REE, Th и U при существенном дефиците в области HFSE (Nb, Ti) и P.

гис. 4. мультикомпонентная ойаграмма состава пород Акатуевского массива относительно примитивной мантии: 1 – континентальный базальт

Северной Азии по [9];

2 – базальты океанических островов

Дефицит Nb и Ti в составах монцонитоидов Акатуевского массива на мультикомпонентной диаграмме свидетельствует о том, что мантийный источник расплавов шошонит-латитовой серии был метасоматически изменен предшествующим процессом субдукции. Воздействие на мантийный субстрат существенно водного флюидного потока, генерирующегося в результате дегидратации погружающейся океанической коры, способствует образованию акцессорных фаз, способных концентрировать HFSE. При последующем плавлении такого мантийного источника формирующиеся расплавы оказываются существенно обеднены элементами высокозарядной группы.

Палеогеодинамические реконструкции для Монголо-Охотского складчатого пояса, например, [5], указывают на существование в позднем палеозое зон субдукции по периферии одноименного палеоокеана. Эти субдукционные процессы должны были оказать метасоматизирущее воздействие на значительные объемы мантии, сопряженной с зонами субдукции. Постороген-(внутриплитные) магматические ные образования, проявленные в мезозойское время в пределах Монголо-Охотского складчатого пояса, могли в той или иной степени унаследовать черты мантийного источника, претерпевшего в прошлом субдукционный метасоматоз. Характерным примером магматических пород такого генезиса могут служить породы шошонит-латитовой серии Забайкалья. Ярко проявленный дефицит HFSE указывает на связь этих магматических пород с субдукционной геодинамической обстановкой, а высокие содержания LILE и легких REE указывают на внутриплитный характер магматических расплавов.

Монцонитоиды первой и главной фаз массива имеют изотопный состав стронция (87 Sr/ 86 Sr₍₀₎= 0,70644-0,70677), относительно более радиогенный по сравнению с таковым в других мезозойских внутриплитных базитах региона (87 Sr/ 86 Sr₍₀₎=0,7045-0,7055). Этот факт может служить указанием на то, что в генезисе расплавов шошонит-латитовой серии кроме мантийного источника может принимать участие и некоторое ко-

личество корового вещества. Слабоотрицательные значения величин єNd₍₀₎= (-2,1)-(-0,2) также могут быть связаны с процессом контаминации первичного мантийного расплава веществом континентальной коры. Состав этого корового компонента должен характеризоваться величинами εNd ≥ (-10), что отличает его от общепринятых средних составов верхней ($\epsilon Nd = -25$) или нижней континентальной коры ($\epsilon Nd = -30$). Предположительно таким изотопным составом может обладать фанерозойская континентальная кора региона, в составе которой значительное место занимают отложения аккреционных клиньев и островных дуг. Особенности изотопного состава свинца в монцонитоидах массива (рис. 5) подтверждают вывод о смешении в составе пород мантийной и коровой компонент, т.к. точки

1 – точки изотопных составов рудных свинцов; 2 – область изотопных составов свинцов монцонитоидов массива. Показаны области эволюции изотопного состава Pb в породах пассивных континентальных окраин (ПО) и островных дуг (ОД), а также линии эволюции изотопного состава Pb для верхней континентальной коры (BK) и истощенной мантии типа N-MORB (M); СК – линия изотопной эволюции свинца по модели Стейси-Крамерса составов породных свинцов на диаграмме ²⁰⁷Pb/²⁰⁴Pb – ²⁰⁶ Pb/²⁰⁴Pb лежат между кривыми изотопной эволюции свинца мантии и верхней коры.

С проявлениями шошонит-латитового магматизма в Восточном Забайкалье связаны многочисленные полиметаллические Pb-Zn месторождения. Для выяснения источников рудного вещества был исследован изотопный состав Pb галенитов Акатуевского полиметаллического месторождения, рудные тела которого локализованы в кембрийских карбонатных толщах быстринской свиты.

Все изотопные составы рудного Рь месторождения являются аномальными и могут быть интерпретированы как линия смешения свинца двух различных геохимических источников (см. рис. 5). Источником корового свинца могли служить вмещающие карбонатные породы. Эндогенный источник свинца может быть уверенно связан с породами самого Акатуевского массива, т.к. тренд изотопной эволюции рудных свинцов в своей менее радиогенной части примыкает к полю составов монцонитоидов.

Исследования поддерживаются грантами РФФИ 08-05-00660, 09-05-00772, НШ-3047.2008.5.

Библиографический список

1. Булнаев К.Б. Формирование впадин «Забайкальского» типа // Тихоокеанская геология. – 2006. – Т.25. – №11. – С.18-30.

2. Горлов Н.В. Геологическое строение Базаново-Акатуевского рудного района // Вопросы геологии и генезиса

некоторых свинцово-цинковых месторождений Восточного Забайкалья. – М.: АН СССР, 1963. – С. 39-47.

3. Захаров М.Н. Петрохимия и геохимические особенности Акатуевского массива и связанных с ним малых интрузий (Восточное Забайкалье) // Геохимия редких элементов в магматических комплексах Восточной Сибири. – М.: Наука, 1972. – С. 97-131.

4. Объяснительная записка к геологической карте РФ масштаба 1:200 000. Лист М-50-Х. – М., 2000. – 132 с.

5. Парфенов Л.М. и др. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. – 2003. – Т. 22, № 6. – С 7-41.

6. Петрографический кодекс. Магматические и метаморфические образования. – СПб.: Изд-во ВСЕГЕИ, 1995. – 128 с.

7. Таусон Л.В. и др. Геохимия мезозойских латитов Забайкалья. – Новосибирск: Наука, 1984. – 205 с.

9. Ярмолюк В.В. Геохимические параметры аномальной мантии Северной Азии в позднем палеозое – раннем мезозое (данные изучения внутриплитного магматизма) // Докл. РАН. – 2000. – Т. 375, №4. – С. 525-530.

10. Turner S. et al. Post-collision shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts // Journal of petrology. – 1996. – Vol. 37. – P. 45-71.

11. Wilson, M. Igneous petrogenesis /
M. Wilson. – London: Unwin Hyman,
1989. – 446 p.

Рецензент кандидат геолого-минералогических наук, ведущий научный сотрудник Института геохимии СО РАН А.С. Мехоношин