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A B S T R A C T   

Geoscientists use observations and descriptions of the rock record to study the origins and history of our planet, 
which has resulted in a vast volume of scientific literature. Recent progress in natural language processing (NLP) 
has the potential to parse through and extract knowledge from unstructured text, but there has, so far, been only 
limited work on the concepts and vocabularies that are specific to geoscience. Herein we harvest and process 
public geoscientific reports (i.e., Canadian federal and provincial geological survey publications databases) and a 
subset of open access and peer-reviewed publications to train new, geoscience-specific language models to 
address that knowledge gap. Language model performance is validated using a series of new geoscience-specific 
NLP tasks (i.e., analogies, clustering, relatedness, and nearest neighbour analysis) that were developed as part of 
the current study. The raw and processed national geological survey corpora, language models, and evaluation 
criteria are all made public for the first time. We demonstrate that non-contextual (i.e., Global Vectors for Word 
Representation, GloVe) and contextual (i.e., Bidirectional Encoder Representations from Transformers, BERT) 
language models updated using the geoscientific corpora outperform the generic versions of these models for 
each of the evaluation criteria. Principal component analysis further demonstrates that word embeddings trained 
on geoscientific text capture meaningful semantic relationships, including rock classifications, mineral properties 
and compositions, and the geochemical behaviour of elements. Semantic relationships that emerge from the 
vector space have the potential to unlock latent knowledge within unstructured text, and perhaps more 
importantly, also highlight the potential for other downstream geoscience-focused NLP tasks (e.g., keyword 
prediction, document similarity, recommender systems, rock and mineral classification).   

1. Introduction 

Natural language processing (NLP) is the branch of artificial intelli-
gence that is developing the predictive text tools that billions of people 
use everyday, including search, machine translation, sentiment analysis, 
and voice assistants (Bengio et al., 2000; Chowdhary, 2020; Hirschberg 
and Manning, 2015). The vast majority of these predictive text tools are 
based on statistical language modelling, which captures the probability 
distribution of words as numerical vectors (Hirschberg and Manning, 
2015). These vectoral representations of words, called word embed-
dings, are often trained using self-supervised machine learning methods 
on large and unlabelled text datasets like Wikipedia. Word embeddings 
can be constructed from the co-occurrence frequencies of words in these 
training corpora, based on the basic assumption that words occurring 

together, or in similar contexts, tend to be more closely related (Mikolov 
et al., 2013a, 2013b; Pennington et al., 2014). Countries and their 
capital cities represent the canonical example of this proximity rela-
tionship (Mikolov et al., 2013a; 2013b). Static word embeddings like 
One Hot, Word2Vec, and Global Vectors (GloVe) have the potential to 
capture this type of meaningful semantic relationship between pairs of 
words and/or syntactic information from unstructured text data. More 
recent language models encode different vectoral representations for a 
word depending on its context, which is important for words with 
multiple meanings (i.e., polysemy) (Devlin et al., 2019; Sanh et al., 
2020). Some of these more advanced contextual language models, such 
as the Bidirectional Encoder Representations from Transformers (BERT) 
algorithm, train a neural network to associate each word with every 
other word in a sentence (i.e., bi-directional self-attention) (Devlin et al., 
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2019; Vaswani et al., 2017). The ability to encode bi-directional 
sequence order and long-range dependencies of words is important to 
address polysemy and more complicated sentence semantics, allowing 
contextual language models like BERT to outperform more simple, 
static, and non-contextual language models in several NLP tasks (Wang 
et al., 2019). 

However, despite often being trained on vast digital corpora 
comprising billions of words, language models that are trained on gen-
eral text are often missing the vocabulary and concepts that are required 
to make meaningful predictions in some scientific sub-domains (Tshi-
toyan et al., 2019). More recent NLP research has thus become focused 
on retraining language models with domain-specific text (Gururangan 
et al., 2020). A large number of domain-specific language models have 
been developed with improved understanding of the semantic infor-
mation in their field of expertise, therefore leading to better perfor-
mances on the domain-specific tasks, including BioBERT (Lee et al., 
2019), E-BERT (Zhang et al., 2021), PatentBERT (Lee and Hsiang, 2019), 
SciBERT (Beltagy et al., 2019), and TweetBERT (Qudar and Mago, 
2020). In contrast, language models that are specific to geoscience are 
rare, with the exception of some recent NLP downstream applications in 
translation (Gomes et al., 2021), keyword generation (Qiu et al., 2019a), 
information retrieval (Qiu et al., 2018), document search (Holden et al., 
2019), and other forms of text mining (Enkhsaikhan et al., 2021a, 
2021b; Ma et al., 2020; Peters et al., 2018; Wang et al., 2018). The re-
sults from this NLP research provide new tools for extracting geoscience 
knowledge from unstructured text, but tend to focus on evaluating 
language model performance on specific downstream tasks. For 
example, several recent NLP studies have focused on named entity 
recognition (NER), an important downstream task for naming and 
locating geoscientific properties from unstructured text (Enkhsaikhan 
et al., 2021a; Qiu et al., 2019b). The NER task requires training language 
models on large volumes of labelled data that have only recently become 
available in geoscience (Enkhsaikhan et al., 2021b). Instead, the current 
study: (1) trains word embeddings using unsupervised methods and 
unlabelled geoscientific text data; and (2) measures the quality of word 
embeddings using a suite of intrinsic evaluation criteria rather than 
tuning model performance for any single downstream task. Once eval-
uated, these pre-trained geoscience language models can be applied to a 
range of downstream tasks, as recently demonstrated by Fuentes et al. 
(2020) for 3D geological modelling. 

