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We report on the structure, geochemistry, Re–Os isotopes and relative abundances of highly siderophile elements

(HSEs) of the Paleozoic peridotite–basalt occurrences in the Eastern Pontide belt of northeastern Turkey. These pe-

ridotites and the associated basaltic rocks are the remnants of the Rheic oceanic lithosphere, incorporated into the

Eurasian continental margin during the Variscan (Hercynian) orogeny. The peridotites display a complex record of

multiplemagmatic,metasomatic andmetamorphic events in different tectonic settings during the evolution of the

Rheic upper mantle. The Beyçam harzburgite (BH) contains low Al2O3 (0.51–1.88 anhydrous wt.%) and high MgO

(41.35–42.34wt.%) contents, and its bulk-rock trace element compositions are less than 10% of the primitive upper

mantle (PUM) values. The platinum, Pd andRe contents of the Beyçamharzburgite are highly depleted,whereas its

Os, Ir, and Ru contents are slightly enriched relative to the PUM values. Its Pd and Re contents that are higher than

those of the fertile Pulur lherzolite (PL) to the south and the absence of an isochronous relationship between its
187Os/188Os and 187Re/188Os show that the trace element distribution and the isotope ratios of the Beyçam

harzburgite were significantly modified after the first melt-extraction episode. The first melt extraction occurred

beneath the Rheic mid-ocean ridge spreading center, whereas the second melt extraction occurred in a mantle

wedge above a Rheic subduction zone. The primarymagmatic phases of the Pulur lherzolite show the geochemical

characteristics typical for fertile lherzolite, formed in the early stages of oceanic lithosphere generation subsequent

to the continental break up. The Pulur lherzolite also contains a secondarymagmatic phase in the formof networks

of clinopyroxene veins and channels, which are interpreted as an evidence for solid state melt–rock reactions be-

tween the lherzolite and a percolating basalticmelt above a subduction zone. This clinopyroxene addition resulted

in the formation of variable concentrations of Al2O3 (2.47–4.33 wt.%) and MgO (29.76–40.10 wt.%) in the

lherzolite. The rhenium, Pd and Pt concentrations of the Pulur lherzolite are depleted relative to the PUM values,

whereas the Os, Ir and Ru concentrations are in the range of the PUM values as commonly observed in peridotites

with a melt depletion history. The high suprachondritic 187Os/188Os is, however, inconsistent with a simple melt

depletion history, and can be explained by the addition of radiogenic Os-bearing sulfide phases into the lherzolite

as a result of melt–rock reactions. Basaltic rocks with an island arc tholeiitic composition from the Beyçam area

represent the partial melting product of the moderately depleted Beyçam harzburgite and the basaltic parental

melt from which the clinopyroxene precipitated. The covariation between the 187Re/188Os and 187Os/188Os of

these basaltic rocks defines an isochron age of 377 ± 8 Ma (late Devonian). The combined structural, geochemical

and isotope data indicate a prolonged history ofmultiple episodes ofmelt extraction–depletion, andmelt–rock in-

teraction and fertilization of the mantle lithosphere of the Rheic Ocean.

© 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

Peridotitic rocks in ophiolites provide us with the best opportunities
to observe in three-dimensions the structural, mineralogical and

compositional variations in the upper mantle of ancient oceanic litho-
sphere (Boudier and Coleman, 1981; Dilek and Delaloye, 1992; Dilek
and Eddy, 1992; Varfalvy et al., 1996; Zhou et al., 1996; Dilek and
Flower, 2003; Piccardo, 2003; Dijkstra et al., 2004; O'Driscoll et al.,
2012). However, the primary structures, whole-rock chemistry, and
mineralogical compositions of these rocks may have been modified
or obliterated by various processes, including interaction with
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asthenospheric melts, mixingwith recycled oceanic crust and sediments
in the deepmantle, reactionwith slab-derivedfluids ormelts in theman-
tle wedge, and extensional exhumation (Dilek and Rowland, 1993;
Edwards and Malpas, 1996; Bodinier and Godard, 2003; Dilek and
Robinson, 2003; Donnelly et al., 2004; Anderson, 2006; Ishikawa et al.,
2007; Yoshikawa and Ozawa, 2007; Dilek and Furnes, 2009; Dilek and
Thy, 2009; Stracke and Bourdon, 2009; Wong et al., 2010; Bézard et al.,
2011; Dilek and Furnes, 2011; González-Jiménez et al., 2011; Xu et al.,
2011; Brandl et al., 2012; Rajabzadeh et al., 2013). Systematic co-
variations of major and trace element distributions andmodal variations
reported fromuppermantle rocks have been explainedmainly by partial
melting and melt extraction processes (Frey et al., 1985; Bodinier, 1988;
Bodinier and Godard, 2003; Walter, 2003). However, some recent stud-
ies have shown that variable degrees of refertilization of a refractory
protolith may produce similar modal compositions and chemical trends
(Saal et al., 2001; Flower and Dilek, 2003; Müntener et al., 2004; Beyer
et al., 2006; Le Roux et al., 2007; Rampone and Borghini, 2008; van
Acken et al., 2008; Dilek and Morishita, 2009; Harvey et al., 2010; Uysal
et al., 2012), and that most peridotites were refertilized after an earlier
period of melt depletion (Elthon, 1992; Takazawa et al., 2000;
Müntener et al., 2004; Brunelli et al., 2006; Batanova et al., 2008; van
Acken et al., 2008; Dilek and Furnes, 2011). Addition of secondary
clinopyroxene from percolating basaltic melts during porous melt flow
and melt–rock reaction seems to have been a common process during
the evolution of some abyssal peridotites (Seyler et al., 2007) and oro-
genic ultramafic massifs, such as Horoman from Japan (Saal et al.,
2001; Toramaru et al., 2001), Erro–Tobbio from the Ligurian Alps
(Rampone et al., 2004), Lherz from France (Le Roux et al., 2007), Totalp
from the Swiss Alps (van Acken et al., 2008), andMt.Maggiore fromCor-
sica (Rampone et al., 2008). All these peridotites demonstrate structural
and mineralogical evidence for peridotite–pyroxenite mixing at various
scales during such refertilization events.

Some of the most effective geochemical tools for determining the
mode and nature of upper mantle processes, including refertilization
as recorded in ophiolitic peridotites, is to measure the absolute and
relative abundances of highly siderophilic elements (HSE; including
Re, Os, Ir, Ru, Rh, Pt, and Pd) and 187Os/188Os in the bulk upper mantle
(e.g., Snow and Reisberg, 1995; Rehkämper et al., 1999a, 1999b;
Morgan et al., 2001; Shi et al., 2007; Walker, 2009; Aldanmaz et al.,
2012; Shi et al., 2012).

Os displays highly compatible behavior, whereas Re moderately
incompatible during partial fusion of the upper mantle (Morgan,
1986; Hauri and Hart, 1997; Shirey and Walker, 1998; Burton et al.,
2000).187Os/188Os ratios of the residual peridotites evolve to
subchondritic values due to re-depletion during partial melting. Con-
versely, partial melts with a large Re/Os develop highly suprachondritic
187Os/188Os values (e.g., Schiano et al., 1997; Roy-Barman et al., 1998;
Shirey and Walker, 1998). However, following the melt depletion,
smaller-scale processes, including melt percolation and crustal
recycling, commonly perturb the HSE systematics of the upper mantle
peridotites (e.g., Pearson et al., 1995; Brandon et al., 1996; Lorand
et al., 1999; Becker et al., 2001; Lorand et al., 2004; Reisberg et al.,
2005; Becker et al., 2006).

Melt percolation through porous flow at high melt/rock ratios may
result in the formation of replacive dunites and harzburgites (Kelemen
et al., 1995). Removal of pyroxenes during this open-system process
may then cause lower than normal abundances of the compatible Ir
group PGE (Os, Ir, Ru), low-Re abundances, and commonly chondritic
to suprachondritic 187Os/188Os in the modified peridotites (Becker
et al., 2001; vanAcken et al., 2008). These variations have been reported
from spatially constrained Re–Os studies of some peridotite massifs, in-
dicating that the dissolution of pyroxenes and sulfides in a percolating
basic melt and addition of radiogenic Os from such melts are common
processes (Büchl et al., 2002, 2004). Similar compositional features
have also been reported, albeit less abundantly, from peridotite xeno-
liths (e.g., Brandon et al., 1999; Handler et al., 1999; Schmidt and

Snow, 2002; Pearson et al., 2003, 2004; Handler et al., 2005; Reisberg
et al., 2005) and from abyssal peridotites (Standish et al., 2002;
Harvey et al., 2006). However, melt percolation at a low melt/rock
ratio causes the addition of basaltic components to the previously de-
pleted peridotite, as the percolating melt may precipitate pyroxenes
and sulfides (refertilization) (Bodinier and Godard, 2003; Pearson
et al., 2003).

In this paper we present geochemical, highly siderophilic element
(HSE) abundance and Re–Os isotope data from two peridotite massifs
(Beyçam and Pulur) and associated basaltic rocks in the Eastern Pontide
belt of NE Turkey (Fig. 1). We show that these mafic–ultramafic rocks,
which represent the remnants of the Rheic oceanic mantle lithosphere
had a complex history, including multiple episodes of partial melting,
melt extraction–depletion, metasomatism–refertilization, and melt–
rock interactions in different tectonic settings at various stages of their
evolution. These findings suggest that this kind of multi-stage evolution
of upper mantle peridotites via variable degrees of melting–metasoma-
tism–refertilization processes is likely to be more common, particularly
in SSZ ophiolites, than previously thought.

