РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ В КОРЕ ВЫВЕТРИВАНИЯ ЖЕЛЕЗИСТЫХ КВАРЦИТОВ БОЛЬШЕТРОИЦКОГО МЕСТОРОЖДЕНИЯ КМА

И. И. Никулин

ООО «Белгородская горнодобывающая компания» (г. Белгород)

Поступила в редакцию 24 января 2014 г.

Аннотация: проводится анализ данных состава редких и редкоземельных элементов в породах довизейской коры выветривания, развитой по железистым кварцитам и филлитовидным сланцам Большетроицкого месторождения. Впервые на месторождении проведен ICP-MS анализ и выделены отличительные особенности железных и железо-алюминиевых руд. Кора выветривания представлена преимущественно ассоциациями с Sr, Zr и Ba.

Ключевые слова: редкоземельные элементы, редкие элементы, богатые железные руды, выветрелые филлитовидные сланцы, кора выветривания, гематит, гётит, гидрогематит, бертьерин, шамозит, месторождение.

Abstract: by results of the analyze the data of rare and rare-earth elements in rocks before-vize (before carbonian era) weathering crust developed by ferruginous quartzites and Bolshetroitsky field. Power weathering crust reaches 300 m at the field for the first time held ICP-MS analysis and highlighted features of iron and iron-aluminum ores. Primarily associations with Sr, Zr and Ba represent weathering crust. **Key words:** rare earth elements, trace elements, high-grade iron ore, weathered fillito-shales, weathering crust, hematite, goethite, hydrohematite, berthierine, chamosite, deposit.

Большетроицкое месторождение богатых железных руд, его стратиграфическое и литологическое положение считаются изученными [1; 2], а также раскрыта [3] и уточнена [4] минеральная типизация, неоднократно рассмотрены вопросы распределения редкоземельных элементов в коре выветривания курской серии КМА [5]. Детально изучены и проанализированы бемитовый и гиббситовый типы профилей коры выветривания юго-западной части КМА (Белгородский район), изучены бокситоносные коры выветривания в пределах Висловского месторождения [6]. Остается открытым вопрос распределения редкоземельных элементов в коре выветривания, представленной богатыми железными рудами, - зоне окисления «голов» кварцитов и филлитовидных сланцев.

Железорудная кора выветривания захоронена под палеоген-каменноугольным осадочным чехлом мощностью 425–510 м. В основании нижнекаменноугольных отложений почти повсеместно, особенно в понижениях древнего рельефа, прослеживаются переотложенные богатые железные руды мощностью от 0 до 20 м. Во многих случаях под ними залегают выветрелые надрудные сланцы kr₄, частично преобразованные в бокситы и железоглиноземистые руды мощностью до 60–70 м. Мощность большетроицкой коры варьирует от 80 м до 300 м на железистых кварцитах (рис. 1) и до 50–70 м – на сланцах, по которым местами образовывались бокситы.

На Западном участке Большетроицкого месторождения вещественный состав богатых руд систематически изучен от слабо измененных и редко мартитизированных кварцитов до перекрывающих залежь железорудных осадочных конгломерато-брекчий визейского времени.

На предмет исследования распределения РЗЭ использовался метод индуктивно связанной плазмы масс-спектроскопии (ICP-MS, спектрометр X-7 ThermoScientific (USA)) - 141 проба. Определение состава минералов в шлифах проводилось при помощи энерго-дисперсионного анализатора Inka-250 -205 шлифов. Исследование керна (1053 разновеликих интервалов) железорудных образований проводилось спектрофотометрическим, атомно-абсорбционным и титриметрическим анализами на приборах Agilent 8567g; DL-22; СФ-26; С-302. При калибровке спектрометра использованы отраслевые и государственные стандартные образцы химического состава горных пород и рудных концентратов. Анализы выполнены по методикам НСАМ ВИМС, обеспечивающим получение результатов III категории точности количественного анализа по ОСТ РФ 41-08-205-99. Данная категория точности применяется для массового ана-

[©] Никулин И. И., 2014

ВЕСТНИК ВГУ. СЕРИЯ: ГЕОЛОГИЯ. 2014. № 1

ломы (a); ось зоны дробления (b); II – аномалия редких элементов. Расстояние между скважинами 25р и 30р – 800 м (пропуск около 500 м)

лиза проб минеральных веществ, контрольных анализов и при подсчете запасов МПИ. Потери при прокаливании определены гравиметрически при температуре 950 °C.

Локальный рентгено-спектральный анализ элементного состава (микрозонд) проводился с помощью системы OXFORD INS – 190 образцов. Локальность определения анализа составляла 2–5 µм. Измерения осуществлялись в разных точках образца.

