НАСТОЯЩИЙ ПЬЕМОНТИТ ИЗ РУДНИКА ПРАБОРНА (западные альпы, италия)

К. г.- м. н. **В. И. Силаев** silaev@geo.komisc.ru

Проведенный нами анализ показал, что среди выявленных на Урале «пьемонтитов» [7—13] кристаллохимическому критерию отвечают не более 12 %, представленных к тому же единичными анализами. В связи с этим возникают вопросы, существуют ли в природе объекты с массовым проявлением «настоящего» пьемонтита и каким именно обстановкам минералообразования они отвечают?

Предметом нашего исследования послужил переданный нам Н. Б. Кузнецовым (ГИН РАН) образец минерала, отобранный из отвалов древнего рудника Праборна на территории Западных Альп, которой и приписывают происхождение голотипа пьемонтита. Судя по современным геологическим данным [14], продуктивная минерализация на упомянутом руднике приурочива-

К. г.- м. н. И. И. Голубева petr@geo.komisc.ru

К. г.- м. н. Ю. С. Симакова cryst@geo.komisc.ru

С. н. с В. Н. Филиппов

лась к линзовидному телу интенсивно омарганцованных кварцитов мощностью 4-8 м, залегавшему среди метаморфизованных пород офиолитовой ассоциации [14]. В составе внутренней, наиболее богатой части линзы («ядре») преобладал браунит, который в направлении к периферии сменялся марганцевыми и марганецсодержащими силикатами. Считается, что протолитом для марганцевых «метаморфогенных» руд послужили палеоокеанические образования, аналогичные современным умбритам и ЖМК. В пьемонтитовый парагенезис кроме браунита входят родохрозит и множество обогащенных марганцем породообразующих силикатов (эпидот, гранаты, клино- и ортопироксены, родонит, слюды), замещающихся с поверхности Fe-Mn оксидами (рис. 1, 2). Сам пьемонтит под оптическим микроскопом характеризуется интенсивной окраской, обнаруживая при этом кон-

Рис. 1. Минеральный парагенезис пьемонтита в омарганцованных кварцитах рудника Праборна. Минералы: Q — кварц; S альбит-клинопироксеновые микроагрегаты («симплектит»); V — фиолетовый марганецсодержащий диопсид (виолан); Р — пьемонтит. Петрографический шлиф, николи ||. Приведено по [14].

трастную ростовую зональность (рис. 3). В качестве поздней, наложенной на пьемонтит минерализации выступают тонкие прожилки почти безмарганцевого кальцита.

Рис. 2. Срастания пьемонтита (1) с кварцем (2), калишпатом (3) и браунитом (4) в омарганцованных кварцитах. РЭМ-изображения в режиме упруго отраженных электронов

Рис. 3. Зональные кристаллы пьемонтита. Петрографический шлиф, николи Ч. Приведено по [14]

Вестник, август, 2006 г., № 8

Переданный нам образец представляет собой гнездообразное выделение почти черного с бордовым оттенком минерала в белом тонко-среднезернистом кварците. Под оптическим микроскопом этот минерал обнаруживает сильный плеохроизм от ярко-красного по Ng до оранжево-желтого по Np. Фазовая диагностика была осуществлена на автоматическом дифрактометре XRD-6000 Shimadzy в режиме фильтрованного СиКа-излучения. Полученные данные практически идеально совпали с характеристикой эталонного пьемонтита, заметно отклоняясь от таковых у эталонных эпидота и клиноцоизита (табл. 1). Параметры э. я., рассчитанные на основе дифрактомет-

Спектры ИК-поглощения исследуемого минерала были получены на фурье-спектрометре ФТ-02 «Инфралюм» фирмы «Люмекс». Использовались масляные суспензии. В спектрах обнаружились две очень характерные серии узких и хорошо разрешенных полос, обусловленных деформационными колебаниями химических связей Si—O в тетраэдрах SiO₄ и диортогруппах Si₂O₇ (рис. 4). Положения большинства зарегистрированных полос определенно не совпадают с таковыми в ИК-спектрах клиноцоизита и эпидота [15, 16], будучи несколько сдвинутыми в более длинноволновую область. Столь же своеобразным является и спектр ИК-поглощения пьемонти-

Таблица 1

Сопоставление диагностических дифракционных отражений в рентгенограммах минералов группы эпидота

