УДК 552.48; 552.321.6

Процессы метасоматоза и частичного плавления в ксенолитах из кимберлитовых трубок Якутии: приложение к генезису алмазов

Специус З.В.

Институт Якутнипроалмаз, АК «АЛРОСА», Мирный, Якутия, Россия

Основанием для этой работы явилось детальное петрографическое изучение более 1000 образцов ксенолитов из кимберлитовых трубок Мир, Удачная и других Якутской провинции, которые были исследованы с использованием современных петрохимическихих и изотопных методов на предмет наличия признаков метасоматоза. Изученные образцы включали различные типы эклогитов, пироксениты и перидотиты. Были определены также относительное распространение метасоматизированных пород в различных участках Сибирского кратона и интенсивность проявления в них метасоматических процессов.

Петрографические особенности, петрохимия пород и распределение примесных элементов в минералах ксенолитов свидетельствуют о том, что ксенолиты основного и ультраосновного состава из кимберлитов Якутии в той или иной степени подверглись метасоматическим преобразованиям и частичному плавлению. Это наиболее ярко проявлено во флогопитизации мантийных ксенолитов и келефитизации граната. Процессы частичного плавления наблюдаются в ксенолитах эклогитов, алькремитов и гранатовых вебстеритов.

Скрытый метасоматоз в мантийных породах фиксируется характером распределения элементов-примесей в перидотитах и пироксенитах. Некоторые перидотиты имеют необычно экстремальные изотопные характеристики Nd и Os, фиксирующие древнее обогащение несовместимыми элементами. Преобладающий Архейский возраст мантийных ксенолитов из кимберлитов свидетельствует о сложной истории формирования литосферной мантии под Сибирским кратоном и продолжительном взаимодействии между корой и мантией.

На основании Re-Os определений изотопии сульфидных включений в оливинах из трубки Удачная установлено, что нарушение Os системы матасоматическими процессами имело место после формирования литосферной мантии Сибирского кратона (3.5-2.9 Ga) в период от 2.8 до 2.0 Ga. Эти процессы были неоднократны в литосферной мантии и более интенсивно были проявлены в центральной части кимберлитовой провинции.

Предполагается многостадийный рост алмазов в ксенолитах эклогитов, который связан и инициировался процессами частичного плавления и метасоматоза. Эти процессы, как и образование алмазов, были неоднократно проявлены во время эволюции литосферной мантии под Сибирским кратоном и в некоторых случаях, вероятно, были связаны с воздействием флюидов, предваряющих кимберлитовый магматизм.

Введение

Кимберлитовые трубки, В TOM числе промышленные алмазные месторождения, на Сибирской платформе были открыты благодаря проведению интенсивных полевых работ и самоотверженности геологов. С кимберлитов в 1955 году [1], мантийные момента первых открытий ксенолиты в них были предметом пристального внимания и детальных исследований, результаты которых внесли неоценимый вклад в понимание состава и петрологии субконтинентальной литосферной мантии (СКЛМ) под Сибирской платформой. Многие ксенолиты из различных, в первую очередь эксплуатируемых трубок, были исследованы и продолжают интенсивно изучаться. Результатами этих исследований стали находки и петрологическая характеристика многочисленных образцов алмазоносных эклогитов И перидотитов, обнаружение эклогитов с коэситом, открытие и первое описание таких уникальных пород как алькремиты [1, 4-7, 9, 12 и ссылки в изучению ксенолитов них]. Благодаря получены неоценимые петрологические сведения по составу, вертикальной и горизонтальной неоднородности верхней мантии и условиям образования алмазов.

Основной целью этой работы является описание процессов метасоматоза и частичного плавления, которые фиксируются в ксенолитах из кимберлитовых трубок. Многие мантийные перидотиты в кимберлитах якутских трубок подвержены метасоматозу различной интенсивности, в результате которого образуются новые минеральные фазы. Этот тип метасоматоза характеризуется как "явный" или "модальный" и детально охарактеризован в ксенолитах из кимберлитов Южной Африки [9, 16 и ссылки внутри]. Отдельные ксенолиты ультрамафитов, где отчетливо фиксируется присутствие флогопита и других метасоматических минералов найдены и описаны во многих трубках Якутии [например, 10, 12, 49], но в с данными для кимберлитов Южной Африки [23, сравнении 27] систематические данные по их распределению в различных типах пород отсутствуют.

"Скрытый" метасоматоз менее исследован среди ксенолитов кимберлитов Якутии. ультраосновного состава ИЗ Имеются только немногочисленные разрозненные публикации о зональности минералов и о распределении примесных И редких редкие данные элементов, свидетельствующих об обогащенности пород и минералов [12, 50]. В данной статье проведена систематизация результатов изучения ксенолитов из основных хорошо изученных кимберлитовых трубок Якутии. На основании оценить первая попытка предпринята относительную этих данных распространенность метасоматизированных пород в различных трубках, соответственно различных частях Сибирского кратона и интенсивность проявления метасоматических процессов и взаимосвязанной деформации пород. Представленные данные позволят закономерности понять

формирования и дифференциации литосферной мантии и взаимосвязанной с

ней коры, а также последовательность эволюции СКЛМ Сибирского кратона. Сибирский кратон занимает около 4х10⁹ км², главным образом захоронен ниже рифейско-фанерозойского осадочного чехла мощностью 1-8 км, составляющего, в среднем, приблизительно 4 км. Главные структурные блоки и тектонические зоны даны в [8]. Согласно концепции террейнов, которые появились и развивались независимо как изолированые сиалические (микроконтиненты), кратонов массы структура унаследована ИЗ столкновения и объединения (аккреции) гетерохронных микроконтинентов [8]. Увеличение террейнов, вероятно, происходило в несколько стадий, и большие образования, супертеррейны или тектонические провинции появились прежде, чем они консолидировались в структуру кратона. Кимберлитовые трубки встречаются от реки Вилюй на юге, достигая рек Котуй и Оленек на севере, ореол их распространения охватывает больше чем 1100 км по долготе и 800 км по широте. Расположенная в северо-восточной части Сибирского кратона, Якутская кимберлитовая провинция занимает территорию Анабарского супертеррейна, главным образом включая Далдынский гранулит-гнейсовые террейны, Маганский И a также Мархинский гранит-зеленосланцевый террейн. Более детальное описание дано в [8].

В первые годы открытия кимберлитовых трубок источник алмазов отождествлялся с тем же расплавом, который формировал сами кимберлиты. По мере изучения петрологии кимберлитов было установлено, что многие алмазы на самом деле присутствуют в мантийных ксенолитах и только выносятся на поверхность кимберлитами. Свидетельства подобного рода многочисленны, что 10-20 большинство лет назад, были столь исследователей рассматривали кимберлиты только как транспортер к которые образовались поверхности алмазов, эклогитовых В или перидотитовых породах на мантийных уровнях [38, 48]. Кристаллы алмазов, в кимберлитах или лампроитах, рассматривались находящиеся как производные мантийного субстрата, которые подобно мегакристам граната или ильменита образовались в результате дезинтеграции ксенолитов эклогитов или перидотитов. Недавно появились работы, показывающие [39 и ссылки внутри], что внешние оболочки алмазов ("рубашки" кристаллов), возможно, образовались в самой кимберлитовой магме, равно как и часть микроалмазов. В статье [59] детально обсуждаются свидетельства как за, так и против образования алмазов внутри кимберлитов или в мантийных ксенолитах.

возраст формирования Сибирского Древний СКЛМ И Южноафриканского кратонов доказывается Re-Os и Sm-Nd модельными возрастами, полученными для эклогитовых и перидотитовых ксенолитов. Возраст отдельных ксенолитов алмазоносных эклогитов из Южной Африки, Канады и Якутии варьирует в пределах 2.8-3.5 Ga. Оценки возраста алмазов,

базирующиеся на данных изучения включений В них [43-45],свидетельствуют о том, что алмазы могли зарождаться и расти на протяжении длительного периода истории Земли, особенно алмазы эклогитового парагенезиса. Единственным разумным объяснением этого является то, что алмазы в мантийном эклогитовом субстрате были образованы в результате вторичных метасоматических процессов под воздействием метасоматизирующих флюидов.

Образцы

Было изучено около 1000 образцов основных и ультраосновных мантийных ксенолитов из кимберлитовых трубок, расположенных в различных частях Якутской кимберлитовой провинции. Определение модального состава пород было выполнено для всех ксенолитов. Для большинства образцов был определен химизм пород. Определения содержаний основных окислов были выполнены для породообразующих и частично вторичных минералов. Состав элементов-примесей был получен для представительного количества образцов ксенолитов, как основного, так и ультраосновного состава. Все образцы классифицировались на различные типы пород, в соответствии с их петрографическими особенностями и химическим составом. Во многих образцах были исследованы фазовый состав и содержание элементов в рудных и сульфидных минералах. Все ксенолиты были исследованы петрографическими, химическими и частично изотопными методами для идентификации модальных метасоматических минералов или других свидетельств мантийного метасоматоза. Эти образцы включают различные разновидности эклогитов и ультраосновных ксенолитов дунитов и гарцбургитов через грубозернистые и - от истощенных катаклазированные Gt-перидотиты к орто- и клинопироксенитам.

Аналитическая аппаратура и методы исследований

Основные элементы силикатных и окисных минералов в ксенолитах были определены с помощью микрозонда Superprobe JXA-8800R AK «АЛРОСА». (Мирный) и частично с использованием САМЕСА SX-50 электронного микрозонда в Институте Геологических наук (Якутск). Часть породообразующих гранатов и клинопироксенов и также различные вторичные фазы продуктов частичного плавления в эклогитах была исследована с использованием сканирующего микроскопа с EDS в Университете Западной Австралии (Перт). Составы сульфидных включений были проанализированы на электронном зонде САМЕВАХ SX50 в GEMOCцентре Университета Маквори (Сидней). Во всех случаях природные и синтетические минералы использовались как стандарты. Аналитические условия включали ускоряющееся напряжение 15 keV, ток пучка 20 nA, диаметр пучка 5 микрон и время - 20 секунд, для всех элементов. Все исследования подверглись полной ZAF корректировке.

Элементы-примеси были измерены в породообразующих и некоторых вторичных минералах эклогитов методом лазерной абляции с помощью ICP-MC в RSES Австралийского Национального Университета (Канберра). Элементы-примеси в минералах ультрамафитов были измерены с помощью ICP-MC в Университете Маквори (Сидней, Австралия), с использованием стекла NIST 610 как внешний стандарт и Са как внутренний стандарт; диаметр кратера был 40 -50 мм.

Re-Os изотопы были проанализированы, используя Merchantek LUV266 лазер с модифицированной ячейкой абляции, присоединенный к Nu плазменному мультиколлектору ICPMS в GEMOC-центре Университета Маквори. Большинство исследований было проведено со скоростью повторений 4 Hz и энергиях приблизительно 2 mJ/pulse; типичные диаметры воронок были 50-80 микрон. Аналитические процедуры проведенияя Re-Os изотопных анализов описаны подробно ранее [26].

