МАГНЕТИЗМ ГИПЕРБАЗИТОВ ГОР КРАКА В УСЛОВИЯХ ОДНОВРЕМЕННОГО ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ ДАВЛЕНИЙ И ДЕФОРМАЦИИ СДВИГА*

Детальными исследованиями последних лет установлено, что гипербазиты массивов Крака и ассоциирующиеся с НИМИ вулканогенноосадочные породы представляют собой крупный останец шарьяжа, покоящегося на осадках зилаирской серии северной части Зилаирского синклинория [Казанцева, 1987; 2000; Камалетлинов, Казанцев, Казанцева, 1981]. шарьяжно-надвиговой Согласно теории, формирование Урала происходило в режиме прогрессирующего направленного давления при ведущей роли надвигания и шарьирования. Об исключительно мощных тектонических напряжениях, существоваших при каметаморфизме такластическом гор Крака, свидетельствуют тектонические брекчии, катаклазиты и милониты, сопровождающие зоны надвигания. Исследование магнитных свойств гипербазитов при одновременном воздействии высоких давлений (ВД) и деформаций сдвига представляет интерес для изучения **(СД)** характера и интенсивности развития **30H** тектонической активности. глубинных образований, являющихся источниками региональных магнитных аномалий, а также для решения генетических задач и, возможно, при определении этапов рудообразования.

Действие на породу давления, вызванного тектоническими движениями, можно моделировать на установке Бриджмена, где условия зоны тектонитов моделируются в режиме соприкосновения наковален, одна из которых крепится к верхнему пуансону, а вторая жестко связана с поворотной станиной [Абсалямов, Гареева, 1997]. Степень деформации определяется углом (α) поворота наковален.

Нами изучены температурная зависимость намагниченности насыщения $\sigma_s(T)$ величина коэрцитивной силы H_c(T) ипербазитов гор Крака в исходном состоянии и после воздействия ВД+СД. Приведены данные фазового

состава гипербазитов, определенные рентгеновским методом в исходном состоянии и после совместного воздействия ВД+СД. Химический состав исследован при помощи электронного микроанализатора JXA-6400. Кривая $\sigma_s(T)$ гипербазитов была зафиксирована в воздухе на автоматических магнитных микровесах [Мулюков, Шарипов, Абсалямов, 1998]. Зависимость $H_c(T)$ и другие магнитные параметры измерены автоматическим вибрационным магнитометром [Абсалямов, Загитов, Каримов, 1998]. Измерения также показали, что оз, Нс и относительная остаточная намагниченность насыщения σ_{rs}/σ_{s20} зависят от места отбора образца из блока гипербазитов (табл. 1). Для исследований один образец в виде кубика (1 см3) был изготовлен из поверхностного слоя, а другой — из центра блока.

Магнитные параметры гипербазитов гор Крака					
Место отбора образца	<i>H_c</i> , кА/м	$\sigma_s(T)/\sigma_{s_{2l}}$	₂ σ _s в усл. ед.		
Край (в продольном направлении)	13,4	0,15	8,8		
Край (в поперечном направлении)	14,9	0,17	8,8		
Центр (в продольном	11.6	0.18	10,6		

11.4

0.17

10.6

Таблица 1

Образцы гипербазитов нами разделены на две группы, закономерно связанные со степенью тектонической переработки вмещающих пород. К первой отнесены образцы из краевых частей блока гипербазитов, которые в естественных условиях получили более высокую степень тектонической переработки. Ко второй образцы из центральной части блока гипербазитов, которые претерпели меньшую степень тектонической переработки. Для образцов

направлении)

направлении)

Центр (в поперечном

^{*} Светлой памяти Камиля Абдрахмановича Валеева посвящается.

первой группы величина H_c измеренная в поперечном направлении, составляет 14,9 кА/м, а для образца второй группы — 11,4 кА/м. Величина σ_s образцов I группы на 17% меньше значения σ_s образцов II группы. К тому же величина H_c зависит еще от направления измерения.

В целях выяснения причин различия магнитных параметров образцов, отобранных из различных частей блока гипербазитов, был проведен химический анализ на электронном микроанализаторе JXA-6400. Диаметр зонда составлял ~1мкм. Приведенные

значения концентраций элементов получены усреднением по 10 точкам (табл. 2). Концентрации исследованных химических элементов распределены по объему блока, а также в пределах одного и того же образца гипербазитов крайне неоднородно. Например, концентрация Fe на поверхности блока в 2 с лишним раза меньше, чем в центре.