Эталоны*						Исследуемый		
Клиноцоизит		Эпидот		Пьемонтит		минерал		h k l
d, Å	I, y. e.	d, Å	I, y. e.	d, Å	I, y. e.	d, Å	I, y. e.	
5.01	24	5.03	26	5.03	28	5.03	21	$10\overline{2}$
3.47	27	3.49	32	3.5	35	3.49	24	21 1
3.2	17	He	обн.	Не обн.		3.195	11	210
Не обн.		2.92	20	То же		Не обн.		$30\overline{2}$
2.89	100	2.906	100	2.91	100	2.908	100	113
2.79	37	2.82	40	2.84	39	2.842	49	020
2.75	18	2.75	18	Не обн.		Не обн.		211
2.68	25	2.695	31	2.7	31	2.693	33	013
2.67	17	2.68	17	2.67	17	Не обн.		300
2.63	17	2.66	19	2.68	23	2.664	40	120
2.59	38	2.6	43	2.6	46	2.594	19	311
2.4	25	2.4	30	2.41	30	2.403	26	313
2.38	21	2.404	23	2.42	25	2.416	32	022
2.1	23	2.12	17	2.13	17	2.121	17	221
1.39	25	1.41	22	1.42	21	1.421	23	040

* Данные приведены по интернет-базе рентгеноструктурных данных www-mincryst

рических данных, составляют (Е): а₀ = $= 8.86 \pm 0.09$; b₀ $= 5.683 \pm 0.004$; c₀ == 10.171±0.06. Приведенные параметры ао и со практически не отличаются от соответствующих параметров клиноцоизита и эпидота, а параметр b₀ больше клиноцоизитового на 1.6 %, что является вполне значимым, т. к. в 20 раз превышает аналитическую погрешность. Полученный результат обусловлен, очевидно, тем, что в структуре минералов группы эпидота колонки октаэдров AlO₆, в которых происходит замещение мелких ионов Al³⁺ на более крупные ионы Fe³⁺ и Mn³⁺, ориентируются именно вдоль оси «b». Это и делает упомянутый параметр наиболее чувствительным к «пьемонтитовой» (по В. С. Соболеву) схеме изоморфизма.

Рис. 4. Типичный спектр ИК-поглощения в пьемонтите

та из Праборны в области валентных колебаний связей О—Н в гидроксилионах. Этому минералу отвечает слабо раздвоенная полоса, смещенная относительно той же полосы в спектре клиноцоизита на 80—100 см⁻¹ в коротковолновую область.

Химический состав итальянского пьемонтита определен на сканирующем электронном микроскопе JSM-6400, оснащенном спектрометрами фирмы «Link» (программное обеспечение ISIS 300) и «Місгозрес». Согласно полученным результатам (табл. 2), исследуемый минерал характеризует-

ся весьма стабильным составом ($V\bar{x}$ у большинства компонентов, включая марганец, не превышает 10%), а содержание MnO в нем не опускается ниже 12 мас. %. Значение формульного коэффициента Mn практически во всех анализах превышает 1, составляя в среднем 1.08 ± 0.09. Очевидно, что полученные данные соответствуют именно кристаллохимическому критерию определения пьемонтитового минерального вида.

Расчеты показали, что в пьемонтите из Праборны содержание марганца обратно коррелируется с содержанием железа и практически не коррелируется с содержанием алюминия. Кроме того, в нем проявляется сильная обратная корреляция между алюминием и железом. Такая система статистических связей между октаэдрическими катионами приводит к предположению о том, что пьемонтитовая схема катионного изоморфизма является цепной [17], развиваясь как последовательность замещений вида $Al^{3+} \leftarrow Fe^{3+} \leftarrow Mn^{3+}$. Важно также отметить следующее.

Вестник, август, 2006 г., № 8

Таблица 2

Химический состав ((мас. %)) пьемонтита из рулника Праборна	
ammin iceann cociad	Mac. /0	/ пвемонтита из рудника праборна	