Состав СКЛМ Сибирского кратона

Исследование глубинных ксенолитов из различных кимберлитовых трубок Якутии показывает, что субконтинентальная литосферная мантия (СКЛМ) Сибирского кратона дифференцирована как по вертикали, так и по латерали [например, 12, 53]. Вертикальная неоднородность фиксируется в распространенном спектре различных широко типов основных И ультраосновных ксенолитов во всех кимберлитовых трубках провинции. Прежде вертикальная разнородность СКЛМ всего, результат _ дифференцирования и формирования первичного вещества мантии в течение Архея [например, 10, 12, 42]. Как показано этими данными, СКЛМ Сибирской платформы была сформирована и стабилизирована между 3.4-2.9 Ga. Не исключено, что новое дополнение к мантии было сделано после главного дифференцирования через процесс субдукции [30, 60]. Вероятная субдукция океанической коры в центральном Далдынском террейне присутствием Cs-эклогитов провинции доказывается Удачной, В трубках Далдыно-Алакитского Сытыканской района. и других Это подтверждено Sm-Nd и Rb-Sr изотопными данными для эклогитовых ксенолитов из трубок Мир и Удачная [42, 52], а также присутствием изотопически легких алмазов в эклогитовых ксенолитах из трубки Удачная.

Горизонтальная разнородность мантии следует из присутствия свиты высоко глиноземистых пород в Удачной, Сытыканской, Загадочной и других трубах центрального Далдыно-Алакитского района провинции. Эти породы и особенно Ку- и Сs-эклогиты, алькремиты и связанные с ними образования низов земной коры типа эклогитоподобных пород с кианитом широко распространены в Удачной и других кимберлитовых трубках этого района. Однако, они не встречены или исключительно редки на юге или севере провинции в таких трубках как Мир, Интернациональная и Обнаженная.

Химия пород и данные по примесным элементам указывают, что мафитовые и ультрамафитовые ксенолиты из трубок, расположенных в центральной части Якутской провинции разделены на три, хорошо отличные группы пород: перидотиты, пироксениты и эклогиты [53]. Различия между таковыми группами ксенолитов в трубках южных и северных частей провинции значительно меньше, и выделенные группы перекрываются друг с другом по их петро-геохимическим характеристикам. Эти данные свидетельствуют о более сильной дифференциации мантии в центральной части Сибирского кратона и, вероятно, различной последующей эволюции СКЛМ центральных и периферийных частей кратона.

Частичное плавление в ксенолитах эклогитов

Во всем мире, большинство эклогитовых ксенолитов в кимберлитах содержит признаки проявления процессов частичного плавления [3, 11, 12, 19, 35, 49, 59, 63]. Это особенно хорошо наблюдается в эклогитах из Удачной и других кимберлитовых трубок Якутии. Продукты кристаллизации этих неполных реакций, типично представляемых как "губчатая" структура вокруг первичного омфацита, включают вторичный клинопироксен (с меньшим содержанием Na₂O), шпинель, плагиоклаз, калиевый полевой шпат и стекло. В прожилках межгранулярного частичного расплава могут присутствовать также ортопироксен, амфибол и флогопит (рис. 1). С таким частичным плавлением в кианитовых эклогитах ассоциируют корунд и муллит. плавиться Первичный гранат может частично c формированием ортопироксена, шпинели, оливина и стекла, формируя части типичных келефитовых кайм на гранате [59].

Химия вовлеченных в этот процесс систем указывает на то, что частичное плавление не было изохимичным, но вызвано воздействием метасоматизирующих флюидов, богатых щелочами, главным образом К и Na, и, вероятно, другими летучими компонентами. Имеются признаки, вытекающие из состава вторичных ассоциаций, что встречающиеся подобные, но различные реакции явились следствием сочетания как различий в исходном составе первичных минералов, так и в составе метасоматизирующих жидкостей.

Детальные петрографические исследования ксенолитов из трубок Далдыно-Алакитского и Мало-Ботуобинского районов кимберлитовой провинции демонстрируют, что процесс частичного плавления проявлен в большинстве ксенолитов, особенно в эклогитах, а также в гранатовых вебстеритах и пироксенитах. Признаки проявления процессов частичного плавления наиболее ярко выражены в биминеральных и кианитовых эклогитах, включая алмазосодержащие разновидности. Частично девитрифицированные или полностью стекловатые продукты ясно наблюда-

Рис. 1. Продукты частичного плавления в ксенолитах эклогитов из кимберлитовой трубки Удачная. В скрещенных николях – a, b, d и с – в поляризованном свете.

Условные обозначения: Gt = гранат, Cpx = реликты омфацита, Cpx₂ = вторичный клинопироксен в "губчатой" (spongy) структуре, Cpx₃ = вторичный клинопироксен в прожилках частичного плавления, Sp = шпинель, Plag = плагиоклаз, Phl = флогопит.

(а) Общий вид тонкозернистых продуктов частичного плавления с отчетливой офиолитовой структурой, развитых между зернами породообразующих граната и клинопироксена. Присутствуют реликты первичного омфацита и граната. Видны секущие прожилки частичного плавления в клинопироксене. (b) Губчатая "spongy" структура вторичного (Cpx₂) с плагиоклазом и нераскристаллизованным стеклом. Гранат окружен келефитовыми каймами. (c) Удлиненные лейсты флогопита ассоциирующие с вторичным пироксеном, шпинелью и плагиоклазом в межзерновых продуктах частичного плавления. (d) Келефитовые каймы вокруг граната в межзерновых продуктах частичного плавления.

ются между зернами граната и клинопироксена, иногда в форме прожилков, секущих эти минералы. Степень частичного плавления изменяется между отдельными ксенолитами, также как и содержание продуктов плавления и соотношение минеральных новообразованных фаз, что показано в [12, 59].

Модальное соотношение продуктов частичного плавления широко варьирует [3, 121. Межгранулярный частично или полностью раскристаллизованный расплав, обычно состоит из новообразованного клинопироксена, плагиоклаза и шпинели, и более редко содержит флогопит, ортопироксен и амфибол. Дополнительными акцессориями могут быть кальцит и сульфиды. Калиевый фельдшпатоид, с подчиненным кварцем, присутствует среди продуктов расплава в кианитовых эклогитах. Стекло – не типично, но возможно; вторичные корунд и муллит развиты вокруг кианита. Первичный омфацит замещается ассоциацией плагиоклаза, стекла. вторичного клинопироксена, и часто сечется стекловатыми прожилками. Составы первичных гранатов и омфацитов из эклогитовых ксенолитов детально изучены [12]; поэтому, охарактеризуем главным образом минералы, сформированные при кристаллизации частичного расплава. Представительные анализы минералов ассоциации продуктов частичного плавления приведены в [59].

Минеральные фазы частичного плавления

Клинопироксены наиболее распространены в продуктах частичного плавления, обычно формируя ксеноморфные зерна приблизительно 0.01-0.4 в размере, иногда присутствуя в виде "решетоподобных" зерен MM включениями шпинели. часто насыщенных Очень вторичные клинопироксены образуют типичные "губчатые" структуры (spongy textures) - согласно [59], рис. 1б). Вторичные клинопироксены всегда имеют более низкое, чем первичный омфацит, содержание Na₂O (< 3 мас.%) и Al₂O₃ (< 1 мас.%), а также незначительное количество жадеитового компонента [52]. Относительно первичных омфацитов, они содержат большее количество MgO (от 12 до 16 мас. % против 8-11 мас.%) и имеют переменную Mg# от 70 до 87. Количество СаО подобно таковым в первичных омфацитах. Пироксен иногда обогащен TiO_2 (до 1.2 мас. %).

В некоторых эклогитах встречен вторичный пироксен призматически удлиненной формы до 0.2 мм по длинной оси с зелено-желтым плеохроизмом, который образуется на последних стадиях плавления, судя по взаимоотношениям с другими минералами. Эта фаза имеет высокое содержание Na₂O (до 10 мас. %), но низкий Al₂O₃ (< 1 мас.%). Минерал характеризуется высоким содержанием FeO (> 20 мас.%) и соответствует пироксену с большим количеством эгиринового компонента [NaFe³⁺Si₂O₆]. Резкое увеличение в Fe³⁺ указывает на возрастание потенциала кислорода в метасоматизирующем флюиде на последних этапах. Аналогичный эгиринсодержащий клинопироксен присутствует также в алмазоносных ксенолитах [56].

Шпинель является второй фазой (по времени и распространенности), кристаллизующейся из частичного расплава и представлена зернами 0.01-0.02 мм в размере (см. рис. 1с). Цвет шпинели обычно зеленый, хотя

встречается также серовато-коричневая и черная Темная шпинель. непрозрачная шпинель характерна для эклогитов железистого ряда [12]. Широко распространена зональная шпинель, наиболее ярко она проявлена в Ку-эклогитах с увеличением Al₂O₃ и MgO-содержаний во внешних зонах фракционной зерен, возможный результат кристаллизации. как Микрозондовые исследования показывают, что общие составы шпинелей между двумя конечными членами: шпинель-MgAl₂O₄ изменяются герценит-FeAl₂O₄ [59]. Содержание TiO₂ и Cr₂O₃ - обычно меньше чем 0.5 мас.%, но в некоторых образцах, шпинель содержит до 3.5 % Cr₂O₃.

Плагиоклаз присутствует в виде удлиненных игл с доминирующим размером 0.04-0.5 мм, редко как призматические кристаллы 0.02-1.0 мм в размере. Это обычно полисинтетические двойники (по альбитовому закону) с химической зональностью в пределах диапазона An 30-50. Плагиоклаз An30 развит обычно по первичному омфациту, иногда формируя графические срастания с вторичным клинопироксеном. Однако, обычно плагиоклаз присутствует как нерегулярные сегрегации размером приблизительно 0.01-0.03 мм. Среди продуктов частичного плавления в некоторых Ку-эклогитах отмечаются образования альбита. Присутствие этого плагиоклаза указывает на то, что кристаллизация фаз частичного расплава происходит при давлениях 10-15 кбар.

Флогопит типично развивается в интенсивно измененных образцах, преимущественно в Ку-эклогитах, где его размеры изменяются от 0.1 до 1.0 мм. Как видно в шлифах, этот флогопит сформирован позднее других фаз (рис. 1с). Микрозондовые исследования фиксируют вариации в содержании K_2O (от 8 до 13 мас.%) и TiO₂ (0.70-3.20 мас.%), но иногда TiO₂ может составлять до 9.50 мас.% (табл. 3). Содержание Ва обычно ниже обнаружимых пределов (< 0.04 %), но в одном ксенолите, флогопит содержал 0.65 мас.% ВаО.

Полевой шпат встречается в некоторых Ку-эклогитах, присутствуя в "губчатых" структурах развитых по первичному омфациту. Этот минерал был найден в метасоматизированных лерцолитах Китая (Snyder et al., 1997) и отмечен в эклогитах Робертс Виктор [63]. В статье В.Н. Соболева с соавторами [49] сообщается о находках полевого шпата в эклогитах, который содержит приблизительно 2 мас.% СаО, имеет высокие - K_2O (от 8 до 13 мас.%) и низкие - Na_2O (от 1 до 5 мас.%).

Стекло отмечено во многих образцах эклогитов, как сохранившийся закалочный продукт частичного расплава. Оно имеет межгранулярную природу, иногда в виде тонких прожилков, пересекает клинопироксен. Стекло найдено также в келефитовых каймах вокруг граната. Частично девитрифицированное стекло с микролитами плагиоклаза и шпинели часто встречается в Ку-эклогитах (см. рис. 1b). В обычных биминеральных эклогитах стекло в значительной степени девитрифицировано и содержит мелкие удлиненные иголки плагиоклаза, замещенные серицитом и другими вторичными минералами. Цвет стекла изменяется от темно-серого до коричневого. Стекло содержит 50-55 % SiO₂ [59] и обычно близко плагиоклазу по составу. Составы некоторых стекол с высоким SiO₂ отличаются присутствием кварца и его сферолитов [12, 50]. Стекла богаты в содержании натрия, обычно приблизительно 6 мас.% Na₂O веса и могут быть разделены на две группы с высоким и низким содержанием К₂О, соответственно - 2.3-3.5 и < 0.2 мас.%. Стекла с высоким К₂О содержат признаки кимберлитовых флюидов; однако, стекло с низким К₂О обычно встречается в ассоциации с раскристаллизованными фазами частичного расплава. Стекла могут широко варьировать по содержаниям Mg и Ti [59]. Содержание SiO₂ может составлять более 61 мас.%, т.е. выше, чем таковое в первичных омфацитах. Это предполагает вероятный привнос SiO₂ метасоматизирующими флюидами.