Continued progress on geoscience-specific word embeddings is 
required given the important role that qualitative descriptions of the 
rock record have had on the development and application of the science. 
For example, billions of dollars are spent every year by the mineral 
exploration and mining industries to describe the lithology, mineralogy, 
colour, texture, structure, cross-cutting relationships, and other 
geological attributes of drill core. In most cases, these written rock de-
scriptions are stored as unstructured text fields within core logging 
software and databases. Word embeddings can leverage these qualita-
tive geological observations for applications such as rock classification 
and predictive modelling (Fuentes et al., 2020; Joshi et al., 2021). Un-
fortunately, most of the existing work on geoscience language modelling 
and word embeddings are trained on private company reports or 
peer-reviewed publications that require paid subscriptions (Bayraktar 
et al., 2019; Consoli et al., 2020; Gomes et al., 2021; Padarian and 
Fuentes, 2019; Qiu et al., 2019a). The few available published examples 
are also based on languages other than English (Consoli et al., 2020; 
Gomes et al., 2021; Ma et al., 2021) and, with the exception of Padarian 
and Fuentes (2019), the trained models are rarely published alongside 
the method description. Moreover, the criteria for evaluating the per-
formance of geoscience word embeddings are rarely published (Padar-
ian and Fuentes, 2019). 

This study addresses each of those issues and makes the following 
contributions: 1) we present two geoscience-specific language models 
using the GloVe and BERT methods, which are trained on public geo-
scientific documents written in English. The required text data from 

government geoscientific reports are extracted, processed for consistent 
formatting, and combined with a subset of open access and peer- 
reviewed publications; 2) we train a new geoscience-specific token-
izer, which is the method used by BERT for breaking words into sub- 
words, or tokens, to improve performance for geoscientific text; 3) we 
present four geoscience-specific evaluation tasks. These intrinsic eval-
uation criteria (i.e., analogy, clustering, relatedness, and nearest 
neighbours) address the quality of the word embeddings for capturing 
meaningful semantic relationships and are based on commonly used 
metrics in previously published NLP research (Mikolov et al., 2013a, 
2013b; Padarian and Fuentes, 2019); 4) we further demonstrate the 
application of these geoscience language models using unsupervised 
machine learning to extract geochemical and mineral assemblages from 
the word embedding space for the first time; and 5) we release the 
NRCan training text dataset, language models, evaluation tasks, and the 
source code to the community. 

2. Language modelling data and methods 

2.1. Text datasets 

The text datasets used in the current study contain a variety of 
geoscientific publications sourced from the Natural Resources Canada 
(NRCan) GEOSCAN publications database (n = 27,081 documents), 
provincial government publication databases (e.g., Ontario Geological 
Survey, Alberta Geological Survey, and British Columbia Geological 
Survey; n = 13,898 documents), and a subset of open access journals (e. 
g., Materials, Solid Earth, Geosciences, Geochemical Perspective Letters, 
and Quaternary) available through the Directory of Open Access Jour-
nals (DOAJ; n = 3998 documents) (Fig. 1; Table 1). Scanned government 
publications were pre-processed to remove figures, maps, tables, refer-
ences, and other irregularly formatted text prior to analysis. Artifacts 
generated from optical character recognition (OCR) and low-quality 
scanned PDFs s from the GEOSCAN publications database were also 
excluded from further analyses (i.e., the total GEOSCAN database con-
tains approximately 83 k documents; however a much smaller subset 
were readily available for use as part of the current study). Texts were 
extracted from high-quality pdf documents using “pdfminer” (http 
s://github.com/euske/pdfminer) and converted to delimited text files 
for further analysis. The pre-processing steps applied were: 1) removing 
punctuation; 2) replacing upper casing; 3) converting all non-ascii 
characters to their ascii equivalent; 4) removing non-printable charac-
ters; 5) splitting and adding space around punctuation; 6) removing new 
lines; 7) removing title pages and/or tables of contents; 8) removing 
specific forms of alpha-numeric data (e.g., DOIs, URLs, emails, and 
phone numbers); 9) removing French text; 10) merging split words; 11) 
filtering text boxes that contain an insufficient percentage (80–90%) of 
detectable words; and 12) merging all of the extracted text for each 
document. For the BERT model discussed below, sentence tokenization 
was completed using the “en_core_web_lg” language model included 
with spaCy library (https://spacy.io/). The data pre-processing source 
code is made freely available as part of the current study (https://github. 
com/NRCan/geoscience_language_models). Text data from the GEO-
SCAN publications database are freely available from Raimondo et al. 
(2022). 

