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Abstract

The description of rockss oneof the most timeconsuming tasks ithe everyday work ofa
geologist especially when very accurate descriptisrrequired We here presenta methodthat
reduce the time neededfor accuratedescriptionof rocks, enabling the geologist to work more
efficiently. We describe thapplication ofmethods based on color distribution analysis and feature
extraction Then wefocus on anew approachused by us, which i®ased on convolutional neural
networks We used several welinown neural network architectures (AlexNet, VGG, GooglLeNet
ResNet) and made a comparison of their performartoe precision of thelgorithmsis up to 986
on the validation set with GoogLeNet architectdree best of th@roposedalgorithis can describe
50 m of full-size core ironeminute.

Keywords: Core Image; Description; Convolutional Neural Networks; Representation;
Geology; Lithotypes

1 Introduction

Mining andpetroleumcompaniesare keerto automatesariousprocessefn orderto speed up
exploration ofmineral resourcesThis can be done bluilding largecustonized recommendtion
systemr expertsystemstheuse of mathematat methods, statisticélowever,geological datare
generally of uneven quality, due warying behavior of welllogging toolsin different formations,
differencesbetweenlogging tools (sensitivity and precision), differences in geological descriptions
and laboratory measurementsndit is difficult to build a sustainablenathematicamode| which
react appropriately tall of these data permutations.

In recent years, scientssin many fields have beguto use machine learning methods to
analyze largevolumes of data. Machine learning methods are based on linear andinean
transformations of data. Machine learnicen beusedto designapplicationsfor selfdriving cars
fadal recognition, video classificatioft is alsoapplicable tageological problemsA key task when
modeling depositional processes and sedimentary environnsefasies analysis of a fuBized
core.Creation of a goodeological modetlepends orthis task The procedurenasseveral stages
which makes it verytime-consuming. First,lte coremustbe describedThe compositionof the
rock, its structure and textueand other characteristiesustbe identified If the scale of description
is large (1:10 cm and lowert may takea geologist several weeks tomplete this workThen the
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descriptionmustbe processed and analyzadngwith the well logs after which the faciescanbe
tracked and the geological modsnbe built. The quality of a modedlependn theaccuracy of
the description. If the model ibuilt with low precision, thera significant parbf the data may be
misinterpreed (permeability and porosity distributionsstimatesof petroleumreserveand much
more. Various techniquesre used to address these issuseme of them aréairly obvious to
establisha compromise between precisiohthe descriptiorand qualityof the geologicalmodel, or
to automate the process of descriptidtutomation usually depends oncore image analyses.
Machine learningcan be applied tospeed uproutine image analyse Several studietiave been
devotedo theautomaion of imagedescriptions.

The earliesknown work on color distribution analys is that of Prince and Chital¢2008)
The aithors used thresholding (separatingby some value)of grayscale image:n HSI (Hue,
Saturation, Intensityfor pay estimationThey definal two classe$ pay(sand)and norpay (shale)
I andtestedthe methodn highresolution images.

In 2011 Thomas et la proposeda new methodfor automatic lithology classificatiorilhe
method called objectbased image analysisetecs pixels which differ significantly from each
other.Four lithotypes were usedsand, shale, carbonate and no céiest, different lithotypesare
automatically separadefrom the core image by #reshold After that the nearest neighbor
classifier(Arya et al., 1998)s applied to thesmall data(about4.8 m of a full corewith different
lithology) to enablesupervised learningThe nearest neighborhood classificatienbasedon
comparson of the wholedatasetin n-dimensional space. Different classesre distinguishedand
placedat maximum disance fromeach otherThe training datasewas create using amples of
different lithotypes from the wellSubsequentlassificationwas carried oubn samples from the
same well.

Thomas et al(2011) appliedthe trainedclassifierto the wholedatasetin orderto classify
lithotypesand the resultsvere checkedananuallyby an expertAdditional sampleswere added or
removed from the nearest neighborhood mati¢he resultswere not reasonableélThe method
worked well whenappliedto one target whereall the data are from the sardestribution (core
image collection). In such casesaccuracywas a high a®94.29% Misclassificationoccurredin
imageswith emptycore or shaded areas.