Причины частичного плавления

Имеются флюидов, лва возможных источника которые могли обусловить частичное плавление. Различие между ними заключается во времени метасоматоза. Это следующие два варианта: 1) кимберлитовый флюидами метасоматоз, изменением захваченного ксенолита с производными кимберлитовых магм; и 2) предкимберлитовый метасоматоз, с плавлением вызванным метасоматозом в мантии до захвата ксенолитов кимберлитами.

Фактически все мантийные ксенолиты подверглись некоторой форме метасоматоза во время нахождения в мантии, главным образом, намного раньше попадания их в кимберлитовый субстрат. Несколько наблюдений применимы хотя частичное плавление фиксируется злесь: 1) преимущественно в образцах глубинных ксенолитов, некоторые признаки такого процесса отмечены также в ксенолитах пород коры; 2) эклогиты, которые содержат свидетельства обширного плавления, часто несут также деформаций (катаклаз. милонитизация. несомненно, т.д.), следы И произошедших в мантии; 3) отсутствует пространственная связь между интенсивностью плавления и поверхностью ксенолитов; 4) неоднородное проявление процессов плавления и метасоматоза в пределах индивидуальных образцов; 5) присутствие секущих прожилков частичного плавления, а также свидетельства о наличии двух или более этапов данного процесса, возможно близко связанных во времени; 6) наличие внешних кайм на некоторых ксенолитах эклогитов. Эти каймы - прямой результат взаимодействия ксенолита с кимберлитовым расплавом, в противоположность частичному плавлению, которое имеет место по всему объему ксенолитов; 7) различия существуют в интенсивности частичного плавления однотипных ксенолитов из одной и той же трубки; 8) степень частичного плавления в однотипных эклогитах изменяется от одной трубки к другой даже в пределах единого кимберлитового поля, но более значимо в различных полях. Основанный на вышеприведенных и других фактах [59], возможен следующий сценарий этого процесса - первоначальная стадия частичного плавления, начинается как глобальный мантийный метасоматоз под влиянием флюидов, которые зародились глубоко в мантии и, возможно связана с небольшим снижением давления. Этот процесс мог быть близок по времени формированию кимберлитов, только предшествуя внедрению кимберлитовых магм. Полные эффекты метасоматоза мантийных ксенолитов, их минералогия и химия основных и примесных элементов описаны в [12, 29, 49, 59].

Метасоматоз ультраосновных ксенолитов

Петрографические наблюдения и банк данных по петрохимии и распределению примесных элементов свидетельствуют 0 том, что ультраосновные ксенолиты из кимберлитов Якутии обычно подверглись метасоматическому обогащению и в редких случаях, более позднему [12]. Это частичному плавлению доказывается широкой распространенностью флогопитизации мантийных ультрамафитовых ксенолитов и келефитизацией граната. Присутствие джерфишерита и иногда титаномагнетита, а также замещение некоторых первичных клинопироксенов и гранатов пузырями, состоящими из флогопита и других водосодержащих минералов также является доказательством относительно широкой распространенности метасоматических процессов И развития новых минеральных фаз в результате метасоматоза ультрамафитов.

Флогопит

Флогопит в небольшой пропорции встречается почти во всех разновидностях глубинных ксенолитов практически всех кимберлитовых трубок. Его содержание изменяется от десятых долей до 10-20 % и в редких случаях составляет до 80 % объема породы. Перидотиты и пироксениты, подвергнутые модальному метасоматозу содержат разнообразные флогопиты. Флогопиты из ультрамафитов - слюды магнезиального типа (20-30 % веса MgO) с высокой изменчивостью состава в отношении содержаний TiO₂, Al₂O₃, Cr₂O₃ и FeO (табл. 1). Содержание окислов Ti и Cr в них изменяется более чем на порядок. Сравнение флогопита из различных пород перидотит-пироксенитового ряда позволяет констатировать, что, во-первых, флогопиты ИЗ ксенолитов различных трубок имеют некоторые отличительные особенности относительно их химического состава; во вторых, часть крупных мегакристов флогопита в кимберлитах сформирована за счет дезинтеграции флогопитсодержащих ксенолитов [12].

<u>Джерфишерит</u>

Джерфишерит - один из несомненно метасоматических минералов, который присутствует приблизительно в 1/3 ультраосновных ксенолитов из Удачной, Обнаженной и других трубок и преобладает среди других сульфи-

Таблица 1.

Образцы	M-260	S- 9/272	U- 19/82	S- 9/399	S- 9/495	U- 19/82	U- 78/93	U-43	O- 19/74	M-84	M-923
Анализы	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	44.95	45.63	42.1	46.57	44.23	40.63	39.88	42	42.76	43.76	39.99
TiO ₂	0.2	0.24	0.54	0.3	0.25	2.8	3.02	2.53	2.05	3.8	1.68
Al_2O_3	11.41	13.92	13.02	11.76	11.58	12.88	10.68	13.5	13.62	10.38	14.44
Cr_2O_3	0.14	0.68	0.85	0.23	0.46	1.02	0.08	1.3	0.59	< 0.03	2.53
FeO	4.13	4.96	3.87	2.81	4.77	4.41	9.07	4.61	6.17	7.1	3.25
MnO	0.06	0.01	0.03	0.01	0.01	< 0.03	0.14	0.04	0.01	0.04	0.04
MgO	28.58	23.69	25.95	26.66	28.16	23.62	20.79	22.3	24.49	18.7	24.17
CaO	0.37	0.01	< 0.03	0.01	0.01	< 0.03	0.01	0.32	< 0.03	0.04	n.d
Na ₂ O	0.42	0.19	0.22	0.02	0.07	< 0.03	0.65	0.7	0.29	0.12	0.44
K ₂ O	7.75	6.89	10.35	10.71	10.21	11.03	9.92	8.97	7.61	9.3	9.73
Сумма	98.01	96.22	96.93	99.08	99.75	96.39	94.24	96.27	97.59	93.24	96.27

Представительные анализы флогопитов в ультрамафитах из кимберлитов

Примечания. Образцы: 1, 2 –верлиты, 3- ортопироксениты, 4, 5- Spлерцолиты, 6- IIm-пироксениты, 7-глиммериты, 8- Gt-перидоьтьы, 9- IIm-Gt-перидотиты, 10- алмазоносный Gt-пироксенит (по [9]), 11- алмазоносный Gt-перидотит.

Таблица 2.

	Представительные анализы	джерфишерита в	ультрамафитах	из кимберлитов
--	--------------------------	----------------	---------------	----------------

	Sample	Fe	Ni	Со	Cu	S	K	Cl	Сумма
1	U-1-80	36.95	14.37	0.22	2.67	33.04	9.98	1.72	98.95
2	U-3-80	38.03	14.08	0.02	1.91	33.09	9.68	1.71	98.52
3	U-10-81	37	13.86	0.16	4.22	32.96	9.61	1.58	99.39
4	U-25-81	37.09	9.51	0.16	8.92	32.93	10	< 0.03	98.64
5	U-25-83	41.42	10.4	0.28	2.41	32.95	10.01	1.69	99.16
6	U-19-84	38.71	16.19	0.15	1.92	31.93	9.5	1.7	100.1
7	U-20-84	36.86	19.35	0.08	1.08	32.4	9.17	0.18	99.12
8	U-2249	41.04	12.61	0.42	1.45	32.13	9.79	1.98	99.42
9	U-2281-a	39.43	12.72	0.35	3.55	32.13	9.22	1.34	98.74
10	U-2281-b	40.34	12.85	0.34	3.61	33.17	7.69	0.85	98.85
11	U-2283	36.39	14.41	0.8	4.12	32.32	9.94	1.78	99.76
12	U-2298	35.98	14.81	0.08	4.47	33.11	9.81	1.61	99.87
13	O-3214	34.35	10.79	0.1	10.47	32.57	7.14	1.66	97.08
14	O-3251	34.25	7.73	0.08	14	32.51	8.72	1.49	98.78
15	O-3441	37.72	11.07	0.1	7.08	33.09	8.94	1.68	99.68
16	0-3445	37.6	11.97	0.05	5.15	33.31	8.5	1.46	98.04
17	O-1590	34.16	11.78	0.11	8.44	33.72	9.88	1.54	99.63
18	O-1608	34.51	16.43	0.1	2.96	33.68	9.24	1.6	98.52

Примечание. 1, 3, 5, 7, 8, 12, 14, 16- Gt-перидотиты; 4, 11- Gt-Ilm- перидотиты; 2, 7, 14, 15, 17- Gt-верлиты и оливиниты; 6, 13- Gt-гарцбургиты; 9, 10, 18- Gt-вебстериты. U- трубка Удачная, О- трубка Обнаженная.

.

дов в ультрамафитах [6]. Он является калийсодержащим сульфидом с постоянной примесью хлора. Этот минерал замещает первичные Fe-Niсульфиды - пирротины и пентландиты, которые развиты между зернами породообразующих минералов. Обычно джерфишерит формирует внешние оторочки на зернах сульфидов (рис. 2). Следует подчеркнуть, что для этого минерала характерна неоднородность состава не только в различных зернах сульфидов из одного ксенолита, но и даже в пределах отдельных сульфидных выделений (образец У-2281, табл. 2). Это выражается в широких изменениях содержаний Ni, K и Cl. Такие свидетельства как высокое и непостоянное содержание К и присутствие Cl в этом минерале (табл. 2) предполагает его наиболее вероятное формирование на последних этапах метасоматоза и его вероятную взаимосвязь с внедрением кимберлитовых магм. Не исключено, что образование этого минерала, стимулируется взаимодействием с протокимберлитовыми флюидами.

Процессы частичного плавления наблюдаются в редких ксенолитах клинопироксенитов. Раскристаллизованные И частично стекловатые продукты частичного плавления развиты между зернами породообразующих минералов. Кроме того, они формируют секущие прожилки, карманы и пузыри до 10-20 мм в размере, занимающие иногда до 20 % первоначального объема породы. По своему составу они практически адекватны фазам частичного плавления, которые присутствуют в эклогитовых ксенолитах. В меньшей степени, частичное плавление имеет место В ксенолитах перидотитов, прежде где оно, всего, выражено повсеместной В келефитизации граната. Породы ультрамафитов зачастую подвергнуты также катаклазу и деформации. Это подтверждено присутствием порфировых и порфирокластических флюидизацией структур, частичной И рекристаллизацией оливинового матрикса в ксенолитах всех кимберлитовых трубок.

Келефитовые каймы на гранатах из ультамафитов

Келефитовые каймы широко развиты вокруг гранатов в кимберлитах и мантийных ксенолитах, практически во всех кимберлитовых трубках. вторичными минералами, представленными Обычно они сложены ассоциацией флогопита, шпинели, клино- и ортопипроксена. В некоторых случаях, особенно вокруг гранатов в кимберлитах, каймы имеют сложный состав и состоят из двух и более зон различных по составу. В ксенолитах гранатовых перидотитов из трубки Удачная, гранаты окружены коронами флогопита, шпинели и вторичных пироксенов. В то время как зональность в редких зернах гранатов, фиксируемая по основным и примесным элементам, объясняется результатом проявления метасоматических процессов на глубине [58], формирование келефитовых кайм вокруг гранатов обычно связывается с взаимодействием между гранатом и кимберлитовой магмой.