На рис. 1а представлены значения температурной зависимости намагниченности насыщения образцов в относительных единицах $\sigma_s(T)/\sigma_{s20}$ в исходном состоянии. В формуле $\sigma_s(T)/\sigma_{s20}\sigma_s(T)$ означает величину намагниченности при температуре T, a σ_s - при комнатной температуре. Кривые $\sigma_s(T)/\sigma_{s20}$ образца, полученные в процессе нагревания и остывания, не совпадают. Точка Кюри для образцов первой группы, определенная ПО кривым нагревания И остывания, составляет 600-580°С, для второй — 590а

			,
Результаты химического ан	нализа гипер	обазитов го	р Крака

Таблица 2

Химические элементы	Край блока гипербазита		Центр блока гипербазита	
	атомные, %	весовые, %	атомные, %	весовые, %
Al	0,394	0,539	0,521	0,705
Fe	1,288	3,601	2,644	6,815
Si	13,01	18,50	11,77	16,58
Mg	19,11	23,52	17,91	21,79
Cr	0,031	0,084	0,041	0,108
Ti	0,008	0,019	0,002	0,005
Ni	0,080	0,236	0,052	0,152
O*	66,07	53,52	67,06	53,87

Рис. 1. Температурная зависимость намагниченности насыщения образца гипербазита из краевой части (кривые 2, 4) и центральной части (кривые 1, 3) блока гипербазитов в исходном состоянии (а) и после совместного ВД+СД (б) (ЮООМпа, 720°С):

1, 2 — кривая нагрева; 3, 4 — кривая охлаждения

580°C. кривых $\sigma_s(T)/\sigma_{s20}$ Характеры при нагревании образцов первой и второй групп в воздухе отличаются. Для образцов первой группы в области температур от 150 до 310 °C имеется «горб», для образцов второй группы он практически не заметен. Кривые, записанные при охлаждении образцов обеих групп, имеют одинаковый характер. Однако после остывания образца намагниченность не возвращается к исходному значению. Например, после цикла нагрев-охлаждение намагниченность образца первой группы уменьшается в 2,75 раз, а второй-1,67 раз.

Ha рис. 16 приведены графики температурной зависимости намагниченнасыщения гипербазитов после ности воздействия. ВД+СД. Давлениесжатия равно 1.109Па. При этом угол поворота наковален составлял 720°. Обработка в условиях ВД+СД привела к уменьшению величины σ_s на 10%. Кривые $\sigma_s(T)/\sigma_{s20}$ образца, полученные в процессе нагревания и остывания, также не совпадают. Точка Кюри образцов первой группы, для определенная по кривым нагревания и остывания, составляет 600 и 590°С, а для образцов второй - 600 и 580°С. Также обнаружено, что кривая $\sigma_s(T)/\sigma_{s20}$ исследуемого образца после воздействия достигает ВД+СД нуля В интервале температур 670-680°С.

Зависимость $H_c(T)$ гипербазитов приведена на рис. 2. Измерения величины H_c производились в процессе нагревания образца. Характеры кривых $H_c(T)$ полученных при нагревании образцов первой и второй групп, отличаются: с повышением температуры наблюдается уменьшение *H*_c для образцов обеих групп блока. температуре При 500°C для образца гипербазитов первой группы Н_с уменьшается в 2,65 раза, а для второй — до 2,48 раз. Для образцов первой группы H_c уменьшается в интервалах температур 20-230°С, 400-500°С и увеличивается в интервале 230-400°С. Для образцов второй группы — в интервалах температур 20-200°С, 300-500°С.

Рентгеноструктурные исследования образгипербазитов проводились ЦОВ на ДРОН-Зм дифрактометре методом пошагового сканирования с использованием $Cu-K_{\alpha}$ излучения графитового И монохроматора на дифрагированном пучке. На рис. За приведена дифрактограмма образцов гипербазитов в исходном состоянии. На дифрактограммах образцов гипербазитов (рис. 36) после воздействия напряжения давления наблюдаются следующие изменения: перераспределяется интенсивность максимумов; изменяются профили рентгеновских линий как в сторону больших, так и в сторону меньших УГЛОВ. Также характерной особенностью рентгеновских дифрактограмм образцов гипербазитов после воздействия ВД+СД является увеличение интенсивности одних и уменьшение других дифракционных

максимумов. Например, линии (200), (220) дифрактограмме в порошка, исходного соответствующие вюститу (FeO) после воздействия ВД+СД. увеличиваются. Увеличение интенсивности отдельных максимумов на дифрактограммах может быть связано с появлением преимущественной ориенкристаллов тации образца. В образцах, подвергнутых

1 - для краевой части; 2 — для центральной части блока

воздействию ВД+СД, наблюдаются размытые максимумы в области больших углов, что может быть связано с дроблением кристаллов и появлением большого количества дефектов. Характерной особенностью дифрактограммы образцов, полученных после обработки ВД+СД, является расширение дифракционмаксимумов. Это может быть ных обусловлено как искажениями в кристаллической вследствие решетке повышенной плотности дефектов И внутренних напряжений, так и за счет уменьшения размеров частиц из-за их дробления.