2.2. Non-contextual language modelling (GloVe) 

Words that occur together tend to be more closely associated 
(Mikolov et al., 2013a; 2013b). Examples of this co-occurring relation-
ship in the context of geoscience, include minerals and their element 
constituents. Herein the GloVe method was used to map each word in 
the training corpus to a numerical vector in N-dimensional space (Pen-
nington et al., 2014). Simple vector arithmetic can then be used to infer 
semantic relationships between pairs of words or quantitatively identify 
the nearest neighbours to words using either the Euclidean distance or 
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cosine similarity in vector space. The generic, or “pre-trained”, GloVe 
model is based on a relatively large corpora taken from Wikipedia 
(2014) and the 5th Edition of English Gigaword (Parker et al., 2011), 
comprising billions of words or sub-words (Pennington et al., 2014). 
This pre-trained GloVe model was used as a baseline to evaluate whether 
continued retraining using a much smaller but domain-specific corpora 
could improve model performance (i.e., the preferred GloVe model). 
Both iterations of the GloVe model (i.e., pre-trained and preferred) were 
trained using AdaGrad (Duchi et al., 2011) with the most abundant to-
kens (i.e., minimum frequency of 5), considering a context window of 
size 15 for 15 iterations, fixed weighting functions (x_max = 10 and 
alpha = 0.75), and multiple vector dimensions (i.e., 50 d and 300 d) as 
described by Pennington et al. (2014). Models that used a relatively 
small number of vector dimensions tended to yield lower scores for the 
intrinsic evaluation criteria described below and thus all of the described 
GloVe models use 300-dimensional vectors. 

2.3. Contextual language modelling (BERT) 

Contextual language models consider words and their neighbours for 
a more complete representation of their meaning, and thus, unlike non- 
contextual methods, yield multiple representations for each individual 
word. The latest contextual language models, such as XLNet (Yang et al., 
2020) and BERT (Devlin et al., 2019), represent some of the most pop-
ular NLP architectures and yield state-of-the-art performance on tasks 
included within the General Language Understanding Evaluation 
(GLUE) benchmark (Wang et al., 2019). These models are based on a 

relatively complex multi-layer bidirectional transformer encoder archi-
tecture and are pre-trained on a giant corpus, which avoids having to 
train new language models from scratch for general NLP tasks. For 
example, the original BERT model was pre-trained on the BookCorpus 
dataset (Zhu et al., 2015) and English Wikipedia, comprising billions of 
words. Herein we further train the DistilBERT model (Sanh et al., 2020), 
which achieves similar performance to the original BERT method but 
yields smaller models that are easier to train, less susceptible to over-
fitting, and are more appropriate for smaller datasets. The approach of 
updating the existing DistilBERT model by further training using the 
masked-language-modelling objective is distinct from training the 
preferred GloVe model from scratch. 

First, pre-processed text is converted to tokens that may include 
words, sub-words or punctuation. Sub-word tokenization limits the 
number of out-of-vocabulary words, which allows BERT models trained 
on general corpora to be applied to specific sub-domains. However, 
tokenization must be applied consistently during model training and 
inference and the impact of this process on geoscience-specific words 
has not been previously evaluated. Two different tokenization methods 
were tested as part of the current study: (1) the original pre-trained 
WordPiece tokenizer for BERT (Devlin et al., 2019); and (2) multiple 
geoscience-specific tokenizers that were created by adding geoscience 
tokens prior to continued pre-training using the geoscientific corpora (i. 
e., the preferred BERT model). The geoscience tokens were identified by 
training the WordPiece tokenizer on the same geoscientific corpora. The 
original BERT tokenizer vocabulary has 994 unused “blank” tokens, 
such that the associated model weights remain at their original 
randomly initialized values. More tokens tend to yield more complete 
words, and, based on our evaluation, substituting 250 of those unused 
tokens with geoscience-specific tokens tended to produce the 
best-performing language models using the intrinsic evaluation criteria 
below. However, BERT models are typically evaluated based on their 
performance on downstream NLP tasks using complete sentences or 
whole paragraphs (Discussed below). In order to validate these BERT 
models using the intrinsic, geology-specific evaluation criteria, indi-
vidual words were converted to a numeric representation using the final 
layer’s vector with only the individual words used as input. For words 
represented by multiple tokens, the average of the final layer vectors for 
those sub-words was used for the purposes of intrinsic evaluation. The 
pre-trained and preferred BERT (i.e., using the geo-tokenizer and geo-
scientific corpora) models were generated using the “HuggingFace” 
machine learning library (https://huggingface.co/) (Wolf et al., 2020) 
with the same combination of hyperparameters (e.g., learning rate =
5e− 5 and 2.5e− 5; batch size = 48; max steps = 1 and 3 million; warm-up 
steps: 0, 100 k, 300 k) described in the original Devlin et al. (2019) 
method. 

Fig. 1. Modelling workflow for the present study. Public geoscientific reports from multiple government publication databases and a subset of peer-reviewed 
publications were processed and combined as part of the current study to retrain previously published language models using geoscientific text (i.e., preferred 
GloVe and BERT). Pre-trained language models, in contrast, are based on a much larger, but general corpora (i.e., Wikipedia, Gigaword, BookCorpus). All four models 
are evaluated using a variety of geoscience-specific analogy, clustering, relatedness, and nearest neighbour tasks. 