Чтобы проверить эту идею, был предпринят анализ примесных элемен-

Рис. 2. Изображения типичных зерен сульфидов (X-ray) в ультраосновных ксенолитах из трубки Удачная.

Пирротин замещается джерфишеритом. Образец У-2281 (Gt-верлит).

тов на химически гомогенных зернах гранатов с четкими келефитовыми каймами толщиной 300-500 мм, в двух ксенолитах гранатовых перидотитов из трубки Удачная: U-140/78 (катаклазированный Gt-лерцолит) и U-2292 (мозаично-порфировый Gt-гарцбургит). Пример такой келефитовой каймы показан на рис. 3. Очевидно, что широкая кайма занимает почти половину зерна первичного граната. Составы гранатов и развитых на них кайм изучен-

Рис. 3. Электрозондовое изображение в обратно-рассеянных электронах келефитовой каймы замещающей гранат в ксенолите катаклазированного Gt-перидотита из кимберлитовой трубки Удачная. (Образец У-2292).

Видны кратеры от лазерного пучка ICP-MS и показаны точки микрозондовых анализов (см. данные в табл. 3).

Таблица 3.

Образцы	U-229	2			U-140/78				
Анализы	Gt-1	Gt-kel-2	Gt-kel-3	01-4	Срх	Gt core	Gt rim (Gt kel	<u>Cpx</u>
SiO	41 61	34 65	32.77	40 54	56 29	41 67	42.5	38 59	53.2
TiO ₂	1.26	1.25	1.29	0.05	0.31	0.32	0.46	0.38	0.22
Al_2O_3	15.77	15.21	15.18	0.06	1.4	18.4	18.35	16.81	1.16
Cr_2O_3	7.23	6.98	7.24	0.04	1.47	5.64	5.46	5.62	1.31
FeO	7.32	8.24	7.67	8.64	3.65	7.83	7.48	8.05	2.24
MnO	0.33	0.37	0.31	0.12	n.d	0.32	0.25	0.33	n.d
MgO	20.03	21.27	19.41	47.76	19.1	20.17	20.06	23.8	19.25
CaO	5.81	6.04	7.38	0.04	17.4	5.44	5.32	4.24	19.91
Na ₂ O	0.16	0.36	0.47	0.03	1.36	n.d.	n.d.	n.d.	1.75
K ₂ O	n.d.	0.4	0.43	n.d.	n.d.	n.a.	n.a.	n.a.	n.a.
Total	99.52	94.77	92.15	97.263	100.98	99.79	99.88	97.82	99.04

Анализы породообразующих минералов, гранатов и келефитовых кайм на них в двух гранатовых перидотатах из трубки Удачная

Примечание. Номера: 1 - 4 отвечают точкам анализов на рис. 3.

ных образцов даны в табл. 3. Химизм и содержания главных элементов в породообразующих минералах обоих образцов очень близки. Реликты зерен первичных гранатов не показали никакой зональности. По содержанию основных породообразующих окислов клинопироксены и оливины, оба образца подобны, но гранаты, отличаются содержанием Cr₂O₃ и TiO₂ (табл. 3). Следует заметить, что келефитовые каймы по составу почти соответствуют флогопиту и состоят из крошечных срастаний шпинели и флогопита с явным преобладанием последнего. Примесные элементы были измерены с использованием лазерной аблиции - ICP-MS; диаметр пучка составлял 40 -50 мм.

<u>Примесные элементы как свидетельство образования келефитовых</u> <u>кайм</u>

Наблюдения в шлифах показали, что никакого взаимодействия между ксенолитами гранатовых перидотитов и кимберлитовым расплавом не фиксируется. Не имеется никаких очевидных взаимосвязей толщины келефитовых кайм с размером ксенолитов или увеличения их толщины во внешних частях образцов. В областях, где кимберлит находится в контакте с минералами внешней зоны ксенолитов, имеется острая граница между зерном граната и кимберлитом. Как показано А. Вишневским [66] келефитовые каймы на гранате в ксенолитах обычно представляют смесь минералов: Phl + Sp ± Ol ± Cpx ± Opx. В наших образцах флогопит преобладает, как это очевидно из исследованных составов келефитовых кайм, которые в обоих случаях представляют, почти чистый флогопит (см. табл. 3). Существенных различий в содержании основных и примесных элементов между ядром и каймами не наблюдалось в анализированных образцов. свидетельствует гранатах обоих Это 0 полном переуравновешивании минералов в течение или после процесса плавления и пластической деформации в мантии.

REE составы исследованных гранатов подобны, но гранат из образца U-2292 показывает обогащение в MREE, в отличие от граната из U-140 (рис. 4). Келефитовые каймы в этих двух образцах имеют отличные от друг друга, но по существу идентичные их гранату-хозяину концентрации элементовпримесей, за исключением обогащения в содержании Sr. Распределение REE в образцах относительно более ровное чем, следовало бы ожидать в случае уравновешивания с кимберлитовой магмой [28]. Высокий Sr, вероятно, унаследован из вторичного клинопироксена и локально высокий Ba (не показан) во вторичном флогопите. Подобие между гранатом и келифитом в распределении примесных элементов говорит о том, что процесс келефитизации не вовлек в общирный обмен с метасоматизирующей средой редкоземельных и других элементов и не связан с проникновением флюидных агентов из кимберлитового субстрата.

Две модели могут быть предложены, чтобы объяснить особенности

Рис. 4. Хондрит-нормализованное распределение редких и примесных элементов в гранатах и келефитовых каймах в ксенолитах деформированных гранатовых перидотитов (образцы U-140/78 и U-2292) из кимберлитовой трубки Удачная (по Spetsius and Griffin, [58]).

петрографии и распределения примесных элементов в келефитах.

1. РТ-оценки для келефитовых образований, используя ассоциации вторичных минералов в пределах короны, фиксируют температуры 1100-1250°С и давления приблизительно 20 кбар [25, 58]. Эти данные говорят о том, что келефитизация гранатов произошла в условиях верхней мантии. Согласно результатам [25], в ксенолитах кимберлитов Гибеона аналогичные метасоматические процессы происходили в пределах магматического очага, расположенного близко к границе между верхней мантией и нижней корой.

2. Было предложено альтернативное объяснение, основанное на данных содержаний элементов-примесей и особенностях их распределения, а также некоторых петрографических свидетельствах [48]. Аналитические данные говорят, что концентрации и распределение элементов-примесей гранатовых келефитов не связаны с кимберлитовой магмой, но подобны таковым замещаемого граната (рис. 4), с дополнением Sr, K и, вероятно, Ba; HFSEэлементы типа Zr, Hf, Ti и Nb, и REE не были подвижны в процессе келефитизации. Экспериментальные данные по распределению элементовпримесей указывают на то [15], что при высоком давлении многие из этих элементов не входят в водные флюиды в той же степени как в силикатный или карбонатитовый расплавы. Это говорит о том, что келефитизация граната не была результатом взаимодействия с силикатным или карбонатитовом расплавом и, что водосодержащие флюиды играли более важную роль в формировании келефитов на гранатах (на этой стадии

мантийного метасоматоза). Тонкозернистый размер минеральных фаз келефитов подразумевает, что процессы метасоматоза, которые являлись причиной замещения граната, были кратковременны и возможно были активны незадолго до внедрения кимберлитов. Можно полагать, что сформированы келефитовые ответ проникновение каймы. В на водосодержащих флюидов, предваряющих внедрение кимберлитовых магм. Источник и точная природа метасоматизирующих флюидов остаются проблематичными, но можно спекулировать, что они были связаны с протокимберлитовыми магмами.

Оценка времени метасоматических событий

Большинство известных оценок возрастов мантийных ксенолитов в кимберлитовых трубках выполнено Sm/Nd или Re/Os методами [41, 42, 47]. Nd и Sr изотопные данные по алмазоносным эклогитам из трубки Удачная и Сибирских эклогитов, комплексная Sm-Nd изотопная систематика интерпретируется как указание на раннюю (> 4 Ga) дифференциацию [42], сопровождаемую последующей (ранний протерозой) кристаллизацией эклогитов, по крайней мере, из двух различных источников. Перидотитовые осмиевые изотопные составы требуют Re истощения в середине архея (3.2Ga) согласно [41, 42], и этот возраст интерпретируется как время дифференциации Сибирской литосферной мантии. Древнее образование СКЛМ Сибирского кратона поддержано Re-Os и Sm-Nd данными возрастов для эклогитовых и перидотитовых ксенолитов из трубок Мир и Удачная, полученных различными авторами [14, 41, 42, 52]. Возраст формирования ксенолитов и их дифференцирования в мантии согласно изотопным данным и другим петрологическим свидетельствам - не меньше чем 3.0 Ga, но как показано [26, 42], СКЛМ под Сибирской платформой имеет сложную эволюцию, что выражается в многостадиальном метасоматозе. Данные по редким и примесным элементам для граната и клинопироксена включений и породообразующих минералов эклогитовых ксенолитов из Удачной. представленные в [29], также свидетельствуют о том, что Сибирские эклогиты испытали комплексный метасоматоз и частичное плавление после формирования. Чтобы литосферной понять эволюцию мантии. ИХ необходимо определить не только возраст образования пород мантии, но и возраста последующих процессов в мантии.

Не имеется никаких точных и бесспорных определений времени метасоматических событий в литосферной мантии Сибирского кратона. Такая попытка была сделана Г. Пирсоном и другими [42], которые определили архейский возраст для литосферной мантии под Сибирским кратоном и показали, что СКЛМ была изменена последующим многоступенчатым метасоматозом. Согласно их данным, основанным на Rb-Sr изотопных оценках, метасоматоз имел место в течение длительного периода эволюции кратона.

Мы имеем возможность оценить время проявления, по крайней мере одной из стадий мантийного метасоматоза в СКЛМ Сибирского кратона благодаря обнаружению уникального образца ксенолита гранатового ортопироксенита с цирконом в трубке Удачная. Уникальность этого образца определяется присутствием вторичной ассоциации метасоматических минералов: флогопит+рутил+циркон, которые развиты между зернами граната и ортопироксена и часто пересекают гранат (рис. 5).

Модальный состав образца следующий: Орх - 30.4 %, Gt - 29.4 %, Fl -36.6%, Ru - 3.0%, Zr - 0.6 %. Оранжевые зерна граната - размером 1-10 мм, обычно неправильной или овальной формы. Зерна граната замещены относительно мощными келефитовыми каймами. Ортопироксен формирует неправильные и овальные зерна размером 3-6 мм. Эта порода обогащена флогопитом, который представлен кристаллами правильной формы размером до 5 мм по длинной оси. Лейсты флогопита, обычно, развиты между зернами граната и ортопироксена, иногда имеют секущий характер. Рутил присутствует обычно в виде включений (0.2-0.3 мм) в гранате. Мелкие зерна приблизительно 0.1-0.2 MM циркона, ассоциируют с флогопитом. Необходимо подчеркнуть, что и флогопит и циркон в образце распределены неравномерно.