An approachfor improving color distribution analysisvas offeredin a series ofworks by
Khasanov et al(Khasanov, 2015, 2014, 2013; Khasanov et al., 2016; Postnikova et al., P& 7)
key idea was to usthe difference in lithology colorén HSI color space(limestones may be white
or yellowishwhite, sandstones yeivish white to green)Other petrophysicakharacteristicssuch
as oil saturation, porosity, permeability cementation can also be bounded through the color
distribution. The approachrequires choice ofthe right color distributiorrange foreachtype of
characteristic{several hours of work)it is then necessaryto determire which @mponens are
responsible for thecolor distribution (lithology, porositpermeability. The aithors propos#
making a ddabase of such color distribut®and trainng an artificial neural networko use the
color intensities t@implify the process.

Another methodvasbasel on the extracton of featuresusing Principal Component Analysis
(PCA) and color distribution analys€®Vieling, 2013) This researchwhich usedvarious statistical
tools,aimed to evaluate bedding direction, lithology, grain,sarel permeabilityf a corethat had
been segmented to centimeter intervalBhe detectionwas performedwith an autccovariance
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function Information about each core imageas represented in RGBOORed, Green, Blue,
Darkness)color space The informationwas extracted by centered log ratio (CLR) transformation
followed byPCA.

After PCA, information about beddingzasextractedoy correlatio of the bedding imagevith
two parallel linesimposedon the imag, and then possible beddirdirectionswere determined
using k-means clustering.ithology classificationused aMultivariate GaussiatMG) distribution
model followed by Minimum Covariance Determinant and Quadratic Decision Bou(@Qa).
Theoperationsverecarriedout by linear regression of the Autdovariance properties for grain size
and permeability estimation. Two lithologypes wee to be distinguishedsandstone and other
rocks (coal, mudstone shale (not to be confused with carbonates] siltstone)Accuracy of the
QDB classification modelvas 91%and 88%for the MG.Sq the boundary between sandstone and
other rockswas accuriely defined In order to distinguish thether rocksfrom each otherthe
contrast between siltstone and other coupled lithology classeset byalinear decision boundary.
But the results othis approach were disappointing, sirsi#istone shale and coalwereall darkin
color.

In works by Chatterjee et al(Chatterjee, 2013; Chatterjee et al., 2010, 2008; Patel et al.,
2017a, 2017b, 2016)ushed rocks from different minegere analyzed. Eachock was separately
segmented from the imagéariousfeaturesof texture andstructure were extractdcom the mage
by different methodsThese featuresvere reducedto a smaller dimensional space by principal
component analyses (PCA)til the2010s) or by genetic algorithms (GAh themost recentvork
(Patel et al., 2017dhere vasno dimension reductiori8 feature®f color distribution and intensity
were usedor the needsf online system development

These featuresvere placed intoa multiclasssupport vector machin€SVM), which maps
featureghat displaynon-linearity to linear spaceAfter mapping the nonlinearity can be solveas
a separatéinear problem.Both appoachego separate the data were usedeversusall and one
versusone.Precision of thisnethodis betweer8(0% and99% (dependhg on the exactmethodused
andthenumber of lithotypes)

Many otherworks devoted to ore classification problerhave beerthorouglly reviewedby
Patel et al.(2017a) For example Khorram et al.(2017) used SVM forclassification of three
different types of carbonateEhe SVM method madbe distinctionwith accuracyup to 89%

Some other workdescribe the use Ml (formation micreimager)tools(Leal et al., 2018)
OBMI (QOil-Base Micrelmager) tools(Claverie et al., 2007; Knecht et al., 20@&4d grain size
analysegBukharev et al., 2018; Varfolomeev et al., 2016)

Recent work (Baraboshkin et al., 2018; Ivchenko et al., 20bh8ye shown thaartificial
neural networkscan extract informationfrom images and easily determine lithotype&A.
development ofhis methodis presented belowit can be used to describe a greatamber of
lithotypes and sample$revious network architectusewere unableto correctly classify new
lithotypes since they teretl tounderfit the datawere unable tgeneralizeéhe data in ordetio make
new predictions We addressethis problemby investigaing the abilities ofvariousneural network
architecturesconstrucing, trainng and teshg the archtectures We gaugedhe performanceof
new lithotypes detectignrandcompaed neural networksepresentatical abilities.
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2 Material and Methods

In previous work(Baraboshkin et al., 2018ychenko et al., 2018ye showedhow the
identification of different rock propertiescan be automatedsing a convolutionalneural network
(CNN) (LeCun et al., 1989)We implemented new machine vision algorithaessthe number of
classes grewThe CNN can generalize information about images wittany classes.The most
common exampleare ImageNet(Krizhevsky et al., 2012{containsthousands of clasggsSmiles
(Hromada, 201Q)flower classification(Nilsback and Zisserman, 200&hd Adience (gender and
age recognitionjEidinger et al., 2014)

To build the datasetwe collected 200@ore box images(approximately2000 m of core).
After preprocessing whad 20000 imagesvith size 10x10cm (150 dpi Eachimagewas labeled
with the corresponding lithotypeThe lithotypes includedmassive andaminated sandstone,
limestone, shalé= argillite) and siltstone.The preprocessing algorithm was built to extract only
core images, sthereis no needto add a special class for Rocks were collected from different
regionsand formatios in Russiaincluding BazhenavAbalak (Vasuganskaya ande@rgievskaya)
Vikulovskayg DomanikandAchimov.