Table 1 
Geoscientific datasets.  

Data sources Dataset Publication 
counts (n) 

Natural Resources Canada GEOSCAN 27,081 
Ontario Ministry of Energy, 

Northern Development 
and Mines 

Publication database 10,614 

Alberta Geological Survey Report Database 1011 
British Columbia Geological 

Survey 
Natural Resource Online Services 2273 

Directory of open access 
journals (DOAJ) 

Materials, Solid earth, 
Geosciences, Geochemical 
Perspectives Letters, Quaternary 

3998  

Total geoscientific publications 
(n)a 

44,977  

a Geoscientific publications correspond to the following word and vocabulary 
counts for each model: GloVe words = 211 M; GloVe vocabulary = 1.76 M; BERT 
words = 350 M; BERT vocabulary = 3.62 M. 
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3. Intrinsic evaluation methods and results 

3.1. Analogies 

Analogy tests have been extensively used to evaluate whether the 
representations of language models capture structural and syntactic 
similarities between words (Mikolov et al., 2013a, 2013b; Pennington 
et al., 2014). However, to test whether the representations capture 
geoscience-specific concepts, we require geology-specific analogies, yet 
no such standard test-suite exists nor have previous geology studies 
released their analogy suites (Padarian and Fuentes, 2019). Thus, 
following Padarian and Fuentes (2019), we develop a suite of 
geoscience-specific analogy quartets to test whether geoscience concepts 
are captured by word vectors (n = 55) (Electronic Supplementary Ma-
terial Table 1). For example, basalt (a) is to mafic (b) as rhyolite (x) is to 
felsic (y) can be evaluated as four separate linear equations in vector 
space: 

x+ b − y = a  

a+ y − x = b  

a+ y − b = x  

x+ b − a = y 

Each combination of the analogy quartet was evaluated in turn using 
the rank statistic and cosine distance to the “correct” answer (i.e., a 
measure of directional similarity) in the vector embedding space. 
Analogy quartets that yield smaller cosine directions, or lower rank, to 
the “correct” answer represents a relative indicator of good model per-
formance. The average of these metrics for each of the analogy quartets 
that are present within the model vocabularies are presented in Fig. 2 
and reported in Table 2. Overall, the preferred GloVe and BERT lan-
guage models outperform their pre-trained versions for virtually all 
geoscience-specific analogies (Fig. 2). Model improvements are most 
significant for the preferred GloVe model, which yields a 25% 
improvement (i.e., smaller cosine distance) on the analogy task over its 
pre-trained version. The preferred GloVe also typically predicts the 
correct answer within ten of the most closely associated words based on 
the rank statistic (Fig. 2b). Model improvements for the preferred BERT 
models, in contrast, are only slightly better than the pre-trained version 
(3% improvement; Fig. 2c). The analogy task further suggests that the 

preferred GloVe model outperforms the preferred BERT model by 
approximately 13% (Fig. 2a, c). 

3.2. Clustering 

Closely associated words tend to group together in vector space and 
the clustering of groups of words provides a second intrinsic evaluation 
metric for assessing language model performance. Clusters of words are 
based on the GeoSciML and/or EarthResourceML vocabularies (www. 
geosciml.org) (Raymond et al., 2012; Sen and Duffy, 2005; Simons 
et al., 2006). These standard vocabularies were previously grouped into 
16 categories, or clusters, by subject matter experts contributing to the 
International Union of Geological Sciences (IUGS) Commission for the 
Management and Application of Geoscience Information (CGI; i.e., 
Alteration type, Commodities, Compositions, Environment, Environ-
mental impact, Events, Exploration activity, Fault types, Foliation types, 
Genetic, Geometry, Lineations, Metamorphic facies, Particle shapes, 
Particle types, and Rock types). Simple Naïve Bayes models (Chan et al., 
1982) were then trained using leave-one-out-classification for each 
word in each of the previously defined GeoSciML and EarthResourceML 
clusters. This process was repeated for every possible pair of clusters to 
test whether the word embedding space for each language model could 
be divided into groups of words with semantic similarities. The median 
and distribution of classification scores for each cluster and model are 
presented in Fig. 3 and reported in Table 2. Overall, the clustering task 
demonstrates that the preferred GloVe (median = 0.90) and BERT 
(median = 0.80) models tend to outperform their pre-trained versions 
(GloVe = 0.81 and BERT = 0.76) for each of the previously published 
clusters. Classification results further suggest that the preferred GloVe 
model yield the best performance for each of the 16 categories included 
within this clustering task. 