2. Geology of the pre-Jurassic basement rocks in the

Eastern Pontides

The Pontides block in northern Turkey includes three major tectonic
zones, Strandja, Istanbul and Sakarya (Okay et al., 2006). The latter, also
known as the Sakarya continent, has early tomiddle Carboniferous high-
T/low tomedium-Pmetamorphic basementwith syn- to post-collisional
granitoid intrusions (Yilmaz et al., 1997; Okay et al., 2006; Eyuboglu
et al., 2011; Sarifakioglu et al., 2013). These rock units of the Sakarya
continent collectively represent the artifacts of a protracted collisional
orogeny (Variscan or Hercynian orogeny) that developed in the late
Paleozoic (Dilek, 2006; Okay et al., 2006; Nance et al., 2010; Murphy
et al., 2011).

Recent studies (Topuz et al., 2004, 2007; Eyuboglu et al., 2010; Dokuz,
2011; Dokuz et al., 2011) have shown that the Paleozoic rock assem-
blages of the Sakarya continent in the Eastern Pontides make up four
main tectonic units: (1) low- to medium-grade subduction–accretion
complex; (2) early to middle Carboniferous, high-T/low-P continental
metamorphic rocks composed of gneiss, schist, migmatite, amphibolite
and marble; (3) middle to late Carboniferous syn- to post-collisional
granitoid plutons; and (4) Permo-Carboniferous sedimentary rocks of a
molasse origin.

Serpentinized mafic to ultramafic rocks and phyllites within the
Kurtoğlu, Beyçam and Pulur metamorphic complexes (Fig. 1a)
represent a subduction–accretion complex of the Rheic Ocean (Dokuz
et al., 2011). In the Pulur area, a low-grade tectonic unit, including
basaltic rocks withMORB affinities, peridotite blocks, and a phyllitic se-
quence consisting of calcareous phyllite, marble, quartzo-feldspathic
schist and meta-chert is exposed in tectonic windows within an early
Carboniferous high-temperature tectonic unit (Topuz et al., 2004,
2007; Fig. 1b). Peridotite blocks in the Pulur area consist of moderately
serpentinized lherzolite, whereas in the Beyçam area they are made of
strongly serpentinized harzburgite (Fig. 1c). The Pulur lherzolite dis-
plays the typical geochemical and mineralogical features of fertile oro-
genic lherzolites (Dokuz et al., 2011), which are widely interpreted as
an early stage oceanic lithosphere formation following the continental
break up and rifting.

Mineralogical and geochemical features of the Beyçamharzburgite re-
semble those of the moderately depleted residues formed in a mantle
wedge in a suprasubduction zone (SSZ) setting (Dokuz et al., 2011).
These upper mantle peridotites were emplaced northward onto the
southern margin of the Sakarya continent in the early Carboniferous
(Dokuz et al., 2011). The terminal closure of the Rheic oceanic tract was
followed by the collision of a peri-Gondwana terrane with the Sakarya
continent and by the imbrication of its continental margin rocks along
north-directed thrust faults on top of the remnants of the Rheic oceanic
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(a)

(b) (c)

Fig. 1. a. Geologicalmap of theGümüşhane region in the Eastern Pontide belt ofNE Turkey, showing thedistribution of theVariscanbasement and theMesozoic–Cenozoic cover units. Inset

shows the main tectonic units of Turkey (modified from Okay et al., 2006). b and c. Detailed geological maps of the Beyçam and Pulur areas, respectively, showing the distribution of

orogenic peridotites within the Variscan basement and the sample locations. Modified from Dokuz et al. (2011)
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lithosphere (Beyçam and Pulur peridotites) and the Sakarya continental
crust. This tectonic burial of the remnants of the Rheic oceanic lithosphere
resulted in their metamorphism under lower amphibolite facies condi-
tions. The syn- to post-collisional granitoid plutons (i.e. Gümüshane
andKöse plutons)were emplaced into the Variscan orogenic crust during
322–304 Ma (Dokuz, 2011; Kaygusuz et al., 2012). The ensuing tectonic
uplift and erosion caused the exhumation of the crystalline basement
rocks and accumulation of late Kasimovian molasse-type deposits in a
terrestrial or shallow marine basin (Okay and Leven, 1996; Kandemir
and Lerosey-Aubril, 2011). The exhumedVariscan orogenic crustwas un-
conformably overlain by the Jurassic clastic sedimentary rocks (Dokuz
and Tanyolu, 2006; Şen, 2007; Kandemir and Yılmaz, 2009; Dokuz
et al., 2010; Ustaömer and Robertson, 2010).

3. Analytical methods

In this study, we analyzed eight samples of the representative peri-
dotites (Pulur lherzolite and Beyçam harzburgite) and two samples of
the representative basaltic rocks for Re–Os isotopes and HSE abun-
dances, and formajor, trace and rare earth elements (previously report-
ed in Dokuz et al., 2011).We also utilized a larger geochemical database
(major, trace and rare earth element chemistry) from these peridotites
based on our previous investigations in this area. The samples of this
study were crushed in steel crushers and ground in an agate mill to a
grain size of b200 mesh. Major element analyses of the samples were
determined at the ACME Laboratories Ltd. in Vancouver, Canada, using
ICP-AES after fusion with LiBO2 with detection limits of approximately
0.001–0.04%. The sample preparation and analytical methods are ex-
plained in Appendix I.

Concentrations of the rare earth elements (REEs) and some trace el-
ements (Rb, Sr, Y, Zr, Cs, Ba, Hf, Nb, Ta, U, and Th) of all the sampleswere
determined by inductively coupled plasma-mass spectroscopy (ICP-MS,
Thermo Scientific X Series II) in the Department of Earth Sciences at
University of Durham. We followed a standard nitric and hydrofluoric
acid digestion technique for these analyses (Ottley et al., 2003). Due
to the low concentration of many of the elements of interest, special
care was required to minimize sample contamination. Sample prepara-
tion was undertaken in clean-air laminar flow hoods.

The samples were analyzed for HSE (Os, Ir, Ru, Pt, Pd, Re) concentra-
tions and 187Os/188Os isotope ratios, using the isotope dilution tech-
nique described by Meisel et al. (2003) and Paliulionyte et al. (2006)
and utilizing a quadrupole ICP-MS system (HP 7500, Agilent Technolo-
gies) at the Montanuniversitaet Leoben, Austria. The analytical
techniques are explained in Appendix II.

4. Petrography

The Beyçam peridotite consists of moderately to strongly
serpentinized harzburgites, which show an anastomosing foliation iden-
tified by long, continuous, wavy cleavage domains occupied predomi-
nantly by Fe-hydroxide, magnetite and spinel that formed an irregular
network outlining lenticular microlithons of serpentine minerals
(Fig. 2a). The Pulur peridotite is composed of slightly to moderately
serpentinized spinel lherzolites, which locally contain irregular, mm- to
a few cm-wide hornblendite veins (Fig. 2b). Olivine, orthopyroxene and
spinel are the primary igneous phases that are partly preserved following
the subsequent serpentinization and metamorphic processes (Dokuz
et al., 2011). Clinopyroxene could not be observed in any of the spinel
lherzolite samples, but amphibolewith amagnesio-hornblende composi-
tion [Mg-number (Mg/(Mg + Fe2+)) = 87–91; Supplementary Table]
is widespread in them showing a well-preferred orientation (Fig. 3a).
Some other amphibole grains display a cumulate texturewith aweak ori-
entation (Fig. 3b), particularly along the irregular veins crosscutting the
serpentine minerals and the primary igneous phases. Magnesio-
hornblende (pseudomorph after clinopyroxene) in the veins can be
differentiated from the original hornblende based on its relatively low
Mg-number (61–67; Fig. 4).

Tremolite in the lherzolitic rocks is a product of retrograde meta-
morphic reactions, developed during the Variscan orogeny, and forms
tabular crystals exhibiting well-defined cleavage planes and including
poikilitic serpentine minerals (Fig. 3c). Locally, it occurs as a pseudo-
morph after orthopyroxene (Fig. 3d). Some tremolite grains are entirely
or partially transformed into small aggregates of tremolite along their
margins. Serpentine is an alteration product after olivine and
orthopyroxene.

We sub-group the amphiboles in the Pulur lherzolite into four types
based on our petrographic observations (Fig. 3) and microprobe analy-
ses (Fig. 4). The first type shows homogeneous distribution and a pre-
ferred orientation (Fig. 3a) in most of the samples. We interpret this
amphibole as metamorphic hornblende, which replaced the magmatic
clinopyroxene during the Variscan orogeny. The second type with a
similar composition is distinguished from the first type by its
cumulate-like appearance alongmm- to cm-long, sub-parallel irregular
veins or conduits (Fig. 2b). These amphibole grains also show a well-
defined foliation. The third type amphibole differs from the other two
types by its weakly oriented cumulate texture and significantly lower
Mg-number. In addition to these three types of amphiboles, tremolite
is the fourth type of amphibole in the Pulur lherzolite. Tremolite has
been found either as a pseudomorph after orthopyroxene (Fig. 3c, d)
or as stellar crystals in irregularly distributed fissures in the lherzolite,

magnetite, serpentine

          and spinel

Serpentinized 

harzburgite

(a)

Basic magma 

conduit

Tremolite

Serpentinized

lherzolite

(Mg-

hornblende )

(b)

Fig. 2. a. Anastomosing foliations of magnetite, serpentine and spinel crystals outlining lenticular serpentine microlithons in a hand specimen of the harzburgite from the Beyçam area.

b. Photograph of a hand specimen showing a conduit filled with hornblende that was retrograded after clinopyroxene and tremolite after orthopyroxene in the fertile Pulur lherzolite.

The coins are 1.7 cm in diameter.
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and it is a metamorphic mineral that formed during the Variscan
metamorphism.