All computing was done on Byon 3.6(Van Rossum and Drake, 201Epr image operations
we usedPython libraries OpenCV (version 3.4.2)Bradski, 2000)and NumPYy (version 1.14.3)
(Travis, 2006) To trainand testthe network we usebtackendPython libraries: Keras (version
2.2.4)(Chollet et al., 2015yith TensoFlow (version 1.10Y Mar t 2 n Abadi , As hi
Barham et al., 2015For plotting the resuf we usedhe Matplotlib library (version 2.2.2YHunter,
2007) For evaluabn we usedthe Scikit-learn Python library (version 0.19.1)Pedregosa et al.,
2011) The ArkudaSkoltech clustewasused for training of the network.

2.1 Applied methods

2.1.1 Convolution

Convolution is a process of matrix multiplicatiGglement by elementdllowed bythe sumof
all elements of the matriwhich fits into one numberThe convaltion in the artificial neural
network ANN) is equal to crossorrelation(Goodfellow et al., 2016)

YHEQ 0z0WQ B B 0OQ ahQ ¢ U af (D),
where Kstandsfor kernel | for atwo-dimensionalimage andi, j, m, nareindexes of pixel
positions inthe kernel and imageThe only difference is that the convolutios followed by
transpodion of the kernelwhile the crosscorrelation is notThis numbeigoesinto the newmatrix

as a pixel Finally, some information about the image characterigfiégure 1) is obtained which
may be information about shapes, lines, foransl othesstructural elementthatexistin the image.
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Figurel. Schematic picture o kernel of theconvolutional neural networfCNN). The CNN
usually contain hundreds of kernéliters).

For example, we can apply SobelX kernel(Freeman, 1990jor the image of laminated
sandstonéo extract information about laminatidfigure 2).

Figure2. Example oftheapplication ofa SobelX kernel on aore image.

To prevent the reductioaf spaial dimensios of the imaggas the convolutiortransforns
several pixels into oneadditional pixelanustbe inserted (padded) into the imagée number of
pixelsto padis calculatedas follows

- 2,

where P is padding size, Fis filter sigegf CS231n Convol utional Ne
Recogni t i on.Paldingissuallycaried outby 2Jeros.

Such filters(kernels)can be trained byANN (Goodfellow et al., 2016)0 extractspecific
features from mages for the best predictioifthese filters are automatically trachto extract
different featurege.g, grain size, lamination, color distribution, core condi}iohthe coreimages
Such ANNis calledaconvolutional neural network (CNNbLeCun et al., 1990)

2.1.2 Convolutional neural networks
CNN is a specialized kind of neural network for processing tlzda has a known grilike
topology(Goodfellow et al., 2016)CNN consists of different layer pes.
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Layersin CNN have severabarameters: depth, stridend padding. Depth is the number of
filters to train in the layer, strids the number of pixels which the filter should process during
convolution,and paddingis a matter of whether or ngiaddingshould be carried outand what
method should be used for Here a brief discussiorof layer typescan be seenMore concrete
discwssion of each layer type and its parameters can be fouboadfellow et al. (2016)

The ativation layer takes all the filters from the convolution layer and rettiresame
number offilters, which are binary thresholded by some valliee parameter dheactivation layer
is theactivation functionThere are sever&pesof activation functionOne of themostcommonly
used igherectified linear unit ReLu) (Nair and Hinton, 2010)

Mo Qi ).
Pooling layerstake all the filters from the activation layer and rettlie same number of
filters with reduced spatial dimensi®(size and weight of filters). They are similar to convolutions.

The difference between thers that the receptive field takes only one maximum value from the
observed area.

A drop-out layer isrequired in ordeto regularize the network (not to produce large weights)
and prevent overfittingOverfitting is thestate of thenetworkwhen itcanonly predict labels from
the training datasetith high accuracyThe dropout layer randomly drops different connections in
each filter It gives the networkmuch better generalization abilitgr predicing new data

The tully-connected layeis connectd to all neurons in the last convolution laykhelps the
network to make final decisiorms how tolabel an image.