Состав породообразующих основных минералов окислов проанализированного образца показывает, что гранат богат пироповым компонентом и имеет низкое содержание Cr₂O₃ (табл. 4). Флогопит обогащен титаном, что является обычным для этого минерала из ультрамафитов Удачной, и согласно низкому содержанию Cr₂O₃, может быть, определен как первичная слюда. Рутил имеет высокое содержание FeO и довольно высокое содержание хрома. Состав основных элементов первичных минералов характеризуемого образца соответствует типичным гранатовым пироксенитам из этой трубки (табл. 4). Вторичные минералы, очевидно, замещают первичные гранат и ортопироксен. Следует подчеркнуть, что в этом образце присутствуют также шпинель и амфибол, которые, вероятно, принадлежат той же самой вторичной метасоматической ассоциации или представляют следующую стадию метасоматоза. Возраст циркона был определен в Картинском Технологическом Университете (Перт, Австралия) с использованием SHRIMPa. U-Pb изотопные отношение и концентрации были определены в зернах циркона in situ с использованием стандарта циркона 206Pb/238U=0/0928) Австралийского SL13 (572 Ma; Национального Университета. Более подробные детали аналитической процедуры и оценки экспериментальных данных приведены в [31 и ссылках там же].

Эти определения дают Pb-U возраст циркона 1.8 Ga (неопубликованные данные автора). Необходимо подчеркнуть, что этот возраст – пока единственные достоверные данные, которые определяют реальное время метасоматических событий в СКЛМ Сибирского кратона.

Такие свидетельства как неоднородное распределение в образце и рост

Рис. 5. Изображение в обратно-рассеянных электронах вторичного флогопита секущего гранат в ксенолите цирконсодержащего Gt-пироксенита из кимберлитовой трубки Удачная. (Образец У-2268).

Флогопит содержит включения рутила; помимо этого он корродирует зерно первичного граната. Между гранатом и флогопитом видна кайма, состоящая из вторичного амфибола и шпинели. Показаны точки микрозондовых анализов (данные в табл. 4).

Таблица 4

	Opx	Gt (1)	Fl (2)	Ru (3)	Sp (4)	Amf (5)
SiO ₂	52.96	41.08	39.61	0.03	0.1	48.85
TiO ₂	0.08	0.03	2.49	95.67	0.15	0.18
Al ₂ O ₃	4.7	22.75	13.46	0.02	59.63	9.37
Cr_2O_3	0.19	0.29	0.13	0.27	0.97	0.24
FeO	13.09	19.62	4.64	1.81	25.81	19
MnO	< 0.03	0.55	0.01	0.11	0.36	0.61
MgO	28.58	13.67	22.35	0.17	11.77	20.6
CaO	0.27	3.76	0.05	0.01	< 0.03	1.08
Na ₂ O	0.05	0.06	0.87	n.d.	n.d.	0.03
K ₂ O	n.d.	0.01	12.24	0.15	0.04	0.02
Total	99.96	101.81	95.86	98.24	98.83	99.97

Анализы минералов из ксенолита цирконсодержащего Gt-пироксенита из трубки Удачная (образец U-2268)

Примечание. Номера в скобках отвечают точкам анализов на рис. 5.

флогопита и, связанных с ним циркона и рутила, между породообразующими гранатом и ортопироксеном указывают на то, что эти минералы были сформированы как вторичные фазы. Очевидно, они образовались в процессе глобального метасоматоза пород мантии под Сибирской платформой. Как показано в работе [12], признаки мантийного метасоматоза в глубинных ксенолитах основного и ультраосновного состава отмечены во многих трубках Якутии. Единственные и относительно достоверные критерии проявления инфильтрационного метасоматоза - слюды и амфиболы, которые имеют метасоматическое происхождение в мантийных ксенолитах. Однако не имеется никаких достоверных данных, позволяющих судить об интенсивности проявления этих процессов в различных областях Сибирской платформы. На основании особенностей нахождения флогопита в породах мантии, который присутствует как в виде больших зерен, соизмеримых с другими минералами, так и в составе келефитовых кайм, очень вероятно, что метасоматические процессы в СКЛМ Сибирского кратона были повторны. В нашем случае, флогопит присутствует в виде больших зерен, подобных породообразующим гранату и ортопироксену. Наиболее вероятно, что образование флогопита и циркона имело место на одной из стадий модального метасоматоза, который, скорее всего, совпадал по времени с глобальным метасоматозом мантии. Таким образом, датированный возраст циркона в ксенолите гранатового ортопироксенита дает нам первую реальную оценку времени глобального метасоматоза мантии под Сибирским кратоном. Следует отметить, что возраст 1.8 Ga отвечает также времени главного этапа формирования коры Сибирской платформы [3], и таким образом указывает на совпадение этих событий.

Геохимия и эволюция представителей СКЛМ Сибирского кратона

Геохимические особенности вещества СКЛМ Сибирского кратона обсуждены с использованием данных по относительному содержанию и распределению элементов-примесей в эклогитовых и перидотитовых ксенолитах, а также с учетом аналогичных сведений для мегакристной продемонстрировано минералов. Как ЭТО результатами ассоциации протонного исследования и частично ICPMS данными, содержание и распределение примесных элементов в минералах эклогитовых ксенолитов из трубки Удачная и из таких трубок Южной Африки как Робертс Виктор, Монастери и другие - очень подобны [57, 62]. Главное различие - высокое обогащение эклогитов Удачной Sr и Ga и истощение гранатов и клинопироксенов Y и Zr. Эклогитовые клинопироксены Удачной больше обеднены LREE и менее радиогенны, чем таковые из ксенолитов Южной Африки, а гранат обогащен LREE [29, 57, 62]. Такое различие может быть объяснено как результат проявления более интенсивных метасоматических процессов в литосферной мантии под трубкой Удачная. ICPMS данные для эклогитов из Удачной подтвердили их подразделение на три группы в

терминах распределения элементов-примесей [62]. Подобные данные были получены для эклогитов Робертс Виктор и Мбуджи-Майи, которые указывают на сходство концентраций редкоземельных и других элементов в минералах эклогитов из этих двух столь удаленных кратонов [24, 30, 51]. Необходимо подчеркнуть, что эклогиты из Удачной и Робертс Виктор очень подобны в аспектах их петрографии, химизма и геохимии пород и минералов.

<u>Распределение примесных элементов в минеральных фазах эклогитов</u> <u>трубки Удачная</u>

Данные по примесным элементам для мантийных ксенолитов имеют важные значения по многим аспектам: (а) оценка распределения в минералах и правильное определение разделения примесных элементов между минералами пород мантии в зависимости от РТ- условий их формирования, (б) расшифровка сложной истории и эволюции мантийных эклогитов, что является дискуссионной темой [29, 30, 52, 57], (в) объяснение возможных различий в поведении примесных элементов в различных мантийных процессах.

Коллекция около 20 ксенолитов из трубки Удачная изучена на предмет состава и распределения примесных элементов в минералах. Только 5 из образцов были простыми биминеральными или кианитовыми эклогитами без алмазов. Алмазосодержащие ксенолиты помимо биминеральных эклогитов включали один образец гранатового клинопироксенита и два ксенолита гранатитов (с содержанием клинопироксена меньше чем 1 %). Содержание элементов-примесей изучалось В сосуществующих гранатах И клинопироксенах образцов, также вторичном почти всех а BO клинопироксене Специальная ксенолитах. проверка В некоторых центральных и периферийных частей зерен граната показала, что они гомогенны по содержанию как основных, так и примесных элементов. Небольшая зональность граната обнаружена только в двух образцах, где периферийные участки слегка обогащены в отношении Nd, Sm, Eu, Dy и Ho. при анализе первичного граната что Необходимо подчеркнуть, И клинопироксена в интенсивно метасоматизированных образцах и ксенолитах с частичным плавлением были выбраны только неизмененные реликты минералов.

Основные особенности результатов исследований LAM-анализов могут быть суммированы следующим образом:

-Хондрит-нормализованные REE в гранатах обычно показывают выпуклые формы и изменяются от слегка до сильно обогащенных в LREE (рис. 6), в то время как клинопироксены имеют обогащенные LREE распределения и характеризуются широкими вариациями в MREE (рис. 7).

-На основе REE распределения выделяются три различных типа гранатов в изученных эклогитовых ксенолитах: (1) "нормальная" группа,

Нормализованы по отношению к хондритовым значениям [36].

Нормализованы по отношению к хондритовым значениям [36].

имеющая выпуклую вверх форму с начальным резким прогрессивным увеличением в LREE, которое сопровождается более низким увеличением HREE, (2) " HREE-обедненная " группа, в которой HREE не показывают никакое отмеченное ранее увеличение от Dy до Yb и (3) " Еи-аномальная" группа, в которой имеется небольшая положительная Еи аномалия и общее плоское распределение HREE [55].

-Содержания примесных элементов в большинстве гранатов Группы (1) подобны, за исключением образца гранатита (Ud-220), где этот минерал очень богат Sc, Ga, Yt, Nb, Zr, Ce, Gd, Dy, Ho, Er, Yb, Lu и Hf (рис. 6).

- Широкие вариации в REE и также в распределении Sr наблюдаются для клинопироксенов (рис. 7); наиболее подходящее объяснение этого обогащения - частичное плавление, связанное с метасоматозом. Клинопироксен образца Ud-2260 имеет особенно высокие содержания Y, Sm, Dy, Ho, Er и Yb.

- Высокоглиноземистые ксенолиты имеют слегка положительные Euаномалии и низкие HFSE распределения, которые отчасти свидетельствуют в пользу корового протолита, в соответствии с результатами [30].

- Первичные клинопироксены большинства образцов обогащены в LREE, что указывает на широкое распространение скрытого метасоматоза во многих эклогитовых ксенолитах трубки Удачная; это подтверждает результаты петрографических наблюдений [44].

Следует подчеркнуть, что вхождение Sr, Ва и таких несовместимых элементов как V, Zr, Ni, и другие в гранат и клинопироксен не зависит по существу от Т и Р или общего состава минералов [40]. Эти наблюдения показывают, что часть элементов-примесей имеет независимое поведение и поддерживают предположение о том [29], что обогащение или истощение породообразующих минералов эклогитовых ксенолитов трубки Удачная некоторыми примесными элементами произошло вследствие процессов метасоматоза частичного плавления. REE распределение И сосуществующих гранатах и клинопироксенах и коэффициенты разделения Срх/Gt для многих примесных элементов в эклогитовых ксенолитах трубки Удачная [62] подобны таковым для эклогитов из Южной Африки, установленным авторами работы [40]. Однако, эти образования отличаются по Sr, Zr и Ni, что указывает на некоторые различия в эволюции мантийных эклогитов Сибирского и Южно-Африканского кратонов.

<u>Элементы-примеси как свидетельство проявления метасоматоза в</u> <u>ультрамафитовых ксенолитах</u>

Характер распределения примесных элементов в породах может отчасти использоваться для реконструкции мантийных процессов [22]. REEраспределение в клинопироксенах СКЛМ обычно очень подобно таковым хозяина перидотита, если перидотиты не содержат других фаз с высоким коэффициентом распределений для REE [22]. Это положение позволяет

использовать распределение примесных элементов в клинопироксенах ультрамафитов для оценки их поведения в породах. Многие мантийные перидотиты содержат клинопироксены, которые показывают сильное обогащение в LREE в результате влияния метасоматически LREEобогащенных флюидов. Свидетельством скрытого метасоматоза являются концентрации примесных несовместимые элементов В гранатах И клинопироксенах обогащенных гарцбургитов и гранатовых перидотитов из трубки Удачная. Это было установлено ICPMS-данными для минералов более 15 образцов. На рис. 8 показаны типичные REE-распределения для клинопироксенов в ультрамафитовых ксенолитах Удачной. Очевидно, что многие из перидотитов содержат клинопироксены с сильным обогащением в LREE в результате воздействия метасоматических LREE-обогащенных флюидов. Как показал Г.Довнис, на основании систематизации большого банка данных по поведению элементов-примесей в в минералах мантийных пород [22], REE-распределения в клинопироксенах, обычно, подобны таковым в породах. Это позволяет нам использовать распределение примесных элементов в клинопироксенах для оценки интенсивности метасоматических событий в мантийных ксенолитах. Имеются свидетельства [21], что во многих случаях это может быть более корректным методом в сравнении с данными по примесным элементам в породах, поскольку многие мантийных ксенолитов в кимберлитах содержат признаки образцы проникновения кимберлитового вещества или кимберлитовых агентов в виде тонких межзерновых прожилков в ксенолитах.