3.3. Relatedness 

Relatedness is a separate form of intrinsic evaluation that is based on 
pairs of similar words. Ideally, words with similar meaning yield closely 
related vector representations that are, in turn, dissimilar to unrelated 
words. Our test suite for the relatedness evolution comprises 249 pairs of 
similar words in 12 themes proposed from subject matter experts as part 
of the current study (Electronic Supplementary Material Table 1). Each 
similarity pair was then exhaustively assigned “dissimilar” words from 
the same (i.e., intra-theme) and different (i.e., outra-theme) themes. 
World triples were then evaluated as a “Pass” or “Fail” depending on 
whether the similarity pair yielded a lower cosine distance than the 
dissimilar word (Fig. 4). Language models that correctly predict more of 
these similarity pairs are considered to be relatively effective at identi-
fying words with similar meaning. Overall, the preferred GloVe (92% 
Pass) and BERT (78% Pass) language models outperform their pre- 
trained versions on the relatedness task (GloVe = 86% Pass; BERT =
69% Pass; Table 2). Model performance for a subset of the most common 
themes is presented in Fig. 4. Overall, the preferred GloVe model yields 
the best pass rate for the relatedness task (Fig. 4). 

Fig. 2. Analogy results for the pre-trained and preferred GloVe and BERT 
language models. Results suggest that the language models trained on geo-
scientific text tend to outperform their pre-trained versions (i.e., lower rank and 
distance). The preferred GloVe and BERT language models yields the lowest 
analogy rank and distance for the analogy task, respectively. 

Table 2 
Intrinsic evaluation results.  

Task Geoscience language models 

pre-trained 
GloVe 

preferred 
GloVe 

pre-trained 
BERT 

preferred 
BERT 

Analogy (median 
rank) 

61 23 240 97 

Analogy (median 
distance) 

0.684 0.538 0.455 0.443 

Clustering (median 
score) 

0.814 0.900 0.758 0.797 

Relatedness (Pass 
%) 

86% 92% 69% 78%  
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3.4. Nearest neighbours 

A qualitative assessment on the appropriateness of nearest neigh-
bours represents the fourth form of intrinsic evaluation included as part 
of the current study. Five words representing the range of research being 
conducted at the Geological Survey of Canada were selected for this task 

(i.e., Earth, Exploration, Environment, Climate, and Hazard). All four 
language models yield a reasonable set of the ten nearest neighbours to 
each word. However, the nearest neighbours for the pre-trained GloVe 
and BERT models tended to be more general in nature and less focused 
on geoscience research specifically. The “Hazard” and “Earth” categories 
provide the starkest example of this effect (Table 3 and Table 4), with 

Fig. 3. Cluster results for the pre-trained and preferred GloVe and BERT models. Each cluster category was previously defined and are based on the GeoSciML and 
EarthResourceML vocabularies (Sen and Duffy, 2005). Results suggest that language models trained on geoscientific text tend to outperform their pre-trained 
versions. The preferred GloVe language model yields the best performance for the clustering task. 

Fig. 4. Relatedness results for the pre-trained and preferred GloVe (a) and BERT models (b). Relatedness is based on whether word embedding for similarity pairs are 
closer than dissimilar words for a subset of the most common themes. Results suggest that language models trained on geoscientific text tend to outperform their pre- 
trained version, particularly for themes with more domain-specific vocabularies (hazards versus petrology). Overall, the preferred GloVe model yields the best 
performance for the relatedness task. 

C.J.M. Lawley et al.                                                                                                                                                                                                                            



Applied Computing and Geosciences 14 (2022) 100084

6

pre-trained models predicting words that are more loosely associated 
with space (e.g., “mars”, “martian”, “spacecraft”, “moon”) for the 
“Earth” category. Differences between the preferred and pre-trained 
models for the other categories are more difficult to evaluate given the 
large amount of semantic overlap for the closest matching words. 
Nearest neighbour results for the two preferred language models are also 
similar, except perhaps for the “Earth” and “Environment” categories, 
which were slightly more appropriate for the preferred BERT model. 

3.5. Principal component analysis 

Principal component analysis is an unsupervised technique that can 
be used to reduce high dimensional word embedding vectors for further 
visualization and analysis (Mikolov et al., 2013a; 2013b). Herein prin-
cipal component analysis was calculated using the 300 dimensional 
vectors from the preferred GloVe model and the “prcomp” function in R 
(R Core Team, 2021). Words that occur together and/or share some 
semantic relationship tend to plot close together in principal component 
space (Mikolov et al., 2013a; 2013b) and can be used to organize subsets 
of words along gradients without supervision (Fig. 5). Words at the end 
of each gradient are the most dissimilar and their correct order along the 
first principal component tends to suggest that their semantic differ-
ences represent the largest source of dataset variance. For example, the 
first principal component correctly orders sedimentary grain sizes (i.e., 
coarse gravel to fine mud; Fig. 5a), igneous intrusive rock compositions 
(i.e., ultramafic harzburgite, mafic gabbro, intermediate granodiorite, 
and felsic granite; Fig. 5b), and metamorphic grade (i.e., granulite to 
zeolite facies; Fig. 5c). These principal component analysis results are 
similar to some of the analogies described in Padarian and Fuentes 
(2019). 

Alternatively, multiple principal components can be visualized 
together on a principal component analysis biplot to identify the 
multivariate relationships between word quartets and their analogies. 
Multiple analogy examples are presented in Fig. 6 to demonstrate that 
pairs-of-words plot in distinct quadrants for each biplot. For example, 
rocks and their corresponding grain size (Fig. 6a), minerals and their 

Table 3 
Nearest neighbour results for preferred and pre-trained GloVe models.  