2.1.2.1 Artificial neural network optimization

Each machine learning algorithm should be optimized, the value of functiori(x) should
be maximized or minimized). When the functia® minimized it is called a loss function
(Goodfellow et al., 2016)Gradientbased optimizations usually appliedto minimize the loss
function

The major hyperparametére., parameterwhich needs to be set by the researcher) for such
methods isthelearning rat§Goodfellow et al.2016) Thekey pointis that we never know whether
the next steps good orbadfor network performance.earning rate optimization algorithms were
inventedto excludehuman influence on the results of the training adaptfeder, 2016)Such
algorithmsare commonly used in worlegppearing today

We usedthe Adam (Adaptive Moment Estimationdptimizationalgorithm (Kingma and Ba,
2014)for the training of our networklt is based orthe computing of adaptive learning ratées
each parameter of the netwarkVe also tried to apply other algorithrsach asSGD (stochastic
gradient desceptRobbins and Monro, 1951RMSprop(dividing the gradient by a running average
of its recent magnitudefHinton et al., n.d,)but all of themgave less satisfactorgetwork
performance.

2.1.3 CNN architectures
Several components are needed to construct a simple @iidhvolution layer (with weight,
height, number of kernels (@epth) and other parametera)fully connected layer (repsens the
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number of classes) and, usuabySoftMax function(S. Bridle, 1990) which is needeth orderto
calculate certainty in the prediction of the network.

Each of the pixels of this kernel (Blt) isfactually a node of a neural netwoikhe number of
nodes in one layer can be calculagsdd "z 0 z "Q(4), where Nis thenumber of nodes, is the
height of the layer output, v& weight of the outputandk is thenumber of kernels (depth) of the
layer.

The architecture of thenetwork is createdfrom different layers which were previously
described.The architecture is the mostaluable part of the CNNEach architecturg@rocesss
imagesin different ways. Each architecturevorks with different sizesnd spatial dimensionsf
imagesdue to different image transformatioffsgure3).

AlexNet (a) Legend
_ QNEy K
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VGG (b) el
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| GooglLeNet (c)
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Figure3. Smplified sketche®f neural networlarchitecturs. Inception and residual module structu
can beviewedin the detailed network maps amonlinerepostory ( i Suppl ement ar

ar t i cl @i canvolutiomlaygr, I activation layer2i Inception module3i average poolingd

T batch normalizatiorb i max pooling 67 zero padding7 i Residual module8i drop-out layer 91

layer compositionl0i dense layer

We implemented and trainsgveralmain architectures for image classification.
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AlexNetarchitecturgFigure3a) (Krizhevsky et al., 2012)onsiss of five convolutionallayers
andthree fdly-connected layersAlexNet wasthe first architecture to beained on several GPUs
(previously networkswere trained onCPUs or on one GPU). AlexNet was one of the first deep
convolutional neural netwosko achievehigh accuracy on the ImageNet dataset (test errowage
37.5%).

VGGNet (Figure 3b) (Simonyan and Zisserman, 2014as proposed athe first very deep
convolutional neural networkThe aim wasto evaluate how depth of the network influesnces
performanceThe main conclusiowas that the depth of the network does influepegormancdor
the better. The maximumtest erroy which the authorsobtainedfor ImageNetin this work, wa
25.5%.

GoogLeNet(Figure3c) (Szegedy et al., 2015; Zhaegal., 2017was constructed and trained
independently at the same time as VGGNeetveralnew techniquesvere implementedo obtain
high accuracy. Téfirsttechniquec a | lineeptiord concatenass different types of kernel outputs
in one matrix. e secondechniqueis to redue the numberof fully connected layersenabling
reductionof network storage spacél'he researcherslso discovered that the width of the network
significantly increasd accuracy withoutoverfitting. The work carried out in2014 used 1x1
convolution layers to reduce the spatial dimengtba number of filters)The work from 2016used
the same approadb increase the widtbf the network The test errorwas 6% for top-5 testerror
(top-1 accuracyerrorfor inceptionv3 in Zhang et al(2016) was 375%).