Отличие величин коэрцитивной силы образцов гипербазитов из краевой и центральной

частей блока. а также различная температурная зависимость объясняются различием их структурных состояний. В то же время известно, что степень и особенности несовершенств структурных кристаллов магнетита находятся в пря-мой зависимости условий тектонических воздействий. ОТ Краевая блока гипербазитов часть В получила естественных условиях более тектоничес-кой высокую степень переработки, что привело к нарушению структуры кристаллов. Поэтому обработка увеличивает коэрцитивную силу за счет образования большого количества дефектов в процессе деформации.

Рис. 3. Дифрактограмма гипербазитов из краевой части блока в исходном состоянии (а) и после воздействия ВД+СД (400Мпа, 720°С) (б)

Увеличение уширения дифракционных линий обусловлено в основном упругими искажениями кристаллической решетки вследствие высоких внутренних напряжений. Возникающие при этом большие внутренние напряжения могут вызвать не только изменения межатомных расстояний, но и привести к заметному искажению симметрии решетки. Известно, что в формирований σ_s ферромагнетика определяющую роль играет энергия косвенного обменного взаимодействия. Эта энергия, в свою очередь, зависит от обменного интеграла, являющегося функцией расстояния между взаимодействующими атомами. В результате обработки, в условиях ВД+СД, в кристалле образуются области с высокой плотностью дефектов, где среднее расстояние между атомами больше или меньше его равновесного значения. Таким образом, изменение среднего расстояния между атомами приводит к изменению обменного интеграла, что, в свою очередь, вызывает ослабление косвенного обменного взаимодействия И затрудняет образование ферромагнитного порядка в местах накопления больших внутренних напряжений 1998]. Искажения Мулюков, строгой упорядоченности кристаллической решетки в измененных участках, дефектами И подверженных МОШНЫМ внутренним напряжениям, вызванным совместным воздействием ВД+СД, приводят к уменьшению σ_s в ферромагнетиках. Таким образом, малая величина намагниченности насыщения образцов первой группы объясняется искажением строгой упорядоченности кристаллической решетки в дефектами участках, насыщенных И подверженных мощным внутренним напряжениям, вызванным более интенсивной тектонической переработкой в естественных условиях.

Приложение ВД+СД приводит к увеличению интенсивности дифракционных макси-мумов (200), (220) соответствующих вюститу (FeO). Наличие этих дифракционных максимумов в исходных образцах указывает также на присутствие некоторого количества вюстита. При нагреве вюстит разлагается на магнетит и металлическое железо [Чалабов и др., 1982]. Нам представляется, что совместное воздействие ВД+СД приводит к переводу вюстита в тонкодисперсное состояние, что способствует более интенсивному его разложению.

Литература

Абсалямов С.С., Гареева М.Я. Магнетизм горных пород при высоких термодинамических парметрах. Уфа: Изд-во БГУ, 1997.170 с.

Абсалямов С.С, Загитов А.С., Каримов А.И. Автоматический вибрационный магнитометр //Вестн. БГУ. 1998. №2(1). С. 31-33.

Глухих И.И., Шерендо Т.А., Шерстобитова Л.А., Смирнов Ю.П. Влияние тектонических воздействий на микроструктуру зерен и магнитные свойства магнетита из зон динамометаморфизма //Мат-лы IV Всес. съезда по геомагнетизму. Владимир-Суздаль, 1991. С. 83-85.

Казанцева Т.Т. Аллохтонные структуры и формирование земной коры Урала. М.: Наука, 1987.158 с.

Казанцева Т.Т. Основы шарьяжно-надвиговой теории формирования земной коры //Геология. Изв. Отд. наук о Земле и экологии. 2000. №5. С. 15-46.

Камалетдинов МА., Казанцев Ю.В., Казанцева Т.Т. Происхождение складчатости. М.: Наука, 1981. 135 с.

Мулюков Х.Я. Магнитные свойства металлов и сплавов с субкристаллической структурой: Автореф. дис. ... докт. техн. наук /ИПСМ РАН. Уфа, 1998.

Мулюков Х.Я., Шарипов И.Г., Абсалямов С.С. Автоматические вакуумные магнитные микровесы //Приборы и техника эксперимента. 1998. №3. С. 149-150.

Чалабов Р.И., Жмурова З.И., Додокин А.П., Дмитриева Т.В. Изучение дефектов нестехиометрии в кристаллах вюстита методом мессбауэровской спектроскопии //Кристаллография. 1982. Т. 28, №3. С. 516-521.