Вещественный состав железорудных образований коры выветривания месторождения изучен в интервале глубин по четырем геологоразведочным профилям (V-400, V, V+400, V+1200). Породы сложены гематитом, псевдоморфозой гематита по магнетиту (мартитом) и в меньшей степени магнетитом. Минералы, слагающие цемент скальных разновидностей железных руд, представлены сидеритом и доломитом, что объясняет видоизменение руд под влиянием последующих процессов (постгипергенного углекислокальциевого метасоматоза с некоторым присутствием щелочей), сопровождающихся широким развитием в рудах карбонатов.

Минералами-примесями являются бертьерин, шамозит и кварц. Вторичные минералы в небольшом количестве представлены апатитом, кальцитом. В остальном железорудная зона окисления (кора выветривания), развитая по кварцитам, характеризуется крайней бедностью элементами-примесями.

По основным результатам валовых химических анализов для анализа методом ICP-MS выбраны восемь типов пород: 1) гидрогематитовый; 2) переходный гидрогематит-гётитовый; 3) лимонит-гётитовый; 4) карбонатно-мартит-гематитовый; 5) гематит-мартитовый; 6) магнетит-гематит-мартитовый сильноокисленных межрудных сланцев; 7) выветрелых филлитовидных сланцев; 8) силикатных бокситоносных выветрелых надрудных филлитовидных сланцев. Они характеризуются следующими химическими составами (табл. 1).

Гидрогематитовый тип пород представляет собой бардовые, рыхлые и полурыхлые разновидности железных руд, сложенные преимущественно гидрогематитом с незначительными примесями мартита, бертьерина и шамозита. Наличие редких и редкоземельных элементов имеет постоянное распределение (табл. 2). Выделяется As-Pb-Sr-Zr-Ba-ассоциация (рис. 2, *a*). В образцах с заметным количеством бертьерина количество циркония увеличивается до 0,23 · 10³ ppm.

Переходный гидрогематит-гётитовый тип пород представляет собой рыхлые разновидности железных руд (от светло-коричневых до темно-коричневых), сложенные преимущественно гидрогематитом и гётитом с незначительными примесями мартита и бертьерина. Наличие редких и редкоземельных элементов имеет незакономерное распределение. Выделяется Nb-Sr-Zr-Ba-ассоциация (рис. 2, б). В образцах с заметной примесью бертьерина содержание бария незначительно уменьшается и возрастает количество Zr до 0,28 · 10³ ppm.

Лимонит-гётитовый тип пород представляет собой ярко-желтые рыхлые разновидности железных руд, сложенные преимущественно гётитом и гидрогётитом. Наличие редких и редкоземельных элементов имеет постоянную Nb-Y-Sr-Zr-Ba-ассоциацию (рис. 2, *в*).

Карбонатно-мартит-гематитовый тип пород представляет собой от светло-серых до светло-голубых хорошо сцементированных разновидностей железных руд, сложенных преимущественно гематитом на карбонатном цементе с примесью мартита. Наличие редких и редкоземельных элементов имеет постоянное распределение (см. табл. 2). Выделяется постоянная Nb-Sr-Zr-Ba-ассоциация с некоторыми вариациями содержания бария.

Гематит-мартитовый тип пород представляет собой полурыхлые-полускальные разновидности железных руд (от светло- до тёмно-синих), сложенных преимущественно мартитом со значительной примесью гематита. Наличие редких и редкоземельных элементов имеет постоянное распределение Nb-Sr-Zr-Ba-ассоциации с редким присутствием мышьяка до 0,01 · 10³ ppm (см. табл. 2, рис. 2, *д*).

Магнетит-гематит-мартитовый тип пород сильноокисленных межрудных сланцев представляет собой полосчатые от светло- до темно-синих хорошо сцементированные разновидности железных руд, сложенные преимущественно мартитом с незначительной примесью гематита, магнетита и шамозита (типа хлорит). Наличие редких и редкоземельных элементов имеет неравнозначное соотношение с резким преобладанием стронция или бария (см. табл. 2, рис. 2, *е*). Наличие хлорита в образце ассоциируется с уменьшением количества бария до 0,075 · 10³ ррт. Заметное увеличение содержания гематита влияет на уменьшение количества циркониевой составляющей.

