ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ ГЕОЛОГИЯ И РАЗВЕДКА амозновн-зара начала в польскато с 2006, № 3

МИНЕРАЛОГИЯ, ПЕТРОГРАФИЯ, ЛИТОЛОГИЯ тально петь не изстояновато времени, имало нат о в зависот истали кольнановного слатия. Вос

УДК 553.8

В.К. ГАРАНИН, К.В. ГАРАНИН, Г.П. КУДРЯВЦЕВА, О.В. ПАЛАЖЧЕНКО

МОРФОЛОГИЧЕСКИЕ И СПЕКТРОСКОПИЧЕСКИЕ ОСОБЕННОСТИ АЛМАЗОВ ИЗ МЕСТОРОЖЛЕНИЯ ИМ. В. ГРИБА АРХАНГЕЛЬСКОЙ АЛМАЗОНОСНОЙ ПРОВИНЦИИ

Статья 2. Спектроскопические характеристики и их взаимосвязь с морфологией кристаллов¹

Изучена коллекция (700 кристаллов) из месторождения-трубки им. В. Гриба Архангельской алмазоносной провинции (ААП). Методом ИК-спектроскопии изучены структурные особенности алмаза. Определены содержания одиночного и агрегированного азота, плейтелетс и водорода. Исследована взаимосвязь морфологии кристаллов с содержанием структурных дефектов.

Применение метода ИК-спектроскопии (в диапазоне 4000-400 см⁻¹) на спектрофотометре Specord M-80 производства фирмы «Carl Zeiss» (Германия) позволило изучить распределение оптически активных центров в коллекции алмазов из трубки им. В. Гриба.

Проведена съемка спектров 79 кристаллов алмаза из разных размерно-весовых групп, отличающихся морфологией и цветом, отобранных из коллекции 700 кристаллов. Результаты исследования некоторых кристаллов представлены в таблице.

Установлено, что в кристаллах алмаза из трубки им. В. Гриба присутствуют оптически активные центры, характерные для алмазов кимберлитового типа в целом: структурный азот в A- и B-формах. водород (Н) и плейтелетс (Р) (таблица).

Концентрация азота в А-форме в алмазах трубки им. В. Гриба варьирует от 20 до 1474 at. ppm с преобладанием низкоазотных индивидов с $N_A < 300$ at. ррт (в среднем 462 at. ppm). Содержание азота в виде В-центров изменяется от 1 до 1417 at. ppm, при этом доминируют кристаллы с $N_B < 300$ at. ppm (в среднем 292 at. ppm). Среднее значение степени агрегированности азота (В) в образцах 36 %, что сближает их с алмазами из трубок Далдыно-Алакитского района Якутии [6] (рис. 1).

Алмазам из трубки им. В. Гриба свойственны значимые концентрации плейтелетс: от 0 до

31,8 см-1 (таблица). В некоторых образцах концентрация этого центра не превышает 1 см⁻¹, в других — 10 см-1, при среднем значении 9,2 см-1. Повышенное содержание азота в виде В₂-дефекта наблюдается в кристаллах с желтым нацветом.

По распределению водородных центров в образцах можно выделить два (более детально три) поля концентраций кристаллов: I — с низкой концентрацией (< 0,5 см⁻¹); II — с высокой концентрацией (> 1,0 см⁻¹). Высокая концентрация водородных центров (Н) в кристаллах алмаза свидетельствует об отличиях алмаза трубки им. В. Гриба ААП от алмазов Якутии и других провинций мира [5, 6].

В изученных образцах группы I из месторождения им. В. Гриба в отличие от алмазов месторождения им. М.В. Ломоносова низкое (0,0-0,6 см⁻¹) содержание структурной примеси водорода. Для групп II и III концентрация структурной примеси водорода аналогичная (2,0-4,0 см⁻¹) (рис. 1). По этому параметру алмазы группы I из трубки им. В. Гриба близки к низководородным кристаллам из трубок Мало-Ботуобинского района, а алмазы группы II — к высоководородным кристаллам из трубок Далдыно-Алакитского поля Якутии [6]. Следует отметить, что и морфологически алмазы трубки им. В. Гриба сходны с таковыми из трубки Удачная (Далдыно-Алакитский район) [2, 3] (рис. 1).