The basaltic rocks occur in 1- to 3-m-thick, lenticular domains sub-
parallel to the foliation planes in the phyllites. The primary mineral
phases include plagioclase, clinopyroxene, amphibole (ferro-
tschermakite to ferro-hornblende, Fig. 4) and opaque minerals; the ac-
cessory phases are made of quartz, chlorite, and sericite. Thin (1-mm-
to 2-cm-thick) quartzofeldspathic veins crosscut the foliation in the
phyllites.

5. Alteration effects

5.1. Effects of serpentinization

The degree of serpentinization is high in the harzburgite and
lherzolite samples with LOI contents of 10.1 to 14.6 wt.%, except for
sample YS-3C (Table 1). Such a high, low temperature volume change
requires that the mobility of elements such as PGE and Re, and Os
isotope composition during serpentinization processes must be consid-
ered before assessing their behavior at magmatic temperatures.

Serpentine minerals form principally after retrograde hydrothermal
alteration of silicate minerals, particularly the olivine, or by prograde
metamorphism after pre-existing serpentinite. As serpentinization is
simply restricted to the addition ofwater or hydration of olivine and py-
roxenes, it can largely be interpreted as an isochemical process (Paulick
et al., 2006). However, a 10% increase in volume of H2O in a peridotite
rock would result in a 10% reduction in absolute abundances of ele-
ments compared to their unaltered precursors, even if the elements
are perfectly immobile. Similar to the serpentinization, there is an in-
crease in volume during the metamorphic transformation of diopside

and augite to tremolite and hornblende. Volume change via addition
of H2O during these metamorphic transformations is restricted to 2 to
3% as observed in the microprobe analyses of the magnesio-
hornblende and tremolite (Supplementary Table), implying negligible
influence on the HSE concentrations and Os isotope composition of
the lherzolite. Normalization of concentrations to volatile free basis
can thus provide a reasonable approach for volatile free abundances of
major elements, but the key question here is whether the same ap-
proach is valid for the Os and HSE isotope compositions of the rocks
used in this study.

Osmium, Ir and Ru are only slightly affected by serpentinization
because they are more abundant in olivine compared to Pt, Pd and Re.
The lack of Re-compatible silicate minerals such as clinopyroxene and
amphibole in the Beyçam harzburgite suggests that serpentinization al-
most has no effect on the absolute abundance of Pt, Pd and Re. In the
Pulur lherzolite, transformation of clinopyroxenes to the magnesio-
hornblende and tremolite rather than serpentineminerals is a common
phenomenon, indicating that volume change by addition of H2O is
much more limited, and that the abundances of Re and, in part, Pt and
Pd were not much affected. Furthermore, all these retrograde and pro-
grade transformations have no effect on the modal volume of base
metal sulfides controlling almost the entire abundance of the HSE of
the residual peridotites.

Olivine, orthopyroxene, clinopyroxene and spinel are the major
mineral phases in refractory peridotites that account for less than 30%
of the whole-rock HSE budget (Luguet et al., 2007).

Of these, spinel and olivine, which dominate the harzburgitic resi-
due, show the highest HSE concentration especially for Os, Ir and Ru,
whereas the pyroxenes, which are predominant in lherzolitic perido-
tites are 1 to 2 orders of magnitude poorer (Righter et al., 2004;

(d)
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Hb

Hb    
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Fig. 3.Microtextures in the Pulur lherzolite samples. a. Homogenous distribution andwell-preferred orientation of hornblende (after primary clinopyroxene) in the lherzolite. b. Cumulus

hornblende in a veinlet of Pulur lherzolite. The clinopyroxene precursor of this hornblende precipitated from an upward percolating basaltic melt. c. Megacryst of tremolite retrograded

after earlier primary orthopyroxene, including poikilitic serpentine and earlier primary olivine. d. Primary orthopyroxene porphyroblast partly replaced by tremolite, which shows cleav-

ages possessing the same orientation as those of the orthopyroxene. Srp: serpentine, Hb: hornblende, Tr: tremolite, Opx: orthopyroxene.
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Brenan et al., 2005). Considerable enrichment of Re relative to Pt and Pd
in basalt, as evidenced in this study, shows that Re, as the most
lithophile element among the HSE, may behave more incompatible
than Pt and Pd during partial melting, and that it gets incorporated
into silicate minerals (e.g. clinopyroxene and amphibole), found in ba-
salt (Righter and Hauri, 1998; Righter et al., 2004; Mallmann and
O'Neill, 2007). On the other hand, Ru–Os ± Ir sulfides and Pt–Ir ± Os
alloys, which are micron- to submicron-sized platinum group minerals,
account for 70–100% of the HSE budget in the refractory depleted
harzburgite (Luguet et al., 2007). These observations suggest that sili-
cate–sulfide partitioning of HSE for the silicate minerals of the mantle
residues is negligible and that the HSE budgets of the mantle residues
are almost entirely controlled by base metal sulfides.

Another likely effect of serpentinization on the element mobility is
the addition of elements intomantle peridotites during their interaction
with seawater. Fluid mobile elements such as Sr, Ba, U and Re in abyssal
peridotites close to seafloor show elevated concentrations, which are
interpreted to result from their interaction with seawater (Harvey
et al., 2006). Seawater has Re concentration much higher than Os (Re/
Os ≈ 740) (Anbar et al., 1992; Levasseur et al., 1998), whereas sulfide
minerals, which have a low Re/Os ratios (Re/Os ≤ 1.0) (Burton et al.,
1999; Alard et al., 2002), control the HSE budget in abyssal peridotites.
However, some previous studies (Burnham et al., 1998; Rehkämper
et al., 1999a, 1999b; Büchl et al., 2002; Harvey et al., 2006; van Acken
et al., 2010) have found no correlation between the degree of
serpentinization in the peridotites and their HSE concentrations and
ratios.

The melt depletion indicator Al2O3 behaves in a rather immobile
manner during the aqueous alteration processes (Snow and Dick,
1995; Staudigel et al., 1996). Consequently, the correlations of Al with
the HSE and 187Os/188Os abundances and the ratios are commonly

well preserved in serpentinized peridotites. Therefore, the linear corre-
lations and deviations from the HSE of the melt extraction trends are
primarily igneous in origin rather than due to serpentinization.

5.2. Effects of Variscan metamorphic overprint

The Rheic Ocean lithosphere emplaced onto the continental crust
underwent deformation and metamorphism during the Variscan orog-
eny that resulted in the formation of a preferred alignment ofmagnetite
and in the crystallization of magnesio-hornblende and tremolite in the
serpentinized peridotites. Clinopyroxene (augite) in the lherzolite was
replaced by magnesio-hornblende (Fig. 4). Tremolite includes poikilitic
serpentine (Fig. 3c) and occurs as a pseudomorphic replacement of the
orthopyroxene (Fig. 3d). Hornblende is stable under a wide range of
pressure–temperature conditions from the upper greenschist through
the amphibolite into the lower part of the granulite facies. However,
the coexisting tremolite constrains the degree of metamorphism to
upper greenschist facies because it normally converts to diopside at
higher temperatures.

6. Results

6.1. Bulk-rock analyses

We present the representative whole-rock compositions of eight
peridotite and two basaltic rock samples in Table 1, with a summary
of the modal mineralogy calculated using a least squares linear regres-
sion. The high loss-on-ignition (LOI N 10 wt.%) values of the samples,
except for YS-3C from the Pulur lherzolite, suggest that the analyzed
rocks are serpentinized extensively. Therefore, in the following section,
the volatile-free calculated major element data were used in order to
reduce the effects of the variable dilution of the elements caused by
serpentinization.

A distinctive feature of the Beyçamharzburgite is the reducednumber
of elemental abundances with a narrow range relative to those of the
Pulur lherzolite. When the rock groups were evaluated comparatively,
thewhole-rockmajor element variations display awide range fromhigh-
ly fertile compositions in the Pulur lherzolite (29.76–40.10 wt.%MgO and
2.47–4.33 wt.% Al2O3) to highly refractory compositions in the Beyçam
harzburgite (e.g., 41.35–42.34 wt.% MgO and 0.51–1.88 wt.% Al2O3).
Only sample YS-4 among the Pulur rocks demonstrates whole-rock
geochemical and mineralogical compositions similar to those of the
least-depleted Beyçam rocks.

A closer look at the lherzolite and harzburgite samples shows, how-
ever, different co-variation trends. On an Al2O3 vs. Cr diagram (Fig. 5),
this difference between the harzburgite and lherzolite trends is evident.
The harzburgite samples demonstrate curved positive correlations,
whereas the lherzolite samples exhibit negative and even flat correla-
tion in the most fertile rocks. Likewise, Fe2O3 and CaO display flat or
slightly negative correlations for the harzburgite samples (not shown),
whereas steep positive correlations are distinctive for the lherzolite
samples.

The Beyçamharzburgite demonstratesmildly depleted rare earth el-
ement (REE) patterns that are characterized by an almost constant,
slightly positive profile. Contrasting behaviors are shown by Zr and Hf;
Zr shows negative troughs, whereas Hf commonly displays a positive
anomaly. Niobiumand Ta alsodemonstrate contrasting behaviors; com-
pared to the Pulur samples, themagnitude of the positive Ta anomaly is
increased in the Beyçam samples. The Pulur lherzolite samples display
slightly enriched light REE and flat medium–heavy REE profiles similar
to those of the undepleted abyssal peridotites (Bodinier and Godard,
2003). Compared with neighboring elements, Ti and Zr demonstrate
distinctive negative spikes. In agreement with the clinopyroxene con-
tents of the samples, we observe Sr enrichment relative to Pr and Nd.
A distinctive positive spike is shown for Ta relative to Nb.