Выветрелые филлитовидные сланцы (7-й тип) представляют собой волнистые нечетко-полосчатые от бледных до ярких окрасов хорошо сцементированные разновидности железоалюминиевых руд, сложенные преимущественно бёмитом и гиббситом с незначительной примесью гидрогематита и слоистых силикатов (бертьерин, каолинит). Наличие редких и редкоземельных элементов имеет постоянную Ba-Zr-Sr-ассоциацию (см. табл. 2, рис. 2, *ж*). Редко отмечаются повышенные содержания мышьяка и тория. Наличие гидрогематита в образце ассо-

Химический состав осн	оиошиг хівнвоі	гических р	азновидно	остей поро	од, слаган	nyux kopy	เdшәยเจย	вания Бо.	odwəm91	аңкого ме	Та <i>сторож</i> д	блица 1 <i>ения</i>
						Элемен	тный соста	lB, %				
газновидность		Na_2O	MgO	Al ₂ O ₃	SiO_2	K_2O	CaO	TiO_2	MnO	Fe _{oóu.}	P_2O_5	SO ₃
	Содержание	0,05-0,32	0,05-0,93	1,15-32,47	2,66–29,72	0,03-0,8	0,11-2,8	0,02-1,07	0,01-0,03	58,84–94,62	0,05-0,25	0,01-0,14
т идрогематитовая	Среднее	0,13	0,24	5,69	8,1	0,23	0,75	0, 19	0,02	83,93	0,13	0,07
Переходная гидрогематит-	Содержание	I	0,05-0,23	3,39–17,7	1,16–3,18	0,03	0,37	0,02-0,38	0,01	75,28–92,52	0,11-0,28	0,05-0,07
гётитовая	Среднее	I	0,14	10,55	2,17	0,03	0,37	0,2	0,01	83,90	0,2	0,06
	Содержание	0,05-0,06	0,03-0,1	0,9–1,84	1,34–3,96	0,01-0,09	0,15-0,29	0,01-0,03	0,02	93,64–96,69	0,09-0,2	0,02-0,09
-	Среднее	0,05	0,06	1,45	2,46	0,06	0,23	0,02	0,02	94,62	0,14	0,06
Карбонатно-мартит-	Содержание	0,05	0,05–1,4	0,53–11,64	0,76-8,27	0,02-0,06	0,04–0,51	0,02-0,03	0,01-0,02	71,88–97,24	0,04–0,13	0,02-0,06
гематитовая	Среднее	0,05	0,39	3,12	3,08	0,05	0,22	0,02	0,01	91,45	0,09	0,05
Ĺ	Содержание	0,05	0,01-0,05	0,43-1,28	0,36–3,01	0,05-0,09	0,09-0,26	0,02	0,01-0,02	94,73–98,43	0,05-0,19	0,04-0,08
т сманит-мартитовая	Среднее	0,05	0,03	0,76	1,26	0,07	0,18	0,02	0,01	97,03	0,12	0,06
Магнетит-гематит-мартитовая сильноокисленных межрудных	Содержание	0,04–0,08	0,24–0,97	10,98–39,97	9,11–39,45	0,05–0,52	0,06–7,82	0,24–1,49	до 0,24	14,11–67,12	0,06–0,13	0,02-0,03
сланцев	Среднее	0,054	0,56	30,4	25,01	0,358	1,664	1,068	0,062	31,56	0,088	0,022
Выветрелых филлитовидных	Содержание	0,05	0,06-0,57	0,4-49,51	2,06–41,69	0,05-0,18	0,08–3,37	0,02–2,01	0,01-0,08	38,51–93,83	0,04-0,17	0,03-0,18
сланцев	Среднее	0,05	0,24	11,18	14,87	0,08	1,51	0,45	0,03	70,69	0,11	0,08
Силикатных бокситоносных выветрелых надрудных	Содержание	0,14–0,71	0,29–1,21	29,81–33,59	37,52– 46,51	5,29–11,04	0,04–1,14	0,76–2,56	до 0,05	5,14–15,51	0,02–0,08	0,01-0,02
филлитовидных сланцев	Среднее	0,35	0,89	31,47	42,78	7,8	0,33	1,49	0,02	10	0,05	0,02

Редкоземельные элементы в коре выветривания железистых кварцитов Большетроицкого месторождения...