Представительные данные распределения примесных элементов в гранатах 18 образцов ультрамафитовых ксенолитов из трубки Удачная подтверждают широкое развитие и наличие скрытого метасоматоза среди мантийных ультрамафитов. Согласно [28, 46], это фиксируется в результате распределения элементов-примесей в гранатах и в первую очередь REEэлементов. Подобное поведение в распределении нормализованных концентраций REE-элементов имеют гранаты исследованных ультрамафитов из Удачной (рис. 9). Это отражается в выпуклом характере кривых распределения элементов, произошедшее в результате метасоматоза. Не возможно, обсуждать время и этапность метасоматических событий, которые являются непосредственно ответственными за этот эффект, но нет никаких сомнений, что в этом случае метасоматоз не связан с влиянием кимберлитовой магмы или воздействием флюидов.

<u>Re-Os систематика сульфидов в оливинах из кимберлитов эволюция</u> <u>СКЛМ Сибирского кратона</u>

Как показано выше, данные по распределению примесных элементов в различных типах ультрамафитов из кимберлитов Якутии весьма скудны. Однако, мы можем обсудить особенности геохимии ультрамафитов с привле-

Рис. 8. Хондрит-нормализованная диаграмма содержаний редких (REE) элементов в клинопироксенах ультрамафитов из кимберлитовой трубки Удачная. (Spetsius and Griffin., 1998, ICP-MS, GEMOC, неопубликованные данные).

Нормализованы по отношению к хондритовым значениям [36].

Нормализованы по отношению к хондритовым значениям [36].

чением данных, полученных по Re-Os изотопии сульфидов в мегакристах оливинов из трубки Удачная. Детальные Re/Os систематика изотопии сульфидов была получена более чем для 70 включений. Аналитическая процедуры для *in situ* Re-Os изотопного анализа дана в работе [26].

Сульфиды в мегакристах оливинов из трубки Удачная представлены срастаниями Fe-Ni-моносульфидных твердых растворов обедненных и богатых Ni с дополнением пентландита и халькопирита. Только 2/3 от всех исследованных сульфидных включений дают разумные модельные возраста. Модельные возраста большинства сульфидных включений варьируют от 2.4 до 3.5 Ga [26]. Главные пики времени их образования находятся в интервале 2.9 и 3.2. Ga (рис. 10). Мультивключения сульфидов были найдены и проанализированы в 10 оливинах. В большинстве случаев комбинации различных сульфидов в пределах отдельных зерен оливинов не дают Re-Os изохрон со значащими возрастами. Это предполагает, что эти включения представляют захваченные сульфиды различных генераций в одном зерне оливина [26].

Большинство Re-Os определений принадлежит датированию сульфидов в мантийных ксенолитах и алмазах из кимберлитов. Характеристики распределения изотопов Re и Os в ксенолитах мантии получены для пород в целом и обеспечивают возраста от 2.8 до 3.2 Ga для мафитовых и ультрамафитовых ксенолитов из якутских кимберлитов [41-44, 52]. Отношение изотопов Re-Os сульфидных включений в алмазы дает возраста образцов для Сибирской мантии, изменяющиеся от 2.8 до 3.5 Ga [44]. Как показано результатами *in-situ* Re-Os анализа сульфидных включений в оливинах Удачной, их возраста изменяются от 2.4-3.5 Ga с двумя пиками в 2.9 и 3.2 Ga [29]. Вероятно, они отражают главные события в СКЛМ Сибирской платформы.

Используя вышеприведенные данные, можно полагать, что большая СКЛМ под трубкой Удачная и, следовательно, под Сибирским часть кратоном, была сформирована в интервале 3.4 - 2.9 Ga, в результате одного или более процессов плавления и дифференциации протовещества [29, 42]. Результаты Re-Os изучения изотопов сульфидных включений в мегакристах оливина из кимберлитов показывают, что СКЛМ Сибирского кратона была стабилизирована преимущественно между 3.0 и 2.8 Ga назад. Главный пик значений Т_{МА} сульфидов в оливинах около 2.9 Ga (см. рис. 10) совпадает со временем кратонизации и окончанием главного этапа формирования СКЛМ, а также, вероятно, с повторным плавлением и образованием эклогитов [8, 29, 41, 47]. Несколько сульфидных включений в оливинах, имеющих низкий -Re/Os и T_{MA} =1.5-2.6 Ga, могут представлять новые дополнения к литосфере, и быть связаны с последними тектоническими событиями и нарушениями Re-Os систематик метасоматическими событиями. Эти результаты ясно демонстрируют сложную историю СКЛМ Сибирского кратона. Более молодое (протерозой) Re истощение возрастов интерпретируется, в основ-

Рис. 10. Обобщенная спектр-диаграмма модельных (T_{MA}) возрастов сульфидных включений в оливинах из трубки Удачная.

ном, как результат открытого поведения системы в течение последующей магматической деятельности и, вероятно, метасоматоза [29]. Такой возможный сценарий сложной истории Re-Os систематик подтверждает длительность формирования и эволюции литосферной мантии под Сибирского кратоном. Этот сценарий совместим с ограниченными данными относительно формирования коры в Далдынском и других террейнах [8].

Суммируя результаты исследований метасоматических процессов в ультрамафитах якутских кимберлитов, возможно выдвинуть следующие положения: а) развитие метасоматических минералов или обогащение примесными элементами наблюдается почти во всех разновидностях ксенолитов; б) наиболее явное проявление модального метасоматоза замещение первичных минеральных фаз флогопитом с дополнением шпинели и других минералов и развитие келефитовых кайм. Распределение примесных элементов в гранатах и их келефитах предполагает глубинное в) другое происхождение келефитизации; свидетельство модального метасоматоза в ксенолитах перидотитов - замещение орто- и клинопироксена водосодержащими и рудными фазами и развитие пузырей частичного плавления, состоящих ИЗ новых водосодержащих фаз В гранатах грубозернистых пироксенитов; г) метасоматические процессы обычно синхронизированы или очень близки к стадиям деформации пород мантии; д) согласно Re-Os определениям сульфидных включений в оливинах из Удачной, Os система была нарушена магматическими и метасоматическими событиями, которые имели место после формирования СКЛМ Сибирского кратона от 2.8 до 2.0 Ga; е) одна из стадий мантийного метасоматоза СКЛМ около 1.8 Ga подтверждена U-Pb SHRIMP-датированием циркона в метасоматизированном Gt-пироксените из Удачной; з) метасоматоз и процессы деформации более интенсивно проявлены в ксенолитах центральной части (Далдыно-Алакитский район) кимберлитовой провинции.

Метасоматоз и образование алмазов

<u>Многостадиальный рост алмазов</u>

Исследования кристаллов алмазов методами двупреломления, лазерной и катодолюминесценции показывают, что меньше 50 % алмазов из кимберлитов образовались в одноактном процессе [53]. Сложный рост демонстрируют многие алмазы, что отражается в их зональном строении, деформации, прерывистом и повторном росте, что весьма очевидно демонстрируется картинами внутреннего строения кристаллов полученным при исследовании алмазных пластин с помощью катодолюминесценции (рис. 11). Октаэдрические внешние формы кристаллов могут иметь центральные зоны различных форм. Это свидетельствует о том, что алмазы имеют многостадиальный и прерывистый рост, который отражает изменения окружающей среды и РТ-параметров в процессе их образования.

Существует ряд доказательств, что алмазы – ксенокристы в кимберлитах, наряду с ильменитом, гранатом и цирконом [12, 48, 53]. Однако имеется множество противоречий, которые трудно объяснить, при условии, что все алмазы в мантии кристаллизовались на первом этапе или одновременно с другими породообразующими минералами эклогитов или перидотитов.

Сложная и многоуровневая история роста установлена для части алмазов обоих основных ассоциаций мантийных пород, т.е. кристаллов с эклогитовым или перидотитовым парагенезисами. Это отражено в зональном росте алмазов, резорбции и деформации кристаллов и их более поздней Исследование перекристаллизации. больших кристаллов алмазных октаэдрического габитуса показало, что их центральные зоны могли иметь кубические, округлые, различные формы: кубо-октаэдрические или октаэдрические [16]. Это свидетельствует, ЧТО рост алмазов был прерывистый во времени, многостадиальный И что соответствовало изменениям химического состава среды их формирования и РТ-условий, а также вероятно, вариациям летучих и других подвижных компонентов, в первую очередь азота.

Свидетельства многостадиального роста алмазов достаточно убедительны и включают: (1) острые границы между зонами, имеющими различное содержание азота и его агрегатное состояние; (2) большие разли-

Рис. 11. Примеры зонального и мультистадийного роста алмазов по данным их катодолюминесценции.

чия в δ^{13} С и δ^{15} N во внутренних и внешних частях алмазов; (3) изобилие сульфидных включений, неоднородное их распределение в различных зонах и разнородность состава изотопов серы; (4) обнаружение комбинированных ассоциаций включений эклогитового и перидотитового парагенезисов в одном кристалле; (5) разнородность δ^{34} S, также как изотопов Pb сульфидов внутри отдельно взятых кристаллов алмаза. Соответствующие литературные ссылки и обсуждение вышеперечисленных фактов приведены в работах [54, 55, 61].

Несколько этапов формирования алмазов в мантии обосновывается результатами исследования включений в кристаллах из ряда кимберлитовых трубок Южной Африки [45]. Убедительное свидетельство было получено недавно благодаря Re-Os изотопному датированию индивидуальных сульфидных включений в алмазах из кимберлитов Коффифонтейна [43], которые дают два эпизода кристаллизации сульфидных включений и, соответственно, два возраста формирования алмазов.

Метасоматический рост алмазов в эклогитах

Алмазоносные эклогиты содержат петрографические и фотографические свидетельства, что, по меньшей мере, часть алмазов в них образовалась после формирования породы. Такими свидетельствами являются: а) практически

полное отсутствие алмазов внутри зерен первичных породообразующих гранатов; б) общее наблюдение, что в пределах отдельных образцов алмазы приурочены к зонам деформации или коррелируются с прожилками продуктов частичного плавления и изменения эклогитов; в) очевидная резорбция и особенности роста алмазов в этих зонах изменения; г) присутствие метасоматизированного с признаками частичного плавления ("губчатая" структура) клинопироксена в зонах изменения, а также в виде включений в алмазах [59]. Некоторые примеры метасоматического роста отдельных кристаллов даны на рис. 12.

Имеется ряд других прямых доказательств о вторичном росте алмазов и их взаимосвязи с процессами метасоматоза и частичного плавления. К ним можно отнести следующие: а) находки фаз частичного плавления в виде включений в алмазах трубки Мир и в кубических кристаллах из Заира и Ботсваны [16, 40], б) находки флогопита и плагиоклаза в алмазах трубки Монастери [40], в) обнаружение сингенетичных включений метасоматических минералов в алмазах [17, 33], г) недавнее сообщение об обнаружении микроалмазов метасоматического происхождения в ксенолитах Gt-пироксенитов - представителях мантии под Гавайями [67].