(a)

(b)

Fig. 4. a. Classification of the calcic amphiboles from the Pulur lherzolite, hornblendite dike

(Pulur area) and basaltic rock (Beyçam area). b. Si vs. Al variation diagram of the

amphiboles.
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The basaltic rocks are characterized by a narrow range of silica
(SiO2 = 45–47 wt.%), alumina (Al2O3 = 21–22 wt.%) and magnesium
(MgO = 3–4 wt.%) contents, and Cr and Ni values (Table 1). They
show enrichment in large-ion lithophile elements (Rb, Ba) with nega-
tive troughs in Th and U on the primitive mantle-normalized multi-
element diagram (Dokuz et al., 2011). Ta and Sr show positive anoma-
lies, similar to the Beyçam and Pulur peridotites. In contrast to the REE
profiles of the Beyçam samples, the REE contents of the basaltic rocks
show a negative profile from Nd to Lu.

6.2. Bulk-rock highly siderophile element (HSE) compositions

We present the HSE abundances for the Beyçam and Pulur perido-
tites and the two basaltic rock samples in Table 2. Average Os
(4.4 ppb), Ir (4.4 ppb), Ru (7.8 ppb) and Pt (7.3 ppb) concentrations
for the Beyçam harzburgite are similar to the concentrations of the oro-
genic peridotites (Os = 4.4; Ir = 4.0, Ru = 7.1, Pt = 8.4 ppb; Reisberg
and Lorand, 1995; Lorand et al., 2008), to the average upper mantle Os
concentration (3.1 ± 0.3 ppb; Morgan, 1986) and to the calculated

Table 1

Whole-rock major and trace element data for the Pulur and Beyçam peridotites and two basaltic rocks with the modal compositions of peridotites. (after Dokuz et al., 2011).

Sample Beyçam Harzburgite Pulur Lherzolite Meta-basalt DL Blank

(Average)

GP13

Average

GP13

StDev

GP13

RSD%
BY-8 BY-9 BY-11 BY-12 YS-3C YS-4 YS-7 YS-9 B-5 B-10

Major oxides (%) Stan. Stan. Stan.

SiO2 40.57 40.47 40.76 38.59 46.77 40.21 41.41 41.75 47.88 45.29

TiO2 0.01 0.01 0.02 0.01 0.18 0.04 0.07 0.12 1.58 1.66 0.100 0 2.64

Al2O3 1.17 0.84 1.65 0.43 4.10 2.16 2.95 3.16 22.05 21.75

Fe2O3T 7.85 7.82 7.80 7.90 10.28 8.28 8.05 8.73 6.92 9.83

MgO 36.04 36.59 35.86 35.90 28.15 35.12 32.82 32.28 2.89 3.86

MnO 0.07 0.05 0.09 0.08 0.13 0.11 0.10 0.12 0.16 0.30 0.12 0 3.97

CaO 1.05 0.10 1.14 1.23 4.16 0.94 2.47 2.86 10.18 8.80

Na2O 0.01 0.01 0.02 0.06 0.27 0.05 0.07 0.09 2.18 1.17

K2O b0.01 b0.01 0.01 b0.01 0.04 b0.01 0.01 b0.01 3.68 3.86

P2O5 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.23 0.21

Cr2O3 0.38 0.35 0.40 0.40 0.30 0.40 0.35 0.37 0.01 0.01

LOI 12.20 12.90 11.40 14.60 4.90 11.80 10.90 10.10 1.90 2.90

Sum 99.36 99.38 99.39 99.39 99.50 99.39 99.43 99.58 99.90 99.86

Mg# 0.90 0.90 0.90 0.90 0.84 0.89 0.89 0.88 0.45 0.43

Trace elements (ppm)

Cr 2549 2473 2635 1920 2010 2616 2152 2052 43 41 0.2800 0.000 2193 72.00 3.13

Ni 2485 2540 2395 2367 1573 2190 1979 1716 32 30 0.3000 0.461 2164 202.0 9.31

Sc 8.0 6.9 9.7 5.8 18.0 10.9 14.9 16.4 21.0 21.1 0.1300 0.000 15.33 0.84 5.51

Co 107.0 108.4 105.4 97.2 81.4 100.5 98.6 88.2 20.6 31.7 0.0700 0.003 90.6 2.16 2.38

Ba 2.9 3.6 2.3 3.9 13.1 4.8 14.0 10.2 1202.0 1346.0 0.0026 0.002 0.58 0.01 2.31

Sr 2 1 3 6 155 23 51 95 1019 545 0.0050 0.004 10.10 0.16 1.63

Rb 0.3 0.2 0.7 0.1 1.1 0.3 0.2 0.7 122.5 160.7 0.0020 0.000 0.35 0.01 2.07

Cs 0.32 0.11 0.50 0.04 3.10 0.62 0.37 1.63 5.22 5.08 0.0024 0.000 0.07 0.00 3.33

Ga 1.0 0.7 1.2 0.4 4.6 2.3 2.4 3.3 21.1 23.3 0.0090 0.019 2.24 0.06 2.89

Th 0.00 0.00 0.00 0.00 0.14 0.05 0.17 0.13 1.03 1.07 0.0001 0.000 0.01 0.00 5.08

U 0.00 0.00 0.00 0.00 0.04 0.03 0.03 0.03 0.49 0.36 0.0001 0.000 0.00 0.00 13.98

Nb 0.0 0.0 0.0 0.0 2.4 0.9 1.2 1.7 14.6 16.5 0.0033 0.000 0.10 0.00 1.87

Ta 0.02 0.00 0.00 0.00 0.08 0.02 0.08 0.09 0.95 1.03 0.0001 0.004 0.01 0.00 0.00

Hf 0.05 0.00 0.01 0.00 0.17 0.03 0.11 1.35 2.00 1.62 0.0003 0.001 0.18 0.00 1.64

Zr 0.2 0.1 0.3 0.1 5.2 0.6 3.8 4.1 76.9 59.4 0.0130 0.012 5.80 0.03 0.47

Y 0.4 0.2 0.6 0.1 5.5 2.8 2.1 3.7 21.3 22.0 0.0005 0.000 3.55 0.04 1.00

V 29 21 40 14 125 46 48 67 172 243 0.0300 0.000 67.41 1.50 2.23

Pb 0.83 0.87 0.79 0.89 0.71 0.45 0.63 0.61 13.39 8.37 0.0024 0.000 0.40 0.01 1.98

La 0.02 0.01 0.02 0.02 3.85 0.93 0.69 2.55 11.59 11.60 0.0005 0.019 0.20 0.00 1.20

Ce 0.07 0.06 0.09 0.07 7.55 2.44 2.00 5.34 26.13 28.69 0.0004 0.002 0.62 0.01 1.01

Pr 0.01 0.01 0.01 0.00 0.99 0.43 0.32 0.76 3.72 4.43 0.0001 0.000 0.12 0.00 0.38

Nd 0.04 0.03 0.06 0.02 4.06 2.15 1.47 3.25 16.85 21.26 0.0004 0.001 0.70 0.01 0.97

Sm 0.02 0.01 0.03 0.01 0.83 0.55 0.33 0.78 3.96 4.89 0.0008 0.000 0.26 0.00 1.17

Eu 0.01 0.01 0.01 0.00 0.37 0.18 0.11 2.42 1.52 1.81 0.0001 0.001 0.10 0.00 1.12

Gd 0.03 0.02 0.04 0.01 0.94 0.53 0.34 0.83 4.43 5.03 0.0004 0.000 0.40 0.01 1.43

Tb 0.01 0.00 0.01 0.00 0.15 0.08 0.06 0.11 0.67 0.73 0.0002 0.000 0.08 0.00 1.12

Dy 0.04 0.03 0.07 0.01 0.89 0.46 0.34 0.74 3.74 3.98 0.0004 0.000 0.54 0.01 1.28

Ho 0.01 0.01 0.02 0.00 0.19 0.10 0.08 0.12 0.75 0.79 0.0001 0.000 0.12 0.00 1.74

Er 0.04 0.03 0.07 0.01 0.53 0.27 0.21 0.38 1.92 2.00 0.0002 0.000 0.35 0.00 1.24

Tm 0.01 0.01 0.01 0.00 0.08 0.05 0.04 0.06 0.29 0.29 0.0001 0.000 0.06 0.00 1.95

Yb 0.06 0.04 0.09 0.01 0.53 0.30 0.23 0.41 1.72 1.73 0.0001 0.000 0.37 0.01 1.73

Lu 0.01 0.01 0.02 0.00 0.08 0.05 0.04 0.06 0.25 0.24 0.0001 0.000 0.06 0.00 0.71

Modal composition

Ol% 54.34 53.65 52.95 61.90 14.02 50.70 43.03 27.46

Opx% 39.30 44.38 39.53 33.57 58.69 40.57 39.56 51.20

Cpx% 4.97 0.37 5.72 3.81 23.15 5.84 14.86 18.05

Sp% 1.38 1.61 1.79 0.72 4.14 2.89 2.55 3.30

The average composition calculated from 6 different analyses during themeasurements, standard deviation and RSD% values of the internal peridotite standard GP13, as well as the blank

values of each elements were also included. DL: detection limits, stan: standard, Ol: olivine, Opx: orthopyroxene, Cpx: clinopyroxene, Spl: spinel. Mg#: magnesium number (MgO/

(MgO + FeO)).

Themodalmineralogical compositions of the peridotiteswere calculatedusing a least squares linear regression created in theMATLAB software. Ol, Opx and Sp (spinel) compositions used

in estimations from Dokuz et al. (2011). The Cpx composition was from Le Roux et al. (2007).
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primitive upper mantle (PUM) Os value (3.9 ± 0.5 ppb; Becker et al.,
2006). But, these concentrations are greater than the concentrations of
the non-cratonic peridotite xenoliths worldwide (Handler et al., 1999;
Meisel et al., 2001; Ackerman et al., 2009). The average concentrations
of Pd (2.2 ppb) and Re (0.08 ppb) are ~5 ppb below and ~20 times de-
pleted compared to the average orogenic peridotite values of 8.4 ppb
and 1.4 ppb, respectively (Lorand et al., 2008).