№ п/п	SiO_2	Al_2O_3	Fe ₂ O ₃	MnO	CaO	SrO	Сумма
1	33.78	17.1	2.58	13.88	21.2	1.69	90.23
2	33.92	17.35	2.58	13.7	21.71	Не обн.	89.26
3	34.37	17.54	1.46	14.96	21.21	То же	89.54
4	39.17	21.42	1.66	15.06	21.01	2.26	100.58
5	32.89	16	2.07	14.88	20.81	1.69	88.34
6	34.19	14.34	4.54	16.47	18.7	4.47	92.71
7	31.66	16.25	1.92	13.14	18.55	0.97	82.49
8	34.96	17.83	2	14.77	20.12	2.75	92.43
9	33.94	17.22	1.3	15.03	21.71	Не обн.	89.26
10	33.96	16.4	1.6	15.93	20.46	1.25	89.6
11	32.91	14.52	5.48	13.86	18.45	4.26	89.48
12	34.05	17.64	1.51	14.39	21.66	Не обн.	89.25
13	34.09	17.01	1.66	15.18	20.3	2.57	90.81
14	32.99	13.91	4.31	15.85	18.59	3.91	89.56
15	34.03	16.76	1.41	15.69	20.51	1.98	90.38
16	33.31	16.25	5.37	12.03	18.72	3.96	89.64
17	33.88	16.99	4.33	12.6	19.85	3.28	90.93
18	34.24	17	1.97	15.11	19.72	2.26	90.3
Min	31.66	13.91	1.3	12.34	18.45	0	82.49
Max	39.17	21.42	5.48	16.47	21.71	4.47	100.58
\overline{X}	34.02	16.75	2.65	14.6	20.18	2.07	90.27
\overline{Sr}	1.48	1.63	1.44	1.14	1.17	1.52	3.32
5 <i>x</i>	4	10	54	8	6	73	4
Vx,%							

Примечание. Міп—Мах — размах колебаний; \overline{X} — среднее арифметическое; $S\overline{x}$ — стандартное отклонение; $V\overline{x}$ — коэффициент вариации

Формулы:

 $1 - (Ca_{2.02}Sr_{0.1})_{2.12}(Al_{1.79}Fe_{0.17}Mn_{1.04})_3 [Si_3O_{11}]O(OH)_{1.12};$

 $2 - Ca_{2.06}(Al_{1.8}Fe_{0.17}Mn_{1.03})_3[Si_3O_{11}]O(OH)_{1.06};$

3 — Ca1.98(Al1.9Fe0.09Mn1.01)3[Si3O11]O(OH)0.98;

 $4 - (Ca_{1.72}Sr_{0.1})_{1.82}(Al_{1.93}Fe_{0.1}Mn_{0.97})_3[Si_3O_{11}]O(OH)_{0.82};$

 $5 - (Ca_{2.03}Sr_{0.09})_{2.12}(Al_{1.72}Fe_{0.14}Mn_{1.14})_3[Si_3O_{11}]O(OH)_{1.12};$

 $6 - (Ca_{1.76}Sr_{0.23})_{1.99}(Al_{1.48}Fe_{0.3}Mn_{1.22})_3[Si_3O_{11}]O(OH)_{0.99};$

 $7 - (Ca_{1.88}Sr_{0.05})_{1.93}(Al_{1.81}Fe_{0.14}Mn_{1.05})_3[Si_3O_{11}]O(OH)_{0.93};$

 $8 - (Ca_{1.85}Sr_{0.14})_{1.99}(Al_{1.8}Fe_{0.13}Mn_{1.07})_3[Si_3O_{11}]O(OH)_{0.99};$

 $9 - Ca_{2.06}(Al_{1.79}Fe_{0.09}Mn_{1.12})_3[Si_3O_{11}]O(OH)_{1.06};$

 $10 - (Ca_{1.94}Sr_{0.06})_2(Al_{1.7}Fe_{0.11}Mn_{1.19})_3[Si_3O_{11}]O(OH);$

 $11-(Ca_{1.8}Sr_{0.22})_{2.02}(Al_{1.56}Fe_{0.38}Mn_{1.06})_3[Si_3O_{11}]O(OH)_{1.02};\\$

 $12 - Ca_{2.04}(Al_{1.43}Fe_{0.1}Mn_{1.07})_3$ [Si₃O₁₁]O(OH)_{1.04};

 $13 - (Ca_{1.91}Sr_{0.13})_{2.04}(Al_{1.76}Fe_{0.11}Mn_{1.11})_3[Si_3O_{11}]O(OH)_{1.04};$

14 — (Ca_{1.81}Sr_{0.21})_{2.02}(Al_{1.49}Fe_{0.29}Mn_{1.22})₃[Si₃O₁₁]O(OH)_{1.02};

 $15 - (Ca_{1.94}Sr_{0.1})_{2.04}(Al_{1.74}Fe_{0.09}Mn_{1.17})_3[Si_3O_{11}]O(OH)_{1.04};$

 $16 - (Ca_{1.81}Sr_{0.21})_{2.02}(Al_{1.72}Fe_{0.36}Mn_{0.92})_3[Si_3O_{11}]O(OH)_{1.02};$

 $17 - (Ca_{1.83}Sr_{0.17})_2(Al_{1.77}Fe_{0.29}Mn_{0.94})_3[Si_3O_{11}]O(OH);$

 $18 - (Ca_{1.85}Sr_{0.11})_{1.96}(Al_{1.75}Fe_{0.13}Mn_{1.12})_3 [Si_3O_{11}]O(OH)_{0.96}.$

Максимальное значение формульного коэффициента иона марганца в минерале из Праборны достигает 1.22. Это подтверждает выводы о том, что в пьемонтите ионами Mn³⁺ могут заселяться позиции не только M3, но и M1. Полученные нами данные свидетельствуют о том, что степень заселения последней позиции может достигать по крайней мере 25 %.