The kstarchitecturewe usedwas ResNe(Figure3d) (He et al., 2015)He et al.produceda
new network training method which allowedetter performanceThe main ideawas that the
previous activation layers g decision which was made earlie) added to the new on@ayer
composition blocksFigure3). This allows better predictioaastwo decisions are tak into account
for each layerThis method alseasily overcomesariousproblemsconnected with deep network
training makingit possille to easilytrain very deep networks (up to 1000 layers)

2.1.4 Image operation
Two color regimesvereused: RGB and Grayscalgll imageswerenormalized taarange of
pixel intensities from 0 to {the whole image was divided to 9530 train theclassifier all core
i mages were cropped to 10x10 cm IbBDRPHhJhHissized e ¢
was chosen as the scat®st frequenthused by sedimentologists foore descriptiorf1:10 cm) All
the images were resized2@7x227 pxoy thebilinear interpolatioralgorithm.

2.1.5 Image augmentation

It is a common case that datasets have different statistical distribi@styakov and
Nikolenko, 2019)which is called domain shift. That problem prevahisuse of machine learning
or statistical tools to wide nge of data as due to domain shift the accuracy of models decrease. The
augmentation is one of the ways to tackle this problemage augmentation is a useful tool which
can producemany synthetic images from existing datauch imagewill not be the same as the
original dataset and will help the neural network to generalize information dideddta.lt can be
done either one timas an oversampling of the dataseteach timeduring he training process.
Effective data augmentation can improve the accuracy of the ne(Rlwike et al., 2017; DeVries
and Taylor, 2017)We used different techniqudsr augmentatiorfFigure4), which were available
in OpenCV and NumPyimage rotation(orientations of core and laminatignbrightness(as
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different photographysettings) color manipulation(different composition of the rockgnd random
cropping (core plugextractegl. The additional Albumentations libraryBuslaev et al., 2018yas
used for advanced augmentatigsisch assaussian Noise addition abllirring.

Image augmentations

Original Blurred Cropped

Contrast-saturatuion

Rotated

Figure4. Different types ofmageaugmentation

2.1.6 Network performance evaluation

The data for training (85600 images, ~15000 per ckfssr augmentatiorexcept for
limestone which had abouf7000image$ were separatenhto training, validation and test sets.
order b evaluate the nebrk performancearound110 images(50 for limestonesfrom each class
were taken tovalidation and training Eventually, bothsets had 600 images. The network
performancewas evaluated aéir each training on the validation sétfter training had been
completed, the efficacy of the network was tested on new(data not present in either the training
or the test set). Finally, the network was tried on data froewawell consisting o440 sampls
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We used several metrid® evaluate network performand&awcett, 2006; Metz, 1978)
precision, recallFe-score, accurachs a good visualization tool
usedconfusion matriXFawcett, 2006; Metz, 1978)hese techniques are standdany machine
learning tasks andre utilized for a better understanding of model performang@éey provide
valuable informatiorwhere there arenore than twalasses witta different number of samples for

each classAccuracyis defined asi © @ 680 —— (Fawcett, 2006)where TPis true positive,

TN is true negative predictions, B true positive, Nis true negative labeléor predicton (the
number of examples). Precision is a metadich measures all TP againall true and false

predictions of a classy i 'Q @ "Qi —“Q¢&-£Recall measures all TP predictions against all true labels

z

I Q0 ®&aThe Fr measure shows the precisimetall relationship &

z

with b=1, It ser v erse cfiosri oinn c(lbi =nOa. Thie) mmiasionanatexrr adl |
unites all the informatioabout classification in one tab[€ablel).

Table 1. Example of a onfusion matrix. TR true positive classes, TN true negative classes,i0
shale, I sandstone, P limestone

Confusion matrix 100

gl TF TH TH
80
2 60
T TN TR TN
d
2 40
=
2l TN TN 120
o N

Pradicted label

It canbe easily sem in which classegredictionsarecorrect and in whichclassegpredictiors
are wrong We usedthe Scikit-learn python library(Pedregosa et al., 20119 generate the
classification report

2.2 Lithology classification

The main problem in lithology classification is théttere are manydifferent classificatias of

rocks (Wentworth, 1922)Practicallyevery company createiss own classificationto suit its needs

We usedhe standardnitial origin-based classificatio(Bluman et al., 2015)sedimentary, igneous
and metamorphicWe used isnplified dastic sedimentlassification sandstonglaminated and
massive) siltstone, shalé=argillite). We distinguisheatarbonate rocks as a separate clags.did

not takeaccountof the origin of grain compositioraandstonevith a lahar is still clastic sediment
and s still sandstong This approachis quite similarthat usedoy the British Geolaical Survey
(ABritish Geological Survey (BGS) Rock CIl ass
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3 Experiments
We trained our networlisingthe Adam optimizerThe learning ratevasset to 1€3 (this rate
worked well agheinitial learning rateon all models We usedhe polynomial learning rate decay

| |ZplerQh G)(Martzn Abadi, Ashi sh Agar wa
Rosebrock, 2017)

wh e r eanéWw ldgarping rate, ejs the number ofthe current epoch, epxis the maximum
epoch numbemndp isthe power of the polynomial

We also tried anothanethod of learning rate manipulatiogpochbased learning rate decay
When the epoch reaeka certain numberthe learning rate changes by one decimal pdihts
method worked better ¢gh polynomal learning rate decaybut can sometimedead to spikesas
seen on the plot$-igure5, Smith, 217).