Earth Earth (pre- 
trained) 

Exploration Exploration (pre- 
trained) 

Environment Environment (pre- 
trained) 

Climate Climate (pre- 
trained) 

Hazard Hazard 
(pretrained) 

sciences planet prospecting explorations environments environments climatic warming hazards hazards 
physics mars drilling drilling environmental environmental warming environment risk danger 
science planets mining prospecting conditions climate change global mitigation risk 
journal orbit programs explore depositional sustainable impacts change vulnerability pose 
planetary moon diamond exploring deposition development adaptation environmental risks dangers 
sci spacecraft discovery offshore marine ecology warmer climatic earthquake posed 
v martian development mining impacts ecological global climates probabilistic poses 
crust universe companies discovery setting conditions ecosystems biodiversity threat risks 
planet space explored exploratory settings protection changing weather landslides safety 
evolution orbiting discoveries discoveries nature biodiversity changes greenhouse landslide contamination  

Table 4 
Nearest neighbour results for preferred and pre-trained BERT models.  

Earth Earth (pre- 
trained) 

Exploration Exploration (pre- 
trained) 

Environment Environment 
(pre-trained) 

Climate Climate (pre- 
trained) 

Hazard Hazard (pre- 
trained) 

planet planet drilling drilling climate ecology weather weather impact disturbance 
moon space evaluation excavation ecology climate environment environment landslide alteration 
human moon reconnaissance reconnaissance life sustainable precipitation precipitation earthquake seismic 
life life diamond extraction health resource cooling geology tsunami intrusion 
crust soil research observation ocean earth temperate soil flood asbestos 
contemporary gravity petroleum evolution habitat life runoff cooling trajectory prediction 
environment environment sampling research evolution soil feedback weathering instability radioactive 
discus human zoning erosion contemporary energy arid wind hurricane sedimentary 
wasting surface extension spectroscopy zoning health heat radiation runoff enveloped 
enveloped terrane alteration assessment estuary water cold tropical shattering strata  

Fig. 5. (a–c) Word vectors that are relevant to sedimentary (a), igneous (b), 
and metamorphic petrology re-calculated after principal component analysis 
(PCA) and plotted along the first principal component (PC1). The correct order 
of words in PCA space suggests that the GloVe-based word embedding encode 
meaningful semantic relationships, which, in this case, reflect well-known rock 
classification schemes. 
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properties (Fig. 6b), and minerals and their constituent elements 
(Fig. 6c) are divided into positive and negative PC1 scores for each 
biplot, suggesting that the underlying concept for each analogy repre-
sents the largest source of variance. The correct ordering of grain size for 
detritus and rock types along the second principal component (i.e., PC2) 
further suggests that multiple concepts can be visualized simulta-
neously, providing evidence for more complex concepts preserved from 
linear transformation of the preferred GloVe model vectors. 

More complex concepts are presented in Figs. 7 and 8, which show 
the linearly transformed word vectors colour coded to their geochemical 
behaviour (Goldschmidt, 1937) and mineralogy (Gaines et al., 1997), 
respectively. All elements in the periodic table were searched and 
matched where possible (n = 96) using their full names in word 
embedding space prior to plotting with their abbreviated form for the 
purposes of visualization (Fig. 7). The clustering of element names with 
similar Goldschmidt classifications (e.g., Rare Earth Elements) suggests 
that word embeddings preserve some of the physical and chemical 

properties of individual elements (e.g., atomic radius, bonding charac-
teristics, and/or electron configuration). 

The well-known Dana classification scheme (Gaines et al., 1997) was 
used to test whether unsupervised learning can be used to provide 
additional intrinsic validation of the preferred GloVE model (Fig. 8). The 
original Dana classification subdivides over 4000 mineral species into at 
least 10 classes according to their composition and structure, with 
smaller subdivisions based on crystal symmetry (Gaines et al., 1997). 
Mineral names were searched and matched (number of matches = 1893) 
to their respective compositional groups defined by the Dana classifi-
cation scheme (Gaines et al., 1997). The principal component analysis 
biplot reveal clear differences between the vectoral representations of 
disparate mineral classes that are broadly consistent with the mineral 
assemblages that occur in nature (Fig. 8). 

4. Discussion 

4.1. Intrinsic evaluation of geoscience language models 

The new intrinsic evaluation criteria presented herein demonstrate 
that continued retraining of language models improves model perfor-
mance on geology-specific tasks (Figs. 2–4; Table 2; Electronic Supple-
mentary Material Table 1). These kinds of intrinsic evaluation criteria (i. 
e., analogies, relatedness, clustering, and nearest neighbours) attempt to 
evaluate the content and quality of the embeddings themselves, as 
opposed to their ability to improve performance on a downstream task. 
We interpret the relatively poor performance of the pre-trained language 
models on the geoscience-specific tasks as likely due to the limited fre-
quency of domain-specific words in the general corpora despite the vast 
amount of text available in Wikipedia, Gigaword, and BookCorpus 
datasets. Non-contextual language models are particularly sensitive to 
these infrequent or out-of-vocabulary words because they are based on a 
static tokenizer (i.e., words are broken by white space, new lines, and 
punctuation), which coupled with the specific usage of words in geol-
ogy, provide the most likely explanations for the 25% improvement 
observed for the preferred GloVe models over its pre-trained version for 
the analogy task (Fig. 2). 