В результате исследования алмазов в эклогитовых ксенолитах из трубки Удачная, было установлено, что в редких образцах имеются два типа кристаллов, различных по морфологии, цвету, физическим и другим свойствам, которые могут быть идентифицированы с двумя исторически независимыми стадиями роста, соответственно, различными РТ-условиями или состояниям среды алмазообразования [55].

Большие монокристаллы главным образом октаэдрической формы вероятно были сформированы в более стабильных условиях и росли по тангенциальному закону [16], возможно, одновременно с основными породообразующими минералами эклогитов. Их рост В процессе метасоматоза также не исключен [64, 65]. Такие алмазы первой генерации в нередко содержат признаки индивидуальных ксенолитах сложной последующей истории - они могут быть искажены, содержать линии скольжения и следы пластической деформации, иногда нарушены и резорбированы [61].

В некоторых эклогитах наблюдается очевидная закономерность в распределении алмазов второй генерации [55], когда микроалмазы расположены по зонам частичного плавления или в келефитовых каймах вокруг гранатов, а также по общим зонам основных метасоматических изменений. Такое расположение алмазов было зафиксировано в ксенолитах эклогитов из Удачной, Сытыканской и других трубок Якутии. Алмазы второго поколения представлены кубами, алмазами в оболочке (возможно только оболочки этих кристаллов), и микроалмазами. Оболочки на алмазах и кубы были сформированы по неправильному механизму роста в условиях высокой степени пересыщения углеродом окружающей среды или питающих

Рис. 12. Алмазы, ассоциирующие с продуктами частичного плавления.

(a) Микроалмазы в продуктах частичного плавления (Образец Уд-24 в BSE + CL). (b) Алмаз с включениями вторичного клинопироксена и других фаз частичного плавления (Образец Уд-161 в BSE). (c) Алмаз с неярко выраженной зональностью во вторичном клинопироксене с секущими прожилками продуктов частичного плавления (Образец У-388 в BSE + CL). (d) Зональный кристалл скелетного алмаза с признаками резорбции частичным расплавом, расположенный между частично остеклованным клинопироксеном со "spongy" структурой и гранатом (Образец Уд-45 в BSE + CL).

флюидов. Такие условия могут быть реализованы на последних стадиях частичного плавления, когда расплав, был обогащен углеродом. Наиболее вероятно они росли при более низких РТ- условиях и кристаллизовались из сульфидно-силикатного расплава, обогащенного флюидными компонентами.

Эти факты и также возникновение алмазов в ряде эклогитов, когда вторичный характер алмазов в них очевиден (рост алмазов между и вокруг зерен породообразующих минералов и приуроченность кристаллов к прожилкам продуктов частичного плавления) позволяют выдвинуть гипотезу *позднего метасоматического образования алмазов* в некоторых эклогитах. Реальное доказательство подобной возможности - распределение алмазных кристаллов в продуктах частичного плавления и вокруг сегрегаций граната. Очевидно, что алмазы росли вокруг уже сформированных гранатов, к тому же в некоторых случаях алмазы второй генерации приурочены к келефитовым каймам вокруг граната и расположены в прожилках частичного плавления в клинопироксене [55, 59].

Взаимосвязь между процессом частичного плавления и ростом алмаза Существует несколько исследований, возможна. В которых весьма продемонстрировано, что алмазы подвергаются многостадиальному и прерывистому росту, что вызвано изменениями химического состава и РТусловий окружающей среды, например, [16, 54, 55, 59, 61, 65]. В частности, волокнистые алмазы содержат флюиды, которые высоко обогащены K, Na и другими несовместимыми элементами [40 и ссылки там же]. Недавно в соавторстве с другими опубликованы данные о Д.А.Зедгенизовым калийсодержащем клинопироксене включенном в алмаз из кимберлитовой представленное трубки Сытыканская [13]. Ядро этого включения, омфацитом, который окружен стекловатой оторочкой. Эти фазы выглядят подобно пироксенам эклогитов, вовлеченным в процесс частичного плавления с воздействием флюидов, которые в данном случае, вероятно, ответственны за плавление и образование стекловатой оторочки. Вполне возможно, что оторочки на оболочечных алмазах образовались в породах мантии, подвергнутых частичному плавлению, и выросли в результате подобного процесса. Другие алмазы, такие как кубы и микроалмазы, возможно, росли в результате проникновения метасоматических флюидов.

Не имеется, никаких однозначных свидетельств, на какой стадии мантийного метасоматоза или частичного плавления зарождались и росли алмазы, однако, взаимосвязь между ростом алмазов и частичным плавлением вполне вероятна. Это касается как роста оторочек и "рубашек" на кристаллах в стабильных и метастабильных условиях, так и резорбции алмазов, как показано на рис. 10 с, d. Предполагается, что метасоматический рост алмазов в ксенолитах эклогитов был неоднократным и был связан с частичным плавлением. Этот процесс мог иметь место в различные моменты эволюции мантии, и в некоторых случаях, вероятно, был связан с воздействием флюидов, предшествовавших внедрению кимберлитовых магм.

Заключение

Согласно Re-Os и Sm-Nd датировкам СКЛМ Сибирской платформы была сформирована в Архее. Вертикальная и латеральная неоднородности СКЛМ - результат первичной дифференциации вещества мантии, более позднего дополнения субдуцированной океанической коры в центральной части платформы и последующих преобразований процессами глобального метасоматоза и связанных с ним тектонических деформаций.

В кимберлитах Якутии ксенолиты эклогитов и других пород основного состава содержат свидетельства проявления процессов метасоматоза и частичного плавления. Модальный и скрытый метасоматоз распространен также в ксенолитах ультрамафитов из кимберлитов. Эти процессы часто взаимосвязаны с тектонической деформацией мантийных пород, вероятно, происходили неоднократно в СКЛМ Сибирского кратона, были более интенсивны в центральной части кимберлитовой провинции и коррелируются с главными тектоно-магматическими событиями, фиксируемыми в земной коре.

В большинстве трубок различных кимберлитовых полей Якутии разнообразие и распределение петрографических типов мантийных ксенолитов сходно, что свидетельствует о подобии СКЛМ Сибирского кратона, в целом. В то же время, эволюция СКЛМ различных районов внутри кимберлитовой провинции могла быть различна как по интенсивности развития мантийного метасоматоза, частичного плавления и тектонических деформаций, так и по времени проявления этих процессов и других тектономагматических событий.

Предполагается, что метасоматический рост алмазов в ксенолитах эклогитов мог быть близко связан с глобальным мантийным метасоматозом, который в свою очередь явился основной причиной частичного плавления. Согласно гипотезе метасоматического образования алмазов их рост мог происходить в мантийных условиях неоднократно как на различных этапах эволюции СКЛМ Сибирского кратона, так и незадолго до внедрения кимберлитовых магм при активном участии протокимберлитовых флюидов.

Благодарности

Я благодарю Билла Гриффина, Сюзанну О'Рейли и Вэйни Тейлора за совместные исследования с использованием ISPMS содержаний элементовпримесей в минералах из ксенолитов, а также за гостеприимство и финансовую поддержку в течение нескольких посещений Австралии. Автор глубоко признателен Брендону Гриффину за его поддержку в проведении электронно-зондовых исследований микроалмазов и вторичных минералов в Автор благодарен Александру Иванову эклогитах. за помощь микрозондовыми анализами и получение сканирующих электронных изображений, а также признателен Лэрри Тейлору за обсуждение процессов частичного плавления в ксенолитах, что помогло лучше понять их природу.

Литература

- 1. Бобриевич А.П., Бондаренко М.Н., Гневушев М.А. и др. Алмазные месторождения Якутии.-М.:Госгеолтехиздат, 1959.-525 с.
- 2. Буланова Г.П., Специус З.В., Лескова Н.В. Сульфиды в алмазах и ксенолитах из кимберлитовых трубок Якутии. Новосибирск, Наука, 1990, 120 с.
- 3. **Пономаренко А.И.**, 1977. Частичное плавление в эклогитах (природные процессы), Доклады АН СССР, 235, 1416-1418.
- 4. Пономаренко А.И., Лескова Н.В., 1980. Особенности химического состава минералов алькремитов из кимберлитовой трубки Удачная. Доклады АН СССР, 252, №3, 707-711.
- 5. **Пономаренко А.И., Серенко В.П., Лазько Е.Е.,** 1973. Первые находки алмазоносных эклогитов в кимберлитовой трубке "Удачная". Докл. АН СССР, 209, №1, 188-189.
- 6. **Пономаренко А.И., Соболев Н.В., Похиленко Н.А. и др.,** 1976. Алмазоносный гроспидит и алмазоносные дистеновые эклогиты из кимберлитовой трубки "Удачная", Якутия. Докл. АН СССР, т. 226, №4, 927-930.

- 7. Пономаренко А.И., Специус З.В., Любушкин В.А., 1977. Кианитовый эклогит с коэситом. Докл. АН СССР, 236, № 1, 21-22.
- 8. Розен О.М., Серенко В.П., Специус З.В., Манаков А.В., Зинчук Н.Н., 2002. Якутская кимберлитовая провинция: положение в структуре Сибирского кратона, особенности состава верхней и нижней коры. Геология и геофизика, № 1, 3-26.
- 9. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск, Наука, 1974, 264 с
- 10. Соловьева Л.В., Владимиров Б.М., Днепровская Л.В. и др. Кимберлиты и кимберлитовые породы: Вещество верхней мантии под древними платформами. Новосибирск: ВО «Наука», 1994, 238 с.
- 11. Специус З.В., Пономаренко А.И., 1979. Аморфизованные эклогиты представители астеносферы Земли, Доклады АН СССР, 235, 1415-1419.
- 12. Специус З.В., Серенко В.П. Состав континентальной верхней мантии и низов коры под Сибирской платформой. М.: Наука, 1990. 272 с.
- 13. Зедгенизов Д.А., Логвинова А.М., Шацкий, В.С., Соболев, Н.В., 1998. Включения в микроалмазах из кимберлитовых трубок Якутии. Доклады РАН, 359, 74–76.
- Beard, B. L., Fraracci, K. N., Taylor, L. A., Snyder, G. A., Clayton, R. N., Mayeda, T. and Sobolev, N. V., 1996. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib. Mineral. Petrol. 125, 293-310.
- 15. **Brenan, J.M., Shaw, H.F., Ryerson, F.J. and Phinney, D.L.,** 1995. Mineral-aqueous fluid partitioning of trace elements at 900oC and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 55, 2203-2214.
- 16. Bulanova, G.P., 1995. The formation of diamond. J. Geochem. Explor. 53, 1-23.
- 17. Bulanova, G.P., Muchemwa, E., Pearson, D.G., Griffin, B.J., Kelly, S.P., Klemme, S. and Smith, C.B., 2003. Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe) evidence for metasomatic conditions of growth. Ext. Abstracts of 8th Intern. Kimberlite Conf., Victoria, Canada.
- 18. Chinner, J. A. and Cornell, D. H., 1974. Evidence of kimberlite-grospydite reaction. Contribution Mineralogy and Petroogy, 45, 153-160.
- 19. Dawson, J. B., 1980. Kimberlites and their xenoliths. Berlin: Springer-Verlag, 252p.
- 20. **Dawson, J.B.,** 1987. Metasomatized harzburgites in kimberlite and alkaline magmas: enriched restites and "flushed" lherzolites. In: Menzies, M.A. and Hawkesworth, C.J. (eds) Mantle metasomatism. London: Academic Press, pp. 125-144.
- 21. **Dawson, J. B.,** 2002. Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, Northern Tanzania. Journal of Petrology 43, 1749-1777.
- 22. **Downes, H.,** 2001. Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. Journal of Petrology 42, 233-250.
- 23. Erlank, A.J., Water, F. G., Hawkesworth, C. J., Haggerty, S. E., Allsopp, H. L., Rickard, R. S., and Menzies, M., 1987. Evidence for mantle metasomatism in peridotite nodules from kimberlite pipes, South Africa. In: Menzies, M.A. and Hawkesworth, C.J. (eds) Mantle metasomatism. London: Academic Press, pp. 221-311.
- 24. **Fadili, S. El. and Demaiffe, D.,** 1999. Petrology of eclogite and granulite nodules from the Mbuji Mayi Kimberlites (Kasai, Congo): Significance of kyanite-omphacite intergrowths. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D. and Richardson, S.H. (eds) Proceedings of 7th Intern. Kimberlite Conf. 1, Cape Town: Red Roof Design, 205-213.