We alsotried to apply finetuning (Chollet, 2017) a techniquethat uses models whichhave
beentrainedto solve some other taskVe usednetworkstrained on an ImageNet datasefThe
networkswere unable t@eneralize the dataven aftetthe activation of all layers for traininglrhe
randomly initialized networks converged much faster.

Our experimentswith all of the abovementionedarchitecturesenabled us to generate a
technique that gave excellamsultson new datavithout any overfitting Each networkvastrained
for oneday on 1 Nidia k80 GPU.

3.1 Results
3.1.1 Training
The experimentausing previouslydescribedarchitecturedor a new set of lithotypegavehigh levels

of accuracy.ln most casesnly 20 epochsvere neededo obtainlow classification error3-10%) on the
training datasefFigure5). All networksshowedgood resultgluring training

AlexNet ResNet
Training Loss and Accuracy [Epoch 1141 Training Loss and Accuracy [Epoch 28]
- — balr_ioas | i — bair_ioas
— wval_lozs 13- |I | — val_lozs
a | b2 s || b= mo
l —— wal ac: | |’ |I —— wal ac:
s ) +
5 1\ L B
fos WA b
= rl e PAL P
20 i ! 2 HAN Wy
H | 1 =
Ji"'d \ § ‘«'l'-' Al _— l\-d \\
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Figure5. Evaluation of network performance. Training loss and accuracy plots for the best experiment.

Confusion matrixanalysis(Table 2) shows thathe laminated sandstone class is sometimes
confused with massive sandstone and siltstone. Sortteeddminated sandstonesay indeedbe
referred to each aheseclasgsby a geologist Some ofthe laminated sandstones have very fine
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grained lamination which can be easily referred to siltstones. Profoalthe same reasoysome of
thefine-grained massive sandstovesremisinterpreted as silishes.

Table2. Confusion mair analysisand performance statistiésr the trained network®nnotation for
the confusion matrixabels:0 i argillite, 17 granite 2 7 limestone,3 1 laminated sandstond i massive
sandstone, b siltstone.The color baindicates the number shmples.

AlexNet VGONet
Confusion matrix 100 Confusion matrix 100
Q 0o 3 0 2 4 0 0 1 0 0 1
10 0 o0 0 Q a0 p 0 1 o o 0 B
.o o 48 3 1 0q T, 0 0 fH@0 1 1 1
(&) e 60 Qs 60
O" 5500 0 0 8300 0 0
= =
a0 40
(Q\| 40 0 0 302 00
Q. 5 3 0 0 Lo s|2 0 1 -
Q 9 1 2 3 & =& I R S
(D Predicted label Predicted label
i) n
N pracizian eesall  fl-goare popsaet presisicn racall Fl-paere  suppart
argillike 0,97 n.m 0.3 104 argillite 0.95 0.98 097 104
granite 1,90 1.00 1.00 111 granite 1.00 0,99 1.00 111
; limmatons Q.04 0.9z 0,23 L'xd Linaatars 0,94 0,94 0. 94 53
laminated pandakens 1] n.ag [+ 108 laminated sandstons 0.94 0,82 0.9z 108
U mansive sandstone 0,93 0.56 0.4 114 massive sandstons 0.93 0.97 0,95 114
. alltatone 2,95 .9z 0. 110 slltatane 0.87 LT 0,95 110
8 awg [} total 0.95 0.5 0,95 £00 avg [/ bekal 0.95 .96 0,96 600
e
™ GooglLeNet ResNet
> Confusion matrix 100 Confusion matrix 100
AN o 6 1 0 0 1 o o 1 0 0 5
=) 1] 2 0o o0 o 10 I I | W
— .00 o fs0 o0 oz 1 i T2 1 /48 2 1 1
- &2 il i G0
€ [H
Oo> £4/1 0o o 550 1 0
. 40 - a0
(@)) 4 0 0 O 2 0 o
S /2 o 1 - 5/3 0 0 g
o — o o1 3 4 5
>< Predicted label Predicted labsl .
S :
precision recall fl-scare  euppoct precisico recall El-socore  suppork
argillike 2,95 n.om 0.57 104 argillite 0.93 0.94 0. 04 104
granite 1.00 n.o8 0,99 111 granite 0.98 0,99 L] 111
1imeatone 2,95 0,94 0,95 53 Linestang 0.98 0.87 0.9z 53
laminated aardatons 2,95 0,50 0,92 108 laminated sandetans 0.90 0,91 0. 90 108
magsive sandatome a,ao 0.%6 a,83 114 magflve sandatana 0.9z 0,38 0. 94 114
siltakene 0,94 0,94 0.9 110 siltstane 0.90 0.90 .90 110
awg [} total 2,95 .95 0,95 &00 avg f total .93 0.93 .93 600