Only the average Os concentration (4.7 ppb) for the PL is similar to
or slightly greater than both the concentration of the orogenic perido-
tites (Lorand et al., 2008) and the estimated value for the PUM
(Becker et al., 2006). Others, e.g., Ir (2.7 ppb), Ru (5.7) and Pt
(6.3 ppb), are generally depleted (~1–2 ppb) relative to those of the
PUM values. The Pd concentrations range from 1.1 to 3.3 ppb, with an
average value of 2.0 ppb, which is ~5–6 ppb less than the orogenic pe-
ridotite and the PUM estimates of 8.4 and 7.1. The Re concentrations
(0.05–0.07 ppb) are substantially lower in the Beyçam harzburgite
compared to the estimates for the orogenic peridotite (1.43 ppb) and
to the PUM values (0.35 ppb) (Becker et al., 2006; Lorand et al., 2008),
which are common among those peridotites with a melt depletion
history.

Similar to the behavior of Cr (Fig. 5), Os shows different co-variation
trendswith the fertility indicator Al2O3 (Fig. 6).While theOs concentra-
tions in theBeyçamharzburgite are positively correlated, the concentra-
tions in the Pulur lherzolite are negatively correlated with a gentle,
curved slope. Different positive slope gradients are also shown in the
figure for the Re concentrations. At a given Al2O3 content, the Beyçam
harzburgite tends to have a greater Re concentration compared with

the Pulur lherzolite. For the other HSE of the Pulur lherzolite, the nega-
tive correlations are identical, whereas the Beyçam harzburgite do not
show such good correlations, except Ir, which is negatively correlated.
Consequently, the Re/Os ranges from0.1141 to 0.2880 for all the perido-
tite samples, and these values are generally lower than the chondritic
Re/Os ratios of 0.406 (Shirey and Walker, 1998) and 0.285 (Horan
et al., 2003).

The chondrite-normalized HSE abundances are shown in Fig. 7.
These HSE abundances exhibit strongly fractionated patterns for both
the Beyçam harzburgite and the Pulur lherzolite samples with enrich-
ments in Os, Ir and Ru. A slight negative Ir anomaly and steeply sloping
patterns fromRu to Re are characteristic of the Pulur lherzolite, whereas
the Beyçam harzburgite displays flat to slightly depleted Os profiles for
the first three elements.

6.3. Re–Os isotopes

The whole-rock 187Os/188Os ratios range from 0.1190 to 0.1207 in
the Beyçam harzburgite that are less than the present day PUM compo-
sition (187Os/188Os = 0.12897, Meisel et al., 2001; Becker et al., 2006),
and less than the present day mean chondrite 187Os/188Os value of
0.127 (Shirey and Walker, 1998). But, they are within the range of iso-
topic compositions reported for non-cratonic mantle xenoliths (187Os/
188Os = 0. 11541 to 0.12970; Ackerman et al., 2009; Harvey et al.,
2010) and for the sub-continental lithospheric mantle (187Os/
188Os = 0. 11879 to 0.13454; Meibom et al., 2002; Walker et al.,
2002). The 187Re/188Os is in the range of 0.0787 to 0.1147, and shows
no distinct correlation with Al2O3 (Fig. 8a) or 187Os/188Os (Fig. 8b);
therefore, these values yield nomeaningful information for an isochron
age.

Some of the distinctive features of the Pulur lherzolite include the
greater 187Os/188Os (0.1247–0.1315) and generally smaller 187Re/188Os
(0.04590–0.08341) than the Beyçam harzburgite values. With one ex-
ception (sample YS-3C), the 187Os/188Os ratios are generally very close
to those of the PUM. Sample YS-3C has a 187Os/188Os less than that of
the PUM and even less than the chondrite values.

The concentrations for the two basaltic rock samples range from
0.102 to 0.331 ppb for Re and from 0.009 to 0.014 ppb for Os, which
are within the range of the previously reported MORB glass values
(Re = 0.44–2988 ppb, Os = 0.09–31.82 ppb; Hauri and Hart, 1997;
Schiano et al., 1997; Escrig et al., 2005; Gannoun et al., 2007). The basal-
tic rock samples have the 187Os/188Os ratios of 0.357 and 1.455, which
are greater than the average MORB value of 0.137; however, the
187Re/188Os (37.36 and 207.97) is significantly below those of the
MORB (e.g., 187Re/188Os range from 781 to 2382; e.g., Gannoun et al.,
2007). These samples, together with the BH, define a good regression
line with a slope corresponding to an age of 376 ± 8.77 Ma with a
MSWD value of 0.119 (Fig. 8c). This regression line meets the MSWD

Fig. 5. Al2O3 vs. Cr plot showing different co-variations of the Beyçam and Pulur perido-

tites. Symbols; filled diamond: Beyçam harzburgite, filled circle: Pulur lherzolite.

Table 2

Measured HSE abundances (ppb) in the Beyçam and Pulur peridotites and in two basaltic rocks. The TRD and TMA model ages (Walker et al., 1989) were calculated using the GEODATE

software program.

Os Ir Ru Pt Pd Re 187Re/188Os 187Os/188Os TRD TMA

Beyçam harzburgite

BY-8 4.433 4.363 7.389 7.611 1.833 0.073 0.079 0.121 1029.4 1278.4

BY-9 3.842 4.439 6.413 5.076 0.954 0.048 0.079 0.121 985.2 1223.7

BY-11 6.203 4.136 8.027 9.736 4.859 0.148 0.115 0.121 1044.1 1457.9

BY-12 3.193 4.614 9.180 6.753 1.279 0.057 0.086 0.119 1279.1 1624.5

Pulur lherzolite

YS-3C 4.190 2.172 4.738 4.580 1.879 0.073 0.083 0.125 437.5 552.0

YS-4 5.819 3.595 7.355 5.425 1.082 0.055 0.046 0.129 −130.1 −147.0

YS-7 4.489 2.782 6.014 10.036 3.280 0.052 0.056 0.132 −582.1 −676.3

YS-9 4.508 2.429 5.092 4.990 1.702 0.054 0.058 0.129 −1023.9 −1197.7

Meta-basalt (from Beyçam)

B-5 0.014 0.018 0.075 0.263 0.141 0.102 37.355 0.357 0 371.4

B-10 0.009 0.020 0.040 0.230 0.040 0.331 207.971 1.455 −50985 382.6
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value of 0.119, which does not exceed the maximum expected value of
1.6 (Wendt and Carl, 1991). The obtained isochron age is also consistent
with the age constraints obtained from the regional metamorphic rocks
(Topuz et al., 2007) and the high-K granitoids (Dokuz, 2011) of the
Variscan crystalline basement.

6.4. Role of serpentinization in HSE budget and Os isotope compositions

Roughly constant Ru/Ir, Pd/Ir and Os/Ir ratios in the slightly to exten-
sively serpentinized Pulur lherzolite (Fig. 9) (4–11% LOI) suggest that
serpentinization did not significantly affect the Os, Ir, Ru and Pd abun-
dances (Reisberg and Lorand, 1995; Meisel et al., 1996; Büchl et al.,
2002; Reisberg et al., 2005; Becker et al., 2006; van Acken et al., 2008;
Ackerman et al., 2009; vanAcken et al., 2010). Although the slightly pos-
itive covariation of compatible HSE (Os, Ir and Ru) with LOI (4–11%; not
shown) implies that serpentinization slightly affected the Os, Ir and Ru
abundances (Reisberg and Lorand, 1995; Meisel et al., 1996; Büchl
et al., 2002; Reisberg et al., 2005; Becker et al., 2006; van Acken et al.,
2008; Ackerman et al., 2009; van Acken et al., 2010), negative correla-
tion of these elements with the fertility indicator Al2O3 demonstrates
that this phenomenon is due to the pyroxene precipitation from a basal-
tic melt, depleted in terms of HSE similar to the Beyçam Harzburgite,
rather than serpentinization. In the case of the Beyçam harzburgite,
Os, Pt, Pd and Re show negative correlations with an increasing degree
of serpentinization that are in contrast with the addition of significant
HSE from the seawater. If a sufficient amount of Os and Re addition
had occurred from the seawater, the expected trends would have
been positive, indicating that the HSE abundances and ratios were

controlled by the primary igneous processes. Furthermore, the Beyçam
harzburgite possesses subchondritic 187Os/188Os (Fig. 8a) within a nar-
row range, compared to the ranges observed in the Pulur lherzolite.
This is expected, as there is a mantle residue after moderate degrees
of partial melting. Conversely, the 187Re/188Os of the Beyçam
harzburgite was shifted to greater values, compared with those of the
Pulur lherzolite (Fig. 8b). This effect might have resulted from a recent
Re addition, which may have involved either recrystallization or diffu-
sion, rather than being a primary mantle feature. Thus we do not
think that serpentinization may have caused a significant loss on the
HSE budget and the Os isotope composition of the mantle residues,
and we hence infer that the pre-serpentinization abundances of HSE
and isotope compositions are retained in the actual bulk-rock analyses.

7. Beyçam harzburgite: a metasomatized mantle residue

Based on the chromium number of its spinels, Dokuz et al. (2011)
have suggested that the Beyçam harzburgite is a mantle residue, pro-
duced by moderate amounts (15–20%) of melt extraction. We infer
that the first melt-extraction occurred at the spinel stability field be-
neath a mid ocean ridge spreading center in the early stages of oceanic
lithosphere formation subsequent to the continental breakup. Then, fol-
lowing the initiation of an intra-oceanic subduction in the Rheic Ocean,
a second mantle depletion event occurred in the garnet stability field.
Our findings in this study, together with the previous work by Dokuz
et al. (2011), support this inference and indicate that, unlike the Pulur
lherzolite, the Beyçam harzburgite has mineralogical and geochemical
features identical to those of residual peridotites in a mantle wedge.