Improvements were also observed for the preferred BERT models 
over its pre-trained version (Figs. 2–4). Contextual language models like 
BERT are less sensitive to infrequent or out-of-vocabulary words because 
they are based on a combination of words and sub-words (i.e., tokens). 
Instead, we suggest that the improved performance of the preferred 

Fig. 6. (a–c) Principal component analysis (PCA) biplots showing the relationships between multiple word analogies. Words with similar semantic relationships 
cluster together in PCA space and define gradients along different principal component axes (PC1 and PC2). Connections between sediment grain size and rock type, 
(a) minerals and their properties (b), and minerals and their chemical constituents (c) suggest that word embeddings are capable of capturing meaningful semantic 
relationships that can be used in other natural language processing tasks. 

Fig. 7. Principal component analysis (PCA) biplot showing element abbrevia-
tions and colour coded to the Goldschmidt rules of geochemical behaviour 
(Goldschmidt, 1937). Full element names were searched in the word embed-
ding space and were abbreviated for the purposes of visualization. Elements 
with similar geochemical behaviour tend to cluster together in PCA space and 
likely reflect the same mineralogical control on geochemistry observed in na-
ture. However, in this case, the geochemical behaviour of elements is emergent 
from thousands of individual observations and their vectoral representation in 
word embedding space. 
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BERT model may be related to more meaningful sub-words generated 
from the geo-tokenizer. This hypothesis is supported by testing the 
performance of BERT models using different geo-tokenizers relative to 
the standard WordPiece tokenizer. For example, the pre-trained Word-
Piece tokenizer converts the word “seismology” to se + ism + ology; 
whereas the preferred geo-tokenizer identified through testing converts 
the same word to seism + ology. As discussed above, the preferred geo- 
tokenizer used in the preferred BERT model added 250 domain-specific 
tokens prior to continued retraining of the model. Some of these new 
geo-tokens that are likely significant for the present study, include 
“geolog”, “formation”, “atigraph”, and “orph”. Our approach of adding 
specific geo-tokens is appropriate for the relatively small number of 
public geoscientific text harvested from government and open-access 
peer-reviewed publications. However, it is possible that continued 
retraining of BERT models with a larger geoscientific corpora could 
further improve the performance on the intrinsic evaluation criteria. In 
general, smaller models with a larger domain-specific training dataset 
reduces the chance of overfitting and improves performance. 

The improved performance of the new geological language models 
relative to their pre-trained version add to a growing number of studies 
that point to the benefit of continued retraining for domain-specific 
tasks. For example, Padarian and Fuentes (2019) report that their 
GeoVec word embedding improved the accuracy for their intrinsic 
evaluation tests by 108% relative to the pre-trained GloVe model. The 
GeoVec model was trained on a much larger suite of full-text geo-
scientific articles harvested from the Elsevier ScienceDirect application 
programming interface (n = 280,764). Similarly, Bayraktar et al. (2019) 
and Ma et al. (2021) suggest that continued retraining on geoscience 
data can improve performance for their BERT models in downstream 
NLP tasks (e.g., document summary and similarity). These studies 
represent some of the few published examples comparing generic and 
domain-specific language models in geoscience. Future research should 
also consider evaluating geoscience language models using other forms 
of intrinsic (e.g., perplexity) and extrinsic evaluation criteria (e.g., NER). 
For example, Consoli et al. (2020) and Qiu et al. (2019a) tested word 
embeddings retrained geoscientific documents using NER in Portuguese 
and Chinese, respectively. Extrinsic evaluation following this approach 
require a large number of documents that have been manually anno-
tated by experts and the scarcity of labelled geoscientific documents 
presents a number of challenges for testing language model performance 
using NER (Enkhsaikhan et al., 2021b). Ideally, geoscience language 
models should be evaluated using extrinsic criteria that are specific to 

their particular use. This extra stage of validation during application is 
important given that language model performance is expected to vary 
for different forms of evaluation, as documented by NLP research in 
other domains (Santos et al., 2020; Wang et al., 2019). 

4.2. Knowledge extraction and other language model applications 

Advances in machine learning and NLP are providing new numerical 
tools for downstream predictive text applications and/or have the po-
tential to unlock the hidden information within unstructured data 
(Bengio et al., 2000; Hirschberg and Manning, 2015). New research 
results presented above provide additional support for the future of 
these NLP methods in geoscience. For example, the gradients between 
the composition (i.e., mafic to felsic), grain size (i.e., coarse to fine) and 
metamorphic grade (i.e., high to low) of rock types observed after 
translating word vectors to principal components, demonstrates that the 
preferred GloVe model can be used to predict the correct order of words 
according to well-established geological concepts without any supervi-
sion for keyword generation, summarization, and translation tasks 
(Figs. 5 and 6). Fuentes et al. (2020) further demonstrate that simple, 
non-contextual word embeddings can also be used as input into pre-
dictive models that classify rocks based on their geological descriptions. 
Given that billions of dollars are spent on these types of drilling cam-
paigns every year, free NLP methods that are built on public geological 
word embeddings have great potential to maximize the return on this 
investment. 