Распределение редкоземельных	х элементов ост	илг хичнөон	пологичесі ме	ких разнов сторожое	идностей зния	i nopod, cл	агающих і	кору выве	тривания	і Большетр	роицкого
Ę					Эле	жентный со	craв, ppm ·	100			
Газновидность		Rb	Sr	Zr	Ba	γ	As	n	Th	qN	Pb
Гидрогематитовая	Содержание	до 0,017	0,014	0,014-0,326	0,076– 0,338	до 0,008	до 0,027	I	I	до 0,018	до 0,04
4	Среднее	0,0063	0,126	0,0789	0,1509	0,0034	0,0067	1	I	0,0031	0,0057
Переходная гидрогематит-гётитовая	Содержание	I	0,015-0,077	0,017-0,281	0,094-0,138	0,004-0,006	I	I	I	0,003-0,015	до 0,012
, ,	Среднее	1	0,046	0,149	0,116	0,005	1	1	I	0,009	0,006
Лимонит-гётитовая	Содержание	до 0,01	0,006-0,013	0,011-0,017	0,048-0,135	до 0,007	до 0,01	I	I	до 0,005	до 0,007
	Среднее	0,00275	0,009	0,014	0,0727	0,004	0,0025	I	I	0,003	0,00175
реаллитемет литнем оптенодае У	Содержание	до 0,01	0,007-0,013	0,01-0,036	0,05-0,171	до 0,006	до 0,01	I	I	до 0,004	I
тароонално-мартит-томатитовая	Среднее	0,004	0,01	0,0172	0,1042	0,0034	0,004	I	I	0,0018	I
F	Содержание	до 0,01	до 0,01	0,007-0,014	0,08-0,106	до 0,006	до 0,01	I	I	до 0,004	до 0,01
і єманит-мартитовая	Среднее	0,0035	0,0065	0,0105	0,0937	0,00375	0,0025		I	0,00275	0,0025
Магнетит-гематит-мартитовая сильноокисленных межрудных	Содержание	до 0,025	0,008–0,18	0,013-0,306	0,05-0,153	до 0,021	до 0,016	I	I	до 0,026	до 0,025
сланцев	Среднее	0,01143	0,07857	0,0978	0,095	0,00371	0,008	1	I	0,004286	0,005
Вывстрелых филлитовидных сланцев	Содержание	0,015-0,053	0,157-0,46	0,083-0,289	0,143- 0,177	до 0,019	0,01-0,088	до 0,002	до 0,043	до 0,011	до 0,022
	Среднее	0,031	0,2646	0,2142	0,158	0,0038	0,028	0,0004	0,0086	0,0022	0,0044
Силикатных бокситоносных выветрелых надрудных	Содержание	0,18-0,313	0,067-0,151	0,225-6,253	0,962- 1,824	0,022 - 0,142	I	до 0,055	I	0,019-0,097	0,015-0,055
филлитовидных сланцев	Среднее	0,22625	0,0995	1,8487	1,33275	0,05575	I	0,01375	I	0,0445	0,03425

И. И. Никулин

Рис. 2. РЗЭ-ассоциации в различных типах пород коры выветривания Большетроицкого месторождения, ppm · 1000: *a*) гидрогематитовая разновидность; *б*) переходная гидрогематит-гётитовая; *в*) лимонит-гётитовая; *г*) карбонат-мартит-гематитовая; *д*) гематит-мартитовая; *е*) магнетит-гематит-мартитовая сильноокисленных межрудных сланцев; *ж*) выветрелых филлитовидных сланцев и *з*) силикатных бокситоносных выветрелых надрудных филлитовидных сланцев

циируется с уменьшением количества циркония до $0.083 \cdot 10^3$ ppm.

Силикатные бокситоносные выветрелые надрудные филлитовидные сланцы (8-й тип) представляют собой массивные, редко волнисто-полосчатые от бледных до ярко-красноватых окрасов хорошо сцементированные (реже рыхлые) разновидности бокситовых руд, сложенные преимущественно бёмитом и гиббситом с нередко значительной примесью слоистых силикатов (бертьерин, каолинит). Наличие редких и редкоземельных элементов имеет постоянную Zr-Ba-ассоциацию (см. табл. 2, рис. 2, 3). Редко отмечаются повышенные содержания мышьяка и тория. Наличие «алюминиевой пудры» в образце ассоциируется с увеличением количества циркония до 6,25 · 10³ ppm.

Общая по всем образцам (141 образец) As-Zr-Baаномалия прослеживается в приповерхностной части железорудной коры выветривания (под осадочными железоносными брекчиями и карбонатно-гематитовым панцирем) (см. рис. 1) и ассоциируется с зоной дробления и повышенной трещиноватости северо-западного простирания (рис. 3).

Рассмотренные породы Большетроицкого месторождения представляют собой типичные гипергенные

продукты коры выветривания железистых кварцитов и филлитовидных сланцев Воронежской антеклизы [7–10]. В распределении РЗЭ отмечены только две зависимости: наличие зоны тектонического нарушения и присутствие в толще коры выветривания, сложенной богатыми железными рудами, прослоев сланцев и их выветрелых разностей. Степень выветрелости пород отмечается только заметным общим уменьшением количества редких и редкоземельных элементов. Такое положение дает некоторое основание для обозначения мартитовых пород своего рода стерильными.