Fig. 6. Variations of HSE vs. Al2O3. Primitive upper mantle (PUM) estimates from Becker et al. (2006) and McDonough and Sun (1995). Symbols are as in Fig. 5.
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Depletion of a mantle by removal of basaltic melt leads to co-variations
in modal mineralogy, in bulk-rock major and trace element composi-
tions, and in the fractionation of parent–daughter elements, comprising
the radiogenic isotope systems that are crucial for datingmelt depletion
events in themantle. However, in such an environment, isotopic and el-
emental fingerprints of the previous melt depletion events may be ob-
scured by melts and/or fluids derived from deeper parts of the mantle
that overprint or completely erase the evidence for these earlier events.
In the following sections, we discuss such processes to assess their
possible influence on the HSE distributions and the Re–Os isotopic
variations in the Beyçam harzburgite.

7.1. HSE evidence for melt depletion and metasomatism

The degree of partial melting is the main process controlling
the modal concentrations of HSE-bearing base metal sulfides and the
Re–Os isotopic systematics of the sub-oceanic or sub-continental man-
tle, although subsequent refertilization by percolating basaltic melts
may cause significant variations in the HSE abundances (e.g., Pearson
et al., 1995; Brandon et al., 1996; Becker et al., 2001; Lorand et al.,
2004; Reisberg et al., 2005; Becker et al., 2006; Walker, 2009) and in

the Re–Os isotopic ratios (e.g., Shirey and Walker, 1998; Morgan et al.,
2001). The HSE behavior during low-to-moderate degrees of partial
melting (b15–20%) is not fully understood. However, with the excep-
tion of Re, all HSEs are primarily controlled by base metal sulfide (pyr-
rhotite, pentlandite, chalcopyrite; Alard et al., 2000; Lorand and Alard,
2001; Luguet et al., 2004) or by metal alloys (Burton et al., 2000;
Ballhaus et al., 2006), rather than by oxide or silicate minerals. Those
found as inclusions of monosulfide solution (Mss) within the silicate
minerals are depleted in Pd group PGE (P-PGE; Pt, Pd) and have
unradiogenic 187Os/188Os. On the other hand, Cu-rich sulfides (e.g., chal-
copyrite) found on grain boundaries are enriched in P-PGE, but depleted
in Ir group PGE (I-PGE; Os, Ir, Ru), and havemore radiogenic 187Os/188Os
(Burton et al., 1999; Alard et al., 2000).

Some HSE concentrations in the Beyçam harzburgite display differ-
ent distributions from those in the Pulur lherzolite. For example, the

(a)

(b)

(c)

Fig. 7. C1 Chondrite-normalized (average orqueil values from Horan et al., 2003) HSE

abundances in the whole rock samples from the (a) Beyçam and (b) Pulur peridotites,

and (c) basalt. PUM compositional field is from Becker et al. (2006).

(a)

(b)

(c)

Fig. 8. a. 187Os/188Os vs. Al2O3 contents of the Beyçamand Pulur samples. Os isotopic ratios

of all samples from Beyçam are significantly less than the PUM estimates, whereas the

Pulur samples are slightly less than or greater than the PUM estimates. b. 187Os/188Os vs.
187Re/188Os isotope systematics for the Beyçam and Pulur samples. c. 187Os/188Os vs.
187Re/188Os isochron diagram for the basaltic rocks and harzburgites from the Beyçam

area.
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Pt, Pd and Re concentrations as well as Pt/Ir, Pd/Ir and Re/Ir ratios in
some samples, although moderately depleted, are highly variable but
significantly higher than the melt depletion trends and the concentra-
tions we have observed in the samples of the fertile Pulur lherzolite
(Figs. 6, 9). This observation is inconsistent with the effects of silicate
melt extraction on P-PGE and Re compositions of a residual peridotite,
because it requires incremental depletions of these elements in the res-
idue based on the degree of melt extraction. Enrichments of these ele-
ments above the melt depletion trends indicate that they would have
been added to the residue later. At a low melt–rock ratio, the degree
of sulfur saturation of migrating mafic melt and its interaction with
the pre-existing, residual mantle sulfide grains strongly affect the HSE
budget of the residual peridotite (Mavrogenes and O'Neill, 1999;
Bockrath et al., 2004; Brenan et al., 2005). Sulfides and HSE may be re-
moved by sulfur-undersaturated mafic melts from the residual perido-
tite, whereas sulfur-saturated mafic melts may precipitate sulfides and
add HSE to the residual peridotites instead. We infer, therefore, that
our HSE data point to Pt, Pd and Re enrichments, which are likely due
to a later interaction of the residual peridotite with percolating basaltic
melts and to precipitation of the P-PGE enriched interstitial sulfides
along the grain boundaries of the silicate phases.

Likewise, the distribution of the Os concentration is striking such
that in contrast to Ir, it is positively correlatedwith the fertility indicator
Al2O3 (Fig. 6) that involves special environmental conditions wherein
Os should bemoremobile than Ir. If the Os concentration of the Beyçam
harzburgite was only controlled by melt extraction from a lherzolitic
protolith, it would have been negatively correlated to Al, as observed
for the Ir and Ru, because of its compatible behavior during partial

melting (Morgan, 1986; Lorand et al., 1999; Rehkämper et al., 1999a,
1999b; Gannoun et al., 2007). Therefore, the depletion of Os involves
its removal from the harzburgitic residue via sulfide breakdown during
the subsequent melt–harzburgite reaction. The melt that percolated
through the Beyçam harzburgite should have been I-PGE undersaturat-
edmaficmelt because it involves an increase in theOs depletionwith an
increase in the melt–rock reaction.

Additionally, with respect to the chondrite-normalized spidergram
(Fig. 7), the depletion of Os relative to Ir is not an expected behavior
for the upper mantle residues formed by single-stage partial melting
alone. Therefore, Os-depleted PGE patterns and IrN/OsN ratios N1 are ab-
sent from massif peridotites in which sulfides appear to be largely pre-
served, and from cratonic peridotitic xenoliths that likely contain few
primary sulfides (Handler et al., 1999). Conversely, these types of pat-
terns and these large Ir/Os ratios are the features commonly observed
in xenoliths brought to the surface by subduction-related magmatism
and ascribed to the sulfide breakdown during melt–rock reaction
(Handler et al., 1999; Pearson et al., 2004). The role of high oxygen fu-
gacity and the subsequent breakdown of sulfide, which leads to the re-
moval of HSE during volcanic eruptions are discussed by Handler et al.
(1999). Based on the experimental solubility data (Wood, 1987) and
the physical properties of the oxidized species of these elements,
Mungall et al. (2005) have suggested that in a mantle environment
with a high oxidation state, Os is more volatile than Ir, and as a result,
sulfide dissolution may lead to OsN/IrN b1. Such sulfide dissolution is
also likely for the Beyçamharzburgite because a high oxidation state be-
tweenNNO-2 andNNOhas been estimated (Dokuz et al., 2011). The ba-
saltic rock with very low Os (0.003–0.014 ppb) contents is a good

Fig. 9.Os/Ir, Ru/Ir, Pt/Ir, Pd/Ir and Re/Ir vs. Al2O3 (wt %). Solid lines: residual peridotite compositions after batchmelting, and the dashed line in lower right panel is the residual peridotite

composition assuming moderately incompatible bulk partitioning of Re from van Acken et al. (2010). Shaded bar: range of chondritic ratios (Horan et al., 2003). Symbols as in Fig. 5.
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candidate for the composition of the inferred basalticmelt that percolat-
ed through the harzburgite (Fig. 7c). Depletion in the Al2O3 concentra-
tions demonstrates dissolution of some of the pyroxene into the melt
during the melt percolation at low melt–rock ratios. Because this pro-
cess enables the removal of I-PGE-enriched Mss from the pyroxenes, it
explains the Os depletion in the samples, as well. These observations
also indicate that percolating melt should have been derived from a
deeper mantle column that was more depleted as a result of the earlier
melt extractions.

7.2. Re–Os isotopic evidence for melt depletion and metasomatism

The Beyçam harzburgite is characterized by a significantly lower
187Os/188Os than the chondrite that is consistentwith itsmelt extraction
history. The linear correlation between the index of melt depletion
(Al2O3) and the 187Os/188Os also implies that the Beyçam harzburgite
remained as a solid residue left behind from partial melting of the
Pulur lherzolite—as a starting composition (Fig. 8a). However, if the
Beyçam harzburgite represents a mantle residue after a single-stage of
melt depletion from a homogeneous starting composition, the Re–Os
systematics would have yielded a positive linear correlation corre-
sponding to an isochron age (Walker et al., 1989). There is no such
positive linear correlation between the 187Os/188Os and 187Re/188Os
(Fig. 8b). Thus the Os isotopes were either disturbed by an ancient var-
iable melt depletion event or were affected by some other processes
subsequent to the latest melt depletion (e.g., Re addition and/or Os
loss during melt percolation). Numerous studies (Büchl et al., 2002,
2004; Lorand et al., 2004; Reisberg et al., 2005) have shown that remov-
al of primary (with a low 187Os/188Os) sulfides and then precipitation of
sulfides-bearing radiogenicOs duringmelt percolation could lead to sig-
nificant changes in the Os isotopic compositions of the affected perido-
tites. The latter option is unlikely for the Beyçam harzburgite because of
the very low bulk-rock 187Os/188Os (0.1190–0.1207). To sufficiently re-
duce the bulk-rock 187Os/188Os to approximately half of that of the fer-
tile mantle (~0.0065), the sulfide grains containing large amounts of Os
must also be removed at least in part. A positive correlation between Re
and Os, although slightly disturbed, suggests that some Os within the
sulfides, enclosed by silicate grains, should have been removed. The in-
teraction with such a melt under oxidizing conditions may have led to
the dissolution of primary sulfides (including unradiogenic 187Os/
188Os) within the silicate grains.