¹ Статья 1, см. №2, 2006

Концентрации оптически активных центров в алмазах из трубки им. В. Гриба

Номер образца	N _A , at. ppm	N _B , at. ppm	Р, см-1	Н, см ⁻¹	%B	N _{сум} , at. ppm	Масса, кар
101	229	190	13,5	0,2	45,3	419	0,24
312	687	228	0,5	0,9	25	906	0,07
39	225	201	13,2	0,2	47	426	0,34
40	225	175	8,8	0,2	41	400	0,16
41	331	213	9,6	0,2	39	544	0,32
45	1379	1417	31,8	2,0	51	2796	0,5
47	513	618	12,3	2,7	55	1131	0,28
48	539	1000	21,4	0,4	35	1539	0,38
63	395	314	10,1	0,2	44	709	0,87
64	339	284	9,8	1,3	46	623	0,44
761	157	81	7,2	0,1	34	238	0,66
78	189	210	8,5	0,6	52,7	399	0,28
921	85	82	5	0,1	49	167	0,1
115 ²	861	281	1,4	2,3	25	1142	0,42
122	265	75	6,1	0	22,1	340	0,25
126	511	782	16,8	0,2	60	1293	0,27
151	46	9	0	0	16	55	0,07
152	20	19	0,5	0	48	39	0,16
165	168	158	9,2	0,1	48,5	326	0,22
1671	135	15	1,2	0,1	10	150	0,11
171	403	270	12,1	0,1	40	673	0,21
180	1357	248	an o o t o oste	1,6	15	1605	0,18
190	1301	230	0	1,8	15	1531	0,16
2081	287	235	13,9	0,4	45	522	0,01
254	287	268	12,5	0,6	48	555	0,04
280	650	596	20,4	1,1	47	1246	0,05
454	1093	252	0	2,7	19	1345	- 0,05
489	1474	849	23,6	1,3	37	2323	0,03
697	87	64	1.8		42	151	0.01

П р и м е ч а н и е. ¹ Алмазы октаэдрического габитуса с тригонально-слоистой формой граней; ² алмазы кубического габитуса.

Рис. 1. Усредненные относительные содержания водорода (Н) и азота в В-форме (%) в алмазах из разных месторождений мира; поля составов показаны по данным Г.К. Хачатрян [6] и исследований авторов: 1 – границы полей, 2 – усредненные значения по новым данным ИК-спектроскопии 79 кристаллов алмаза из трубки им. В. Гриба, 3 – точные значения по старым данным ИК-спектроскопии каждого из 30 кристаллов алмаза из трубки им. В. Гриба, 4 – точные значения по данным ИК-спектроскопии каждого из 30 кристаллов алмаза из трубки им. Карпинского-1; 5–10: – усредненные значения по данным изучения алмаза из: 5 – россыпей района Гуанимо (Венесуэлла), 6 – россыпей района Коромандель (Бразилия), 7 – россыпей района Джуина (Бразилия), 8 – трубки им. М.В. Ломоносова (ААП); 9 – трубок Далдыно-Алакитского поля; 10 – трубок. Мало-Ботуобинского района (Якутия); I, II, III – группы

Связь морфологии кристаллов и концентраций дефектов в алмазах

Содержание азота в A-форме во всех изученных кристаллах изменяется от 40 до 80 % (рис. 2). Как правило, это окрашенные (зеленые, голубые, лимонно-желтые и с желтым оттенком) или бесцветные октаэдрические кристаллы с тригональным и дитригональным послойным строением граней (111) (типы I/1, II/1-3, III/1-5 [1]). Встречаются ромбододекаэдрические кристаллы, образованные в процессе растворения октаэдров (тип VI/2). На поверхностях (101) наблюдается параллельная и сноповидная штриховки или занозистый рельеф. Многие кристаллы сдвойникованы, значительно уплощены по оси L_3 .