The potentially more challenging application of word embeddings is 
the discovery of latent information that may be stored within the vast 
volumes of unstructured geological text. Examples of knowledge dis-
covery from word embeddings are still relatively rare, although Tschi-
toyan et al. (2019) demonstrated that new materials could have been 
proposed years before their first reporting from information buried 
within the scientific literature. The discovery of this type of new infor-
mation from the published literature is possible because language 
models that are based on unsupervised learning of massive text datasets 
(i.e., annotated training data are not required) are likely to find con-
nections and patterns of research results that may have been difficult to 
identify manually (Ma et al., 2017). The clustering of elements with 
similar geochemical behaviours, as originally described by Goldschmidt 
(1937), in PCA space highlights the potential for similar knowledge 
discovery to occur in unstructured geoscientific text (Fig. 7). We inter-
pret the clusters of elements with similar geochemical behaviour in 

Fig. 8. Principal component analysis (PCA) 
biplot of minerals names and colour coded to 
the well-known Dana classification scheme 
(Gaines et al., 1997). Minerals with similar 
classifications plot together in PCA space, 
reflecting similar vector properties (e.g., sil-
icates versus sulphides). Word embeddings 
provide a powerful framework for evaluating 
and predicting mineral groups based on 
thousands of observations in nature from 
multiple trained observers over time. Min-
erals from disparate classification groups 
that plot close together provide intriguing 
evidence for associations that require 
re-examination (e.g., the lesser known asso-
ciation between scheelite and molybdenite in 
porphyry-skarn mineral systems).   
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principal component analysis space to reflect the underlying geological 
controls of natural processes since very few geoscientific publications 
would report results for all of these elements at the same time. This 
result is somewhat surprising given that word embeddings represent the 
accumulated signal from a large number of authors who have described 
these chemical associations independently and in their own words for 
over a century (i.e., GEOSCAN publications date back to 1845). Major 
and minor element substitution reactions are particularly apparent after 
the linear transformation of word vectors, as suggested by the clustering 
of major and minor element pairs (e.g., iron and nickel). Lesser known 
geochemical behaviour, such as the Rare Earth Elements characteristics 
of some lithophile elements (e.g., yttrium), highlight that multivariate 
statistical analysis of the linearly-transformed vectors can be further 
applied to re-classify elements that exhibit transitional behaviours in 
different geological environments. 

Mineral associations represent one of the other important methods 
for tracing these geological environments back in deep time. New un-
supervised machine learning results demonstrate that mineral groups 
yield word vectors that cluster together in multivariate space, which can 
be used to predict new mineral associations that may or may not have 
already been observed in nature. For example, magnetite and hematite 
are both iron-bearing minerals that represent important tracers of 
oxidation and reduction reactions and closely cluster with native iron 
(Fig. 8). Mineral associations such as these can be thus used to infer 
paleo-environmental conditions, track geological process through time, 
explore for new mineral resources, and predict the most favourable 
settings for so-called “missing” minerals (Hystad et al., 2019; Morrison 
et al., 2017, 2020). However, unlike manually curated mineralogical 
databases (Hazen, 2014; Morrison et al., 2017), we demonstrate herein 
that word embeddings capture at least some of these mineral associa-
tions from unsupervised machine learning of unstructured text. 
Combining these mineral names with other known mineral properties 
and using other multivariate statistical methods to characterize more 
subtle mineral associations represent important areas of future research. 
Our results add to the growing body of literature focusing on such 
data-driven discovery within geoscience (Hazen, 2014; Ma et al., 2017; 
Peters et al., 2018). 

5. Conclusion 

Recent advances in machine learning and NLP, coupled with the 
increased availability of high-performance computing in the cloud, are 
providing new tools to extract knowledge from the vast volumes of 
unstructured text. However, generic language models trained on general 
corpora are likely missing some of the specialized words and concepts 
that are specific to the sciences, suggesting that continued re-training 
with domain-specific text has the potential to improve model perfor-
mance. Herein we apply some of these latest NLP tools to develop 
geoscience-specific language models. We demonstrate that contextual 
and non-contextual language models trained on geoscientific publica-
tions outperform the generic and pre-trained models on NLP tasks that 
are specific to geosciences. Whilst the relatively simple and non- 
contextual GloVE models yielded the best results on these specific 
tasks, more advanced contextual language models such as BERT are 
likely better for performing downstream NLP applications (e.g., senti-
ment analysis, keyword prediction, classification) and capture the more 
complete meaning of phrases and sentences. Nevertheless, we demon-
strate how non-contextual word embeddings can be used on their own to 
make predictions from otherwise unstructured geological descriptions 
(Fuentes et al., 2020), and how the embedding space can be explored by 
statistical methods to highlight a number of features that are likely of 
significant interest (e.g., element associations and mineral assemblages). 
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