8. Pulur lherzolite: a case for mantle refertilization

As shown by recent studies (Le Roux et al., 2007; Rampone et al.,
2008; van Acken et al., 2008), varying degrees of partial melting is not
the only cause of compositional variability in the lithospheric mantle.
Subsequent melt–peridotite interaction can also play a variable role
based on the composition of the interactingmelt. For instance, astheno-
sphere-derived, olivine-saturated melts are not in equilibrium with the
upper mantle peridotites, and they therefore dissolve pyroxenes and
precipitate olivine during their upward migration (Kelemen et al.,
1995; 1997). Removal of basaltic melt causes modal and bulk-
chemical depletion in the lithospheric mantle and results in the forma-
tion of replacive dunites. This is achieved by a dramatic decrease in the
contents of pyroxene compatible elements such as Al2O3, CaO and Na2O
(melt depletion). Conversely, interaction between the pyroxene-satu-
rated mafic melt and the previously depleted peridotite at low melt–
rock ratio leads to a very different manifestation of mantle metasoma-
tism. Precipitation of pyroxenes and sulfides from the mafic melt in
harzburgites during this process results in the formation of lherzolite
and in an increase in the contents of previously-depleted clinopyroxene
compatible elements (refertilization). Examples of such refertilization
processes have been reported from abyssal peridotites (Seyler et al.,
2007) and peridotite massifs, e.g., Lherz (Le Roux et al., 2007), Totalp
(van Acken et al., 2008), Ligurian Alps (Rampone et al., 2004),

Mt. Maggiore (Rampone et al., 2008) and Horoman-Japan (Saal et al.,
2001; Toramaru et al., 2001), that all preserve ample textural and struc-
tural evidence for refertilization. Le Roux et al. (2007) and van Acken
et al. (2008) have reported that influxes of LREE-depleted melts under
conditions of the asthenosphere–lithosphere transition could lead to
transformation of harzburgitic mantle into lherzolite.

Based on the very low Cr-number (5–25) of spinels, Dokuz et al.
(2011) have interpreted the Pulur lherzolite as the remnant of a rela-
tively fertile abyssal peridotite, formed by very low-degrees of melt ex-
traction (Arai, 1994). However, field and microscopic observations as
well as electron microprobe and whole-rock geochemical data point
out that this fertile composition was then modified by melt–rock reac-
tions in a mantle wedge within a suprasubduction zone setting. It is
well known that clinopyroxene is amineral phase that is consumed rap-
idly during partialmelting (Kelemen et al., 1995). Therefore, the repeat-
ed events of melt extraction of smaller proportions produce a range of
mineral modal abundance in the mantle residue. The calculated
clinopyroxene modal abundances of the Pulur lherzolite display a
large range (5.8–23.1 modal %), suggesting variable degrees of melt de-
pletion. Conversely, such modal clinopyroxene variations may have
originated from refertilization of depleted peridotites through an addi-
tion of up to 10% basaltic melt (Elthon, 1992; Beyer et al., 2006).

8.1. Inferences from structural and textural data

The absence of any harzburgite in the Pulur lherzolite precludes the
formation of this lherzolite by the mixing of a refractory harzburgite
with variable proportions of websterite or pyroxenite. Accordingly, the
primary magmatic phases of the Pulur lherzolite have the chemical fea-
tures typical for a fertile abyssal lherzolite formed by low-degrees
(b10%) of partial melting (Dokuz et al., 2011). However, clinopyroxene
modal abundances of N15% and awide range ofmajor-element contents
indicate that following this melting process, the primary lherzolitic res-
idue was modified by the addition of some clinopyroxene from a basal-
ticmelt. The addition of basalticmaterial into the lherzolite is evidenced
by the networks of clinopyroxene veins (now replaced by hornblende)
that are crosscut by and/or parallel to the planar foliations in the rock
(Fig. 2b). The major question here is whether these veins originally
formed as clinopyroxene veins in the upper mantle during the melt–
rock interaction or later at the crustal level as a result of the Variscan
metamorphism.

We analyzed some amphiboles in the hornblendite veins in the
Pulur lherzolite. These amphiboles aremagnesio-hornblende in compo-
sition and are easily distinguished from the other hornblende occur-
rences by their smaller Mg-number (Fig. 4a). A much smaller Mg-
content has been measured in the amphiboles of the basaltic rocks
from the Beyçam harzburgite that are mostly Fe-tschermakite in com-
position (Fig. 4a). This progressive reduction in the Mg-content of the
amphiboles, while the corresponding Al-content increases, from
lherzolite through hornblendite to basalt (Fig. 4b) indicates that
hornblendite and basaltic rocks may have originated from the same pa-
rental magmas derived from partial melting of lherzolitic peridotite,
similar to the Pulur lherzolite in composition. These magmas were
then modified by segregation of the high Mg-bearing phases during
their ascent.

No relict clinopyroxene is measured, whereas relict olivine and
orthoproxene, and fairly common magnesio-hornblende have been
identified in the Pulur lherzolite. The lack of clinopyroxene, which is
generally more common in the lherzolite than in the harzburgite, can
be explained by the transformation of clinopyroxene to the magnesio-
hornblende during the orogenic Variscan metamorphic reactions. The
absence of plagioclase, which commonly accompanies hornblende and
clinopyroxene in magmatic processes at crustal levels, suggests that
the silicate phase precipitated in the lherzolite from the percolating ba-
saltic melt channels was clinopyroxene, not hornblende. Furthermore,
the lack of high-pressure minerals (i.e. garnet), suggests that the
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refertilization processes occurred at shallow mantle depths, in the up-
permost section of the mantle wedge (i.e., spinel lherzolite). The
refertilized samples show no interference between the parts of
clinopyroxenite vein and the lherzolite, suggesting that the melt–rock
reaction was restricted to the wall space of the clinopyroxenite veins,
and that the mixing processes responsible for the chemical variations
in the Pulur lherzolite occurred at a solid-state.

8.2. Inferences from the HSE distributions

Cu-rich sulfides are partially to completely removed, prior to disso-
lution of Mss, during low-degrees of mantle melting (Bockrath et al.,
2004). This commonly leads to a selective enrichment in Os, Ir and Ru,
and to depletion in Pt and Pd concentrations of melt residues. The Pt,
Pd and Re concentrations of the Pulur lherzolite are variably depleted
relative to those of the PUM (Fig. 6), consistent with a mantle residue
formed by low-degrees (b10%) of melt extraction. This inference is fa-
vored by the progressive increase of the Os, Ir and Ru contents, which
are compatible at low degrees of melting, with a negative trend passing
above the PUM field. However, the low degrees of partial melting alone
are not capable of reducing the Ir-group PGE concentrations in residues
below those concentrations of the PUM that once existed in their pre-
cursor. As Fig. 9 shows, the Os/Ir ratios are less than those of the PUM
and are positively correlated with the Al2O3 contents. These observa-
tions are inconsistent with the notion of partial melting as a single pro-
cess during the formation of the Pulur lherzolite. Therefore, these rocks
must have involved at least one additional process, such as
refertilization or melt–mantle reaction, which is capable of decreasing
the I-PGE values below those of the PUM.

An interaction between a HSE-saturated silicate melt and a mantle
peridotite at a lowmelt–rock ratio can be ruled out because such a pro-
cess commonly results in the precipitation of interstitial sulfides, which
are rich in P-PGE (Becker et al., 2001; Saal et al., 2001; Luguet et al.,
2004). Conversely, the moderately depleted P-PGE concentrations of
the Pulur lherzolite are consistent with the percolation of an HSE-
undersaturated melt because such a melt can cause dissolution of
some sulfides, and may consequently result in the removal of certain
HSE from the affected rock (e.g., Lorand and Alard, 2001; Lorand et al.,
2004; Reisberg et al., 2005). Parts of the Pulur lherzolite, in which
clinopyroxene-rich channels and veins predominate, represent the
products of a solid-state mixing process, which took place during the
formation of the lherzolitic residue. This is because the concentration
of I-PGE in the refractory lherzolite is likely to be several orders of mag-
nitude higher, whereas Al2O3 abundances are an order of magnitude
lower, than those of the melt. In this context, the basaltic rocks from
the Beyçam area provide important information about the nature of
the silicate melt, which interacted with the Pulur and Beyçam perido-
tites. As observed in the chondrite-normalized spidergram (Fig. 7),
the basalt samples display positive slopes of HSE with enrichment in
P-PGE and Re. However, the absolute abundances of the I-PGE and
even the P-PGE and Re are lower than those of their probable residual
precursor (Pulur lherzolite), indicating that the interacting melt might
have been HSE-undersaturated. This inference contradicts with the
Mss/sulfide melt distribution coefficients of ~0.01–0.1 for Pt and Pd
and ~2–3 for Re during partial melting (Barnes et al., 1997; Ballhaus
et al., 2006). Therefore, the depleted P-PGE values of the basaltic sam-
ples suggest that the refractory peridotite should have been depleted
as a result of the production of previous melts of basaltic compositions.