Рис. 3. Схема поверхности Большетроицкого месторождения под палеоген-каменноугольным осадочным чехлом: 1 - выветрелые надрудные сланцы верхней подсвиты коробковской свиты PR₁kr₄; <math>2 -железистые кварциты и филлитовидные сланцы kr₂₋₃; 3-6 -залежь богатых руд (мощность залежи: 3 - 0-50 м, 4 - 50-150 м, 5 - 150-250 м, 6 - 250-300 м); 7 -изопахиты мощности рудной залежи: a) под осадочным чехлом, δ) под сланцами PR₁kr₄; 8 -оси зон дробления и повышенной трещиноватости; 9 -разведочные профили и их номера; 10 -буровые скважины поисково-оценочной (a), разведочной (δ) стадий

Итак, основными редкими и редкоземельными элементами коры выветривания Большетроицкого месторождения являются: Sr, Zr и Ba с примесями As в богатых железных рудах, и U–Th – в выветрелых бокситоносных филлитовидных сланцах.

Вторичные минералы в богатых железных рудах (бертьерин, шамозит) вносят вариации в содержание Zr и Ba, в выветрелых породах, развитых по сланцам (гидрогематит, бертьерин), изменяется содержание Zr.

Генезис наличия U и Th в бокситоносных выветрелых породах, развитых по филлитовидным сланцам, до конца не выяснен и остается открытым для дальнейших исследований.

Результаты проведенных исследований имеют непосредственное практическое значение. Вопросы о распространении типов пород с повышенным радиационным фоном по площади и в разрезе коры выветривания Большетроицкого месторождения становятся актуальными при разработке больших запасов полезного ископаемого.

ЛИТЕРАТУРА

1. Геология, гидрогеология и железные руды бассейна Курской магнитной аномалии (КМА) / [под ред. И. Н. Леонен-ко]. – М. : Недра, 1969. – Т. З : Железные руды. – 319 с.

2. Чайкин С. И. Структурные типы месторождений богатых железных руд Курской магнитной аномалии / С. И. Чайкин // Геология рудных месторождений. – 1986. – № 1. – С. 12–21.

ООО «Белгородская горнодобывающая компания» (г. Белгород)

Никулин И. И., главный геолог E-mail: ivnikulin@rambler.ru Тел.: 8-922-383-24-55 Большетроицкое месторождение / Н. Клекль [и др.] // Геология, гидрогеология и железные руды бассейна Курской магнитной аномалии. – М. : Недра, 1969. – Т. 3 : Железные руды. – С. 181–191.

4. *Никулин И. И.* Характеристика минерального состава богатых железных руд Большетроицкого месторождения КМА / И. И. Никулин // Вестник Воронеж. гос. ун-та. Сер.: Геология. – 2012. – № 1. – С. 144–154.

5. Редкие и редкоземельные элементы в корах выветривания курской серии КМА / В. И. Сиротин [и др.] // Литология и полезные ископаемые. – 2005. – № 3. – С. 250–266.

6. Белявцева Е. Е. Поведение редкоземельных элементов как один из индикаторов строения коры выветривания и состава бокситов (на примере Висловского месторождения КМА) / Е. Е. Белявцева, В. И. Сиротин // Вестник Воронеж. гос. ун-та. Сер.: Геология. – 2009. – № 1. – С. 39–49.

7. *Савко А. Д.* Коры выветривания в геологической истории Восточно-Европейской платформы / А. Д. Савко, А. Д. Додатко. – Воронеж : Изд-во Воронеж. гос. ун-та, 1991. – 231 с.

8. Савко А. Д. Этапы формирования кор выветривания в верхнем протерозое и палеозое Воронежской антеклизы / А. Д. Савко, Н. П. Хожаинов // Литогенез в докембрии и фанерозое Воронежской антеклизы. – Воронеж, 1975. – С. 46–59.

9. Савко А. Д. Эпохи корообразования в истории Воронежской антеклизы / А. Д. Савко. – Воронеж : Изд-во ВГУ, 1979. – 119 с.

10. Сиротин В. И. Доверхневизейский бокситоносный перерыв. Сообщение 2. Структура и мощность, зрелость и возраст гипергенного покрова, фациальные типы кор выветривания / В. И. Сиротин // Вестник Воронеж. гос. ун-та. Сер.: Геология. – 1997. – № 4. – С. 3–20.

Belgorod Mining Company (Belgorod) Nikulin I. I., Geologist Chief E-mail: ivnikulin@rambler.ru Tel.: 8-922-383-24-55