- 25. Franz, L., Brey, G.P. and Okrusch, M., 1995. Metasomatic requuilibration of mantle xenjliths from the Gibeon kimberlite province (Namibia), Ext. Abstracts of 6th Intern. Kimberlite Conf., Novosibirsk, Russia, 169-171.
- 26. Griffin, W.L, Spetsius, Z.V., Pearson, N.J., and O'Reilly, S.Y., 2002. In-situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochemistry, Geophysics, Geosystems 1, N 11. GC000287.
- 27. Harte, B., Winternburn, P.A., and Gurney, J.J., 1987. Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies, M.A. and Hawkesworth, C.J. (eds) Mantle metasomatism. London: Academic Press, pp. 145-220.
- 28. Hoal, K.E.O., Hoal, B.G., Erlank, A.J., and Shimizu, N., 1994. Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth and Planetary Science Letters 126, 303-313.
- 29. Ireland, T. R., Rudnick, R. L and Spetsius, Z. V., 1994. Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth and Planetary Science Letters 128, 199-213.
- 30. Jacob, D., and Foley, S.F., 1999. Evidence for Archean oceanic crust with low high field strength element signature from diamondiferous eclogite xenoliths, Lithos 48, 317-336.
- 31. Kinny, P.D., Black, L.P. and Sheraton J.W., 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands. Antarctic Science 5, 193-206.
- 32. Kinny, P.D., Trautman R.L., Griffin B.J., Fitzsimons, I.C.W. and Harte B. 1999. Carbon isotopic composition of microdiamonds. Proceeding of 7th International Kimberlite Conference 1, 429-436.
- 33. Kopylova, M.G., Rickard, R.S., Kleyenstueber, A., Taylor, W.R., Gurney, J.J. and Daniels, L.R., 1997. First occurrence of strontian K-Cr loparite and Cr chevkinite in diamonds. The 6th IKC proceeding, Russian Geology and Geophysics 38, 405-420.
- 34. Lappin, M.A., 1978. The evolution of a grospydite from Roberts Victor Mine, South Africa. Contribution to Mineralogy and Petroogy 66, 229-241.
- 35. McCormick, T. C., Smyth, J. R. and Caporuscio F. A., 1994. Chemical systematics of secondary phases in mantle eclogites. In: Meyer, H.O.A. and Leonardos O.H. (ed) Kimberlites, related rocks and mantle xenoliths. Rio de Janeiro: Spec. Publ., Companhia de Pesquisa de Recursos Minerais, 405-419.
- 36. McDonough, W. F. and Sun, S. S., 1995. The composition of the Earth. Chemical Geology 120, 223-253.
- 37. **Menzies, M. A.**, 1990. Petrology and geochemistry of the continental mantle: an historical perspective. In: Menzies M.A. (ed) Continental mantle. Oxford: Science Publication, 50-54.
- 38. **Meyer, H.O.A.**, 1985. Genesis of diamond: a mantle saga. American Mineralogist 70, 344-355.
- 39. **Navon, O.**, 1999. Diamond formation in the Earth's mantle. The 7th IKC proceeding 2, 584-605.
- 40. **O'Reilly, S.Y. and Griffin, W.L.,** 1995. Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: P-T-X controls, Chemical Geology 121, 105-130.
- 41. Pearson, D.G., 1999. The age of continental roots. Lithos 48, 171-194.
- 42. Pearson, D. G., Shirey, S. B., Carlson, R. W., Boyd, F. R., Pokhilenko, N. P. and Shimizu, N., 1995. Re-Os, Sm-Nd and Rb-Sr isotope evidence for think Archaean lithospheric mantle beneath the Siberia craton modified by multistage metasomatism. Geochimica et Cosmochimica Acta 59, 959-977.

- 43. **Pearson, D.G., Shirey, S.B., Harris, J.W. and Carlson, R.W.,** 1998. Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S. Africa: constraints on diamond ages and mantle Re-Os systematics. Earth and Planetary Science Letters 160, 311-326.
- 44. **Pearson, D.G., Shirey, S.B., Bulanova, G. P., Carlson, R.W. and Milledge, H.J.,** 1999. Re-Os isotopic measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochimica et Cosmochimica Acta 63, 703-711.
- 45. Richardson, S. H., Harris, J. W. and Garney, J. J., 1993. Three generations of diamonds from old continental mantle. Nature 366, 256-258.
- 46. Shimizu, N. and Richardson, S. H., 1987. Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochimica et Cosmochimica Acta 51, 755-758.
- 47. Shirey, S.B., Carlson, R.W., Richardson, S.H., Menzies, A., Gurney, J., Pearson, D.G., Harris, J.W. and Wiechert, U., 2001. Archean emplacement of eclogitic components into the lithospheric mantle during formation of the Kaapvaal Craton. Geophysics Research Letters 28, p. 2509-2512.
- 48. **Sobolev, N.V.,** 1977. Deep-seated Inclusions in Kimberlites and the Problem of Upper Mantle Composition, Novosibirsk: Nauka, Engl. Translation by Brown, D.A., and Boyd, F.R., (ed.), American Geophysics Union, Washington, D.C., 279 p.
- 49. Sobolev, V.N., Taylor, L.A., Snyder, G.A Jerde, E.A., Neal, C.R. and Sobolev, N.V., 1999. Quantifying the Effects of metasomatism in mantle xenoliths: Constraints from secondary chemistry and mineralogy in Udachnaya eclogites, Yakutia, In'l. Geology Review 41, 391-416.
- 50. Sobolev, V.N., Taylor, L.A., Snyder, G.A., Sobolev, N.V., Pokhilenko, N.P. and Kharkiv, A. D., 1997. A unique metasomatized peridotite from the Siberian Platform. Proceedings of 6th Intern. Kimberlite Conf. 1: Kimberlites, Related Rocks, and Mantle Xenoliths. Russian Geology and Geophysics 38, 218-228.
- 51. Snyder, G.A., Taylor, L.A., Crozaz, G., Halliday, A.N., Beard, B.L, Sobolev, V.N. and Sobolev, N.V., 1997. The origin of Yakutian eclogite xenoliths. Journal of Petrology 38, 85-113.
- 52. Snyder, G.A., Taylor, L.A., Crozaz, G., Halliday, A.N., Beard, B.L., Sobolev, V.N. and Sobolev, N.V., 1998. The diamond-bearing Mir eclogites, Yakutia: Nd and Sr isotopic evidence for the continental crustal imput in an Archean oceanic environment. Ext. Abstracts of 7th Intern. Kimberlite Conf., Cape Town, South Africa, pp. 826-828.
- 53. **Spetsius, Z.V.,** 1995. Occurrence of diamond in the mantle: a case study from the Siberian Platform. Journal of Geochemical Exploration 53, 25-39.
- 54. **Spetsius, Z. V.,** 1995. Diamondiferous eclogites from Yakutia: Evidence for a late and multistage formation of diamonds. Ext. Abstracts of 6th Intern. Kimberlite Conf., Novosibirsk, 572-574.
- 55. **Spetsius, Z.V.,** 1999. Two generation of diamonds in the eclogite xenoliths. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D. and Richardson, S.H. (eds) Proceedings of 7th Intern. Kimberlite Conf. 2. Cape Town: Red Roof Design, 823-828.
- 56. **Spetsius, Z.V. and Griffin, B.J.**, 1998. Secondary phases associated with diamonds in eclogites from the Udachnaya kimberlite pipe: Implications for diamond genesis, Ext. Abstracts of 7th Intern. Kimberlite Conf., Cape Town, South Africa, 850-852.
- 57. **Spetsius, Z.V. and Griffin, W. L.,** 1997. Trace elements in minerals from eclogites from the Udachnaya kimberlite pipe, Yakutia. Proceedings of 6th Intern. Kimberlite Conf., Russian Geology and Geophysics 38, 240-246.
- 58. **Spetsius, Z.V. and Griffin, W.L.,** 1998. Trace element composition of garnet kelyphites in xenoliths from Udachnaya as evidence of their origin. Ext. Abstracts of 7th Intern. Kimberlite Conf., Cape Town, South Africa, 853-855.

- 59. **Spetsius, Z.V. and Taylor, L.A.,** 2002. Partial Melting in Mantle Eclogite Xenoliths: Connection with Diamond Paragenesis. In'l. Geology Review 44, 973-987.
- 60. **Spetsius, Z.V. and Taylor, L.A.,** 2003. Kimberlite xenoliths as evidence for subducted oceanic crust in the formation of the Siberian craton. Proceedings of 3d Intern. Workshop: Plumes and problem of deep sources of alkaline magmatism. Irkutsk, 5-19.
- 61. **Spetsius, Z.V. and Taylor, L.A.,** 2003. Metasomatic diamonds in eclogite xenoliths: petrologic and photographic evidence. Ext. Abstracts of 8th Intern. Kimberlite Conf., Victoria, Canada.
- 62. **Spetsius, Z.V., Taylor, W.R. and Griffin, B.J.,** 1998. Major and trace-element partitioning between mineral phases in diamondiferous and non-diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia. Ext. Abstracts of 7th Intern. Kimberlite Conf., Cape Town, South Africa, 856-858.
- 63. Switzer, G. and Melson, W. G., 1969. Partially melted kyanite eclogite from the Roberts Victor mine. South Africa, Smithsonning Contribution Earth Science 1, 1-9.
- 64. Taylor, L.A., Milledge, H.J., Bulanova, G.P., Snyder, G.A. and Keller, R.A. 1998. Metasomatic eclogitic diamond growth: evidence from multiple diamond inclusions. Int. Geol. Rev. 40, 663-676.
- 65. Taylor, L. A., Keller, R. A., Snyder, G. A., Wang, W. Y., Carlson, W. D., Hauri, E. H., McCandless, T., Kim, K.R., Sobolev, N. V., 2000. Diamonds and their mineral inclusions, and what they tell us: A detailed "pull-apart" of a diamondiferous eclogite. Int. Geol. Rev. 42, 959-983.
- 66. **Vischnevsky, A.A.,** 1991. Kelyphites on garnets in mantle xenoliths and kimberlites: compositions, genesis, petrological applications. Extended Abstracts of 5th International Kimberlite Conference, Araxa, Brasilia, pp. 571-572.
- 67. Wirth, R., and Rocholl, A., 2003. Nanocrystalline diamond from the Earth's mantle underneath Hawaii. Earth and Planetary Science Letters 211, 357-369.