Важнейшей кристаллохимической примесью исследуемого минерала является стронций, ионы которого замещают ионы кальция в одной из позиций A [18]. Известно, что этот элемент достаточно часто обнаруживается не только в собственно пьемонтите, но также в клиноцоизите и эпидоте [19]. При этом эмпирически подтвержденная максимальная степень замещения $Sr^{2+} \rightarrow Ca^{2+}$ в этих минералах достигает 12 % [20].

Проведенный нами анализ показал, что содержание SrO в пьемонтите из Праборны достигает 4.5 мас. %, что почти отвечает установленному предельному насыщению стронцием минералов группы эпидота. При этом примесь стронция в индивидах исследуемого пьемонтита распределяется весьма неравномерно, что отражается мозаичными картинами их неоднородности под электронным микроскопом (рис. 5). Согласно расчетам, стронций в пьемонтите связан с кальцием очень сильной обратной корреляцией (r = -0.8), что, очевидно, согласуется с упомянутыми выше кристаллохимическими представлениями.

Рис. 5. Неоднородность распределения стронция в индивидах пьемонтита. РЭМ-изображение в режиме упруго отраженных электронов

Таким образом, результаты проведенных исследований приводят к заключению о том, что по своим кристаллохимическим свойствам пьемонтит из Праборны существенно отличается как от клиноцоизита, так и от эпидота. На разработанной нами классификационной диаграмме (рис. 6) поле точек состава итальянского пьемонтита контрастно обособляется от точек состава уральских марганецсодержащих клиноцоизитов и эпидотов, сосредотачиваясь строго в секторе, отвечающем составу минерала с принципиальной формулой Ca₂(Al₂₋₁Fe₀₋₁ Mn₂₋₁)₃[Si₃O₁₂](OH). Нам представляется, что именно такой минерал и должен определяться как пьемонтит. Минералы с меньшим содержанием марганца следует относить не к пьемонтиту, а к манганклиноцоизиту и манганэпидоту, которые мы предлагаем также рассматривать в ранге минеральных видов.

Согласно экспериментальным данным, обогащение минералов группы эпидота трехвалентным марганцем происходит только в окислительных условиях и растет с увеличением fO_2 [21]. С другой стороны, появление в природных объектах манганклиноцоизита или манганэпидота может свидетельствовать об эпигенетических процессах омарганцевания, а образование пьемонтита может являться прямым индикатором наложенного марганцевого оруденения, как это было показано нами ранее на примере минералов группы аксинита [22].

Рис. 6. Марганецсодержащие минералы группы эпидота в рамках кристаллохимической номенклатуры: 1 — исследуемый пьемонтит; 2—4 — «пьемонтиты» из уральских месторождений по [7—13]; 5 — «пьемонтит» из кварцевых жил с черновитом на Приполярном Урале; 6 — манганклиноцоизит из омарганцованных риолитов на Приполярном Урале. Минеральные виды: а — цоизит, б — клиноцоизит, в — эпидот, г — манганклиноцоизит, д — манганэпидот, е — пьемонтит

ЛИТЕРАТУРА

1. Вознесенский С. Д. Пьемонтитовые сланцы левобережья р. Хемчик в Западной Туве // Записки ВМО, 1961. Ч. 90, № 3. C. 345—348. 2. Jimenez-Millan J., Velilla N. Compositional variation of piemontites from different Mn-rich rock-types of the Iberian Massif (SW Spain) // Eur. J. Mineral., 1993. V. 5. Р. 961-970. 3. Минералы. Справочник. Т. III. Вып. 1. М.: Наука, 1972. С. 709—749. 4. Catti M., Ferraris G., Ivaldi G. On the crystal chemistry of strontian piemontites with some remarks on the nomenclature of the epidote group / / N. Jb. Mineral. Mh., 1989. P. 357-366. 5. Семкова Т. А., Брусницын А. И. К вопросу о номенклатуре марганецсодержащих минералов группы эпидота // Минералогические музеи. СПб: Изд-во СПб ун-та, 1998. С. 113—114. 6. Силаев В. И., Голубева И. И. Полярноуральский манганклиноцоизит в связи с номенклатурой минералов группы эпидота // Вестник Института геологии Коми НЦ УрО РАН, 2006. № 2. С. 3. 7. Брусницын А. И., Балашова Ю. С., Гаврютченкова О. В. и др. Самородная медь из марганцевых пород