3.1.2 Neural network representation

When artificial neural networksfirst appearedthey were generallyperceivel a s A bl
b o x .eASN representation techniquésive beercreated since 201@hollet, 2017)in order to
i un b o x.orheimageimpassedhroughthe network and information aboutis extractedasa
feature magdrom certain layersThis lets usunderstanchow the systeminterpres the images and
why it makes mistakesThe first networkthat wastested(Baraboshkin et al., 2018; Ivchenko et al.,
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2018)generatd different structureglamination orgraing on each layemDifferentlayersof thenew
architecturesnterpret thamagesn different ways

Partof thefeature maps representeth Figure6; each layenamecan be found in the large
schemeof ANNs in theappendix( i Suppl ement ary mat eABsehdffour t o
trainedfilters (out of at least 32from eachlayer are presentetbr demonstrationEach lithotype
raisesdifferent activationdor the set of filtersas can be seen figure 6. In eachfeature map
different areas are highlighted with different weidgbit different lithotypes.So the filters capture
different characteristics of each lithotype.

Local interpretable modealgnostic explanations (LIMEproposed byRibeiro et al.(2016)
offer another way of understanding which areas of the image are used to make a prédiction
methodlets us see the areas of an imagehich havegreatestinfluenceon the prediction results
(Figure7).

13



arXiv:1909.1022v3 [cs.CV 27 Sep 2019

Network

(layer)
thhotype

Arilllltc .

Gramte

AlexNet VGG GooglLeNet ResNet
(conv2d 1) (conv2d 3) (3a_fourth _conv) (conv2d 42)

v
v
3

leestone

Sandstone
lammated

Sandstone
massive

Siltstone
Low

Figure 6. Maps of layer features extracted by theural network applied to our data afte
completion of trainingDifference in thesizesof the mapss due to different sizes of filters
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Figure7. Areasof theimage(outlined in color), which enablethe networko predict the lithotype
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A set offeature maps from each neural network appliedto each lithotypeOnly AlexNet
activated a limited number of filters from a large number in all lithotypely one filterout of four
wasactivated inFigure6).

As can be seernn the otherarchitectures the filters hatke sameweight sign for most of
the lithotypes, but each filteselectsparticularfeatures for each lithotypd&ResNet andvGGNet
concentrag on the grain size of the lithotypas eacHilter emphasizethe granularity of an image
ResNetdoesnot extract information fronnmages when the size of grains is snftde siltstone and
argillite images do not have largeeight fluctuation). However, VGGNet attemptsto extract
information in all cases

GoogLeNet activations concentrate more on texture classificatidrhe granulaty of
intermediate layers is smail can be seeanly in the massive sandstone amenite

In all casesthe networks detect the lithotypdased on several image regiavfsdifferent
sizes Figure7), which may sometimes lead to misclassificatiom presented imagenostof them
were predicted correctly excepie siltdonelithotype. AlexNetandGoogLeNetclassified the image
as massivesandstoneThat is happened due toost of examinedpatchesof imageare similar to
massive sandstoneshich can be found in the same figuResNet classifiedmage as laminated
sandstone asome patches indeed had lamina and others were similsanmtone. VGGNet
classified image correctlgs siltsoneprobably becausi found samepatchegpreviously in training
set The VGGNet made a misclassification erwmanile predicting thegranite image as laminated
sandstoneThe marked matches contain some lamina @ndure similar to sandstone Same
features can be found while comparing extracted featureSigare 6. Extracted featuredpy
VGGNet from granite and laminated sandstone are similar (the same sizes of granularity and
lamination).