Rhenium is coherent with, but generallymore depleted than, Pd and
Pt in the Pulur lherzolite (Figs. 6 and 9); this Re behavior is not in agree-
ment with the Dmss/sulfide distribution coefficients. Rhenium is the
most lithophilic element among the HSE and becomes incorporated
into silicate minerals, particularly into the clinopyroxene, during partial
melting (Righter and Hauri, 1998; Sattari et al., 2002; Fonseca et al.,
2007; Mallmann and O'Neill, 2007). Therefore, the addition of such
clinopyroxene-rich melt to the residual lherzolite with a large I-PGE

content would cause a reduction in the I-PGE contents to the levels
that are significantly less than those of their source. This process
would create curved mixing arrays on the plots of Al2O3 vs. I-PGE
(Reisberg and Lorand, 1995), as observed in the Os and Re distributions
of our samples. This process also explains the P-PGE contents of those
samples plotting in the right side of the melt-depletion trends (Fig. 6),
and the Re/Ir ratios that are less than partial melting trends (Fig. 9) be-
cause of the addition of a melt with Al2O3 abundances greater than an
order of magnitude. An increase of Pt/Ir above the melting trends may
indicate the precipitation of a Pt-bearing sulfide phase during the
melt–peridotite interaction.

8.3. Inferences from Re–Os systematics

The bulk-rockOs isotope ratios of the Pulur lherzolite are highly var-
iable. With one exception (Sample YS-3C), the suprachondritic 187Os/
188Os ratios, one of which is even higher than that of PUM, are inconsis-
tent with melt depletion (187Os/188Oschondrite = 0.127; Shirey and
Walker, 1998). Although not very distinct, the negative correlations be-
tween the 187Os/188Os and 187Re/188Os and the Al2O3 contents (Fig. 8a,
b) suggest that these valuesmay have been perturbed by other process-
es subsequent to the melt depletion. If the Os isotope ratios were con-
trolled by simple in-growth of 187Os from Re, a positive co-variation
would have shown. Moreover, Sample YS-3C displaying the greatest
Re content would have had the greatest 187Os/188Os. This sample is
the richest in modal clinopyroxene that was precipitated during solid-
state melt–rock interaction. Nevertheless, the lack of variation in the
187Os/188Os can be explained by non-precipitation of radiogenic Os-
bearing sulfides, whereas clinopyroxene was precipitated from a basal-
tic melt causing the reduction of the modal amount of pre-existing sul-
fide in the rock. Conversely, the supra-PUM values of the 187Os/188Os
suggest that the bulk-rock Os budget may have been disturbed after
melt depletion, either by an addition of radiogenic Os, or through Re ad-
dition and subsequent in-growth of 187Os. Taking the basaltic rockswith
very radiogenic 187Os/188Os into account, the addition of radiogenic Os
appears to be a more plausible explanation for the increase in the Os
to radiogenic levels.

9. Melt depletion and isochron ages

Because of the addition of some radiogenic Re- and Os-bearing
phases into the peridotites, the isotopic system established during the
first melt-extractionwas disturbed (Fig. 8a). Therefore, together or sep-
arately no obvious isochronous relationships exist for the Pulur and
Beyçam peridotites (Fig. 8b). This scatter is generally ascribed to Remo-
bility because Re behaves very mobile, whereas Os immobile, under a
wide range of conditions such as low to moderate partial melting, and
melt–rock reaction either at high or low melt/rock ratios (e.g.,
Reisberg and Lorand, 1995; Kelemen et al., 1997; Meisel et al., 2001;
Sun et al., 2003). In such a case, if Re has been added or removed, useful
information on the last melt extraction event can be obtained by indi-
vidual model rhenium-depletion (TRD) ages, because this approach ig-
nores the in-growth of 187Os (Walker et al., 1989; Shirey and Walker,
1998). Individual model TRD ages range between the future and
437 Ma for the Pulur lherzolite and between 0.98 and 1.27 Ga for the
Beyçam harzburgite (Table 2). Given that both the lherzolite and
harzburgite are the vestiges of the Rheic oceanic mantle, which evolved
between the late Cambrian and the early Carboniferous (Murphy et al.,
2010; Nance et al., 2010), the TRDmodel ages from both suites appear to
have diverged from each other by a subsequent process. We infer that
this divergence was due to Re loss in the Pulur lherzolite and Re gain
in the Beyçam harzburgite.

Conversely, the melt of the basaltic rocks appears to have escaped
the subsequent metasomatic events as it ascended within the mantle
wedge. The two basaltic samples, alongwith the samples of the Beyçam
harzburgite, form an isochron on the plot of 187Re/188Os vs. 187Os/188Os
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corresponding to an age of 377 ± 8.77 Ma (Fig. 8c) that places these
rocks in the Paleozoic Rheic Ocean realm (Kroner et al., 2007). A further
constraint on the time of melt extraction from the Rheic mantle wedge
can be drawn from the TMA model age (Walker et al., 1989) that is the
measure of the length of time during which a melt has been separated
from the mantle as an analog to the TDM model age calculations
(DePaolo and Wasserburg, 1976). The calculated TMA ages of 371.4 Ma
and 382.6 Ma for the basaltic samples (Table 2) are hence insightful as
they are within the range of error of the isochron age described above.
Consequently, this isochron age may correspond to the time at which
the Beyçam harzburgite was metasomatized by subduction-derived
fluids leading to the production of the melt that produced the basaltic
rocks by dissolution of the clinopyroxene. Furthermore, this was the
time at which the Pulur lherzolite was networked by the channels in
which clinopyroxene precipitation occurred. Thus, the calculated TDM
and TMA ages from our basaltic rock samples may provide a minimum
age constraint for the timing of subduction initiation and related fluid
flux in the mantle wedge of a Rheic subduction zone.

10. Conclusions

The Paleozoic Variscan peridotites from the eastern part of the Sa-
karya Zone (Turkey) demonstrate a composite mantle lithosphere evo-
lution, characterized by partial melting and subsequent multi-stage
melt migration and melt–rock interactions. The Pulur lherzolite was
produced by low-degrees of melt depletion in the spinel stability field
that is typical for those of fertile abyssal-type lherzolites. The dissolution
of the remaining pyroxene, spinel and sulfideminerals in the garnet sta-
bilityfield in a suprasubduction zone setting resulted in the formation of
a moderately depleted harzburgitic residue (Beyçam harzburgite) and
basaltic daughter melt. Partial interaction between the harzburgite
and this basaltic melt led to enrichment in the concentrations of incom-
patible HSE (Pd, Pt) and Re of the Beyçam harzburgite. Another melt–
peridotite interaction occurred in the upper level of the mantle wedge
between the basaltic melt and the earlier formed abyssal lherzolite.
This interaction likely occurred in a mechanical state by precipitation
of clinopyroxene, spinel and sulfides from the basic melt in the veins
and channels of the Pulur lherzolite. Large negative covariations of the
compatible HSE (Os, Ir and Ru) with the fertility indicator Al2O3 are a
consequence of this type of interaction, rather than variablemelt extrac-
tion. Island arc tholeiite-type basaltic rocks in the Beyçam area, along
with their HSE distributions typical for a basaltic melt originated from
a harzburgitic mantle residue, represent this inferred percolating basal-
tic melt. The Re–Os isochron age of 377 ± 8.77 Ma of the basaltic rocks
indicates that these peridotites and basaltic rocks represent the relics of
the Rheic oceanic lithosphere.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2013.12.010.
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Appendix I. Sample preparation

One hundred milligrams of the powdered sample was added to a
Teflon vial along with 4 mL of HF and 1 mL HNO3 (SPA, ROMIL

Cambridge); the vial was sealed and left on a hot plate at 150 °C for
48 h. The acid mixture was allowed to evaporate to near dryness; to
the moist residue, 1 mL HNO3 was added, and the mixture was again
evaporated to near dryness. A second 1 mL aliquot of HNO3 was
added and evaporated to near-dryness. These steps converted the insol-
uble fluoride species into soluble nitrate species. To the sample, 2.5 mL
of HNO3was added and diluted to 50 mL after the addition of an internal
standard, which gave a final concentration of 20 ppb of Re and Rh. The
internal standard was used to compensate for any analytical drift and
matrix-suppression effects.

Calibration of the ICP-MS was assured by using the international
rock standards (BHVO-1, AGV-1, W-2, NBS688) with the addition of
an in-house peridotite standard (GP13) (Ottley et al., 2003). These stan-
dards and analytical blanks were prepared using the same technique as
the samples. To improve the signal-to-noise threshold, the low-
abundance isotopes were measured with increased dwell times
(Ottley et al., 2003). The reference samples (W-2, AGV-1, BHVO-1, BE-
N, NBS688 and GP13) were analyzed as unknown samples during the
same analytical runs as the Pulur and Beyçam samples. For the elements
investigated, the reproducibility of these reference samples was gener-
ally greater than 2%, and the measured compositions compared favor-
ably with the compositions published by Potts et al. (1992).

Appendix II. HSE analysis

Two grams of finely powdered samples, with the addition of multi-
elemental spike of HSE isotope tracers (185Re, 190Os, 101Ru, 106Pd, 191Ir
and 198Pt), were dissolved in a mixture of 5 mL HNO3 and 2 mL HCl in
closed-quartz vials in a High Pressure Asher (HPA) system (Anton
Paar-Perkin-Elmer Instruments, Graz) at 300 °C and at a pressure of
125 bar for 4 h. The Os concentration and the Os isotope ratio were
measured as the volatile OsO4 complex, which was directly fed into
the quadrupole ICP-MS system (®HP7500 Agilent Technologies). The
residue was centrifuged, dried on a hot plate, and re-dissolved in
1.5 mL of 0.1 mol/L HCl. The solution was filtered and introduced into
a cation-exchange resin column (Dowex AG50Wx8 200–400 mesh,
Fluka) connected directly to the tubing system of the peristaltic pump
on the mass spectrometer. The time signal was monitored, and the rel-
evant, overlap-free part of the signal was used to calculate the concen-
trations. The HSE concentrations from the repeated digestion of the
fresh aliquots of the ultramafic reference material (UB-N) were in the
compositional range obtained by Meisel andMoser (2004), which indi-
cates an uncertainty of b10%.
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