Биккуловского месторождения (Южный Урал) // Материалы IV Всероссийского совещания. Т. II. Миасс: Изд-во ИМин УрО РАН, 2003. С. 29—35. 8. Брусницын А. И., Папчинская М. А., Нестеров А. Р. Новые данные о Кусимовском марганцевом месторождении // Металлогения древних и современных океанов-2000. Открытие, оценка, освоение месторождений. Миасс: Изд-во ИМин УрО РАН, 2000. С. 72—77. 9. Брусницын А. И., Семкова Т. А., Жуков И. Г. Пьемонтит из Уразовского марганцевого месторождения (Южный Урал) // Уральская летняя минералогическая школа-97: Материалы межвузовской конференции. Екатеринбург: Изд-во УГГА, 1997. С. 213—215. 10. Литошко Д. Н., Никитина В. Д. Высокомарганцовистый пьемонтит из метасоматитов Полярного Урала // Минералогическая кристаллография и свойства минералов. Сыктывкар: Коми ФАН СССР, 1984. С. 110-112. 11. Пирожок П. И., Перова Е. Н., Орлов М. Л. Марганцевая минерализация Учалинского медноколчеданного месторождения // Металлогения древних и современных ение месторождений. Миасс: Изд-во ИМин УрО РАН, 2000. С. 78-82. 12. Плетнев П. А. Минералогия гондитов и метавулканитов пренит-пуипелиитовой фации Учалинского колчеданного месторождения, Южный Урал // Уральская летняя минералогическая школа—95: Материалы межвузовской конференции. Екатеринбург: Изд-во УГГА, 1995. С. 60-64. 13. Юдович Я. Э., Козырева И. В., Швецова И. В. и др. Марганцовистые редкоземельные стяжения в метаморфических сланцах на Приполярном Урале // Доклады РАН, 2000. Т. 370, № 5. C. 658-660. 14. Martin S., Godard G., Rebey G. The Subducted Tethys in the Aosta Valley (Italian Western Alps) // Fild Trip Guide BooK-BO2. 32^{hd} International Geological Congress. Florence-Itly, 2004. Р. 1—38. 15. Андреенко Э. Д., Плюснина И. И. О корреляции химического состава и ИК-спектров минералов группы эпидота // Вестник МГУ. Геология, 1965. № 4. 16. Силаев В. И., Ширяева Л. Л., Никитина В. Д. Типоморфизм состава и инфракрасных спектров эпидота из рудных месторождений и рудопроявлений Полярного Урала // Минералогическая кристаллография и свойства минералов. Сыктывкар: Коми ФАН СССР, 1984. С. 104-109. 17. Силаев В. И., Удоратина О. В. Цепные схемы катионного изоморфизма в карбонатах как проявление нанометрической неоднородности минералов // Наноминералогия. Ультра- и микродисперсное состояние минерального вещества. СПб: Наука, 2005. С. 176—202. 18. Bonazzi P., Garbarino C., Menchetti S. Crystal Chemistry of piemontites: REE-bearing piemontite from Monte Brugiana, Appi Apuane, Italy // Eur. J. Mineral, 1992. V. 4. P. 23-33. 19. Grapes R., Watanabe T. Al- $Fe^{3+} \, and \, Ca - Sr^{2+} \, epidotes in metagrewacke$ - guartzofeldspathic schist, Southern Alps, New Zealand // Am. Mineral., 1984. V. 64. № 5—6. Р. 490—498. 20. Каюпова М. М., Зайцева Р. И. Стронциевый пьемонтит и бементит из месторождения Ушкатын III (Центральный Казахстан) // Минералогия и геохимия Центрального Казахстана и Алтая. Алма-Ата, 1971. С. 52-57. 21. Keskinen M., Lion J. G. Synthesis and stability relations of Mn-Al piemontite, Ca₂MnAl₂Si₃O₁₂(OH) // Amer. Miner., 1979. V. 64. Р. 317—328. 22. Силаев В. И., Янулова Л. А. Высокомарганцевые аксиниты: химический состав, изоморфизм, номенклатура // Сыктывкарский минералогический сборник № 30. Сыктывкар: Геопринт, 2001. С. 93-104.