3.2 Discussion

In order totest the networksye built anew data set and compared the algorithm performance
with the opinionof anexpert.Lithology of44 m of newcorewasdescribedEach network predicted
the core with high accuracyigure9). No special equipment is needidrun the trained network
which operateson a CPU. A GPU speedsip actionof the algorithm. The informatiomprocessing
speeds around 50n per minute ora GPUand around 25 per minute orm CPU, depenidg to a
large extenbn characteristicef the workstation

The results of theamparison arshownin Figure9 andTable3. The conclusionsoncerning
network performance are similar what was statedn Section3.1.1above For the final test 440
samples were provided (44 mméw core).As thenew datasetay differ from the initiaktatistical
image distribution(the same as lithotype descriptsowhich may be made by other geolopiie to
domain shift problenthe performance of the network mairop in different cases.Most of the
samples wergecognizedcorrectly by all neural networks. AlexNet sometimes mixes shales and
siltstones There were @me seriousproblems when oisaturated sandstonmageswere used in
processing 21 samples werenrongly predicted as limestonastead ofsandstone The same
problemoccurred forlaminated sandstones (15 of theverewrongly referred to limestonesps
can be see(Figure8) the limestones from thigaining dataset arike the oilsaturated sandstones
from the new dataSo, theproblemwith confusion of thesewo lithotypescan be solvedy the
provision of moreimages ofoil-saturatedsandstonesAlso, the sandstones can be additionally
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augmentedy the application of yellowiskwhite filters tosimulate the saturatiofen bioturbated
samples which should bereferred to sistoneswere detected as granites as yhwere similar to
granitesn thetraining dataset@~igure8). VGGNetis moresuccessful in identifyingedimentsvith
bioturbation structureOnly one sampl@nd 1 argillite with 2 silt®neswere predicted as granite
VGGNet, like AlexNet, fails to predict oHsaturated sandstormed laminated sandstonasd shales
(55 oil-saturated samples and 1 shale sample prexdicted as limestones).

GoogleNet failed to detect 48 samples as sandsamle?2 samples as shaldboth were
detected as limestone3 he network understodsl bioturbated samples as granites.

ResNet made the least number of errasi(lite (1), lamnated sandstones (6), massive
sandstones (5), and siltstone$ \(lere detectedas limestonesandthree agillites and one siltae
were detecteds granites)Other mistakesire connected to the ndamundary lithotype samples
which can be detected amandstones or siltstongs$he problem was already discussed inti®ac
3.1.1, above)

Similar examples to the predicted label
from the training set

Siltstone . granite .

True label New data Predicted label

Laminated .
limestone
sandstone
Siltstone massive sandstone

Laminated

sandstone siltstone
Figure 8. Misinterpretedithotypes.Thefi New dat ad and #ATrue | abel so
and their |l abels from itdhet mewprwedilct iAidPr egri c¢d wede d

e x amp | e s .contaitsimagedramnthe predicted classes of a training dataset.
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After analysis of the resultgye concludd that most of the rockihat were wrongly identified
were, in facthighly complex(as inFigure9, Figure8) and the mistakes committed by the networks
are understandabl®©ne of the most problematic classedimestone. This is probably because of
the small number of images in this class (708&amplesinstead of 15000or other classés
Another problem is thatn manyinstancesthe imagecontairs nearclassification border grains and
can be describely bothlithotypes sandston@ndsiltstone.The maximum precisiom detectionof
multiple classes wa72% (GoogLeNet) anbest performance forecall was 60% (ResNet)As
regards speed of work0% of the core (about 30m) wascorrectly identified in one minute We
thus havea veryusefultool, which can help geologisto describe coréthotypesmuch fastethan
before

GooglLeNet

Core AlexNet _YGGNet. ResNet

Legend
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Figure9. Comparison of performandxy the network®n new datal he size of thesample is indicated
by white spacesCorewidth is 10cm.07 laminated sandstone,- Liltstone
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Table 3. Confusionmatrix analysis and performance statistios an expert description as True labels
and results 0€ENN predictionsasPredicted labelsThe dataused to evaluat€NN is from a new core (440
samples) Annotation for the confusion matrix labels:iOshale 17 granite, 2i limestone, 3 laminated
sandstone, # massive sandstonej Siltstone.The color bar indicates the number of samples.

Thework that has beedone offes ameans obptimizing andconsiderablyedudng the time
requiredfor corelithotype description Further research will aim tmcrease precision and recall.
One way of improving the classification resulte/ould beto train a modelsimultaneouslywith
regularimagesand imagedaken inultraviolet light, and using actualell-log, core samplesnd
corelog information There areseveral problemamnainly connectedvith the depth correlatiorof
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