Образцы (четыре кристалла) с содержанием азота в *А*-форме (< 40 %) имеют светло- и лимонно-желтую окраски, дитригональное строение граней (111) (типы III/1, III/4 [1]) с параллельной штриховкой, местами занозистым и каплевидно-блоковым рельефом поверхностей (101). Кристаллы слабо деформированы по оси *L*₃

Образцы (13 кристаллов) с повышенным (> 80%) содержанием азота в A-форме имеют желтую или коричневую окраски. Кристаллы переходной формы ОД, додекаэдры и сложные искаженные многогранники (типы III/10, V, VI/2, VI/5, VII [1]) с остатками дитригональных щитовидных граней (111) в местах схождения граней (101). Кристаллы характеризуются уплощением по оси L_3 , каплевидно-занозистым и блоковым рельефом поверхности, имеют участки с параллельной штриховкой на гранях (101). Содержат большое количество черных и бесцветных включений, типа «А в А».

Концентрации азота в виде *В*-дефекта в изученных алмазах варьируют от 0 до 65 % (рис. 3). Следует отметить группу из семи кристаллов с сильно пониженным содержанием агрегированного азота (от 0 до 10 %). В этих кристаллах низкие содержания плейтелетс $(0-1,9 \text{ см}^{-1})$ и водорода $(0-0,2 \text{ см}^{-1})$, отмечен слабый желтый нацвет. Изначально кристаллы были октаэдрические (тип II/1), в результате значительной деформации и растворения приобрели переходную ОД и комбинационную формы (типы III/10, V/1, VII [1]).

По соотношению содержания азота в виде *A*- и *B*-дефектов выделены три группы. К 1-й относятся кристаллы алмаза с линейным соотношением: чем больше азота в *A*-форме, тем больше азота в *B*-форме, при содержании дефекта в *A*-форме от 0 до 650 at. ppm, азота в *B*-форме от 0 до 800 at. ppm (рис. 4). Это гладкогранные октаэдры, кристаллы переходной формы (типы I, II, III/1-2, III/3-4, III/6-7 [1]) с гладкими дитригональными гранями (111), желобчатым строением ребер, каплевидным рельефом, развитым на (101), округлые ромбододе-каэдрические алмазы (типы VI/2, VI/5, VII), образованные при растворении октаэдра.

Во 2-ю группу попадают кристаллы алмаза с высоким содержанием азота в *A*-форме (от 650 до 1400 at. ppm) и постоянной концентрацией азота в *B*-форме от (200 до 400 at. ppm) (рис. 4). По морфологическим особенностям кристаллы делятся на две подгруппы: псевдокубические — переходные от октаэдра к додекаэдру (типы II/3, III/8), с высоким содержанием водородных дефектов (до 2,5 см⁻¹) и округлые алмазы с блоковым рельефом поверхности (тип VI/5) со значительной, по сравнению с первой подгруппой, концентрацией плейтелетс (от 0,8 до 10,2 см⁻¹).

К 3-й группе отнесены алмазы с высокими содержаниями *A*- и *B*-дефектов (*A*: от 900 до 1500, *B*: от 600 до 1400 at. ppm) (рис. 4). Данные кристаллы характеризуются очень высокой концентрацией плейтелетс (от 13,5 до 31,8 см⁻¹). Это кристаллы переходного габитуса ОД, изначально образованные как октаэдры, которые претерпели значительные изменения: интенсивное растворение, механическую и пластическую деформации, с каплевидно-блоковым рельефом и сноповидной штриховкой на поверхностях (101).

На кривой распределения дефектов азота в В-форме и плейтелетс в изученных кристаллах алмаза из трубки им. В. Гриба выделяются две области (рис. 5). В Іа концентрации агрегированного азота (от 0 до 1000 at. ppm) и плейтелетс (от 0 до 28 см-1) связаны линейной зависимостью. К Па относятся отдельные кристаллы с низким содержанием плейтелетс (от 0 до 3,7 см-1) и с концентрацией агрегированного азота 200-300 at. ppm (рис. 5). Эта группа алмазов (10 кристаллов) выделяется по содержаниям дефектов азота, водорода и плейтелетс. По морфологическим параметрам среди этих 10 кристаллов можно выделить две разновидности: псевдокубические индивиды (переходная форма от октаэдра к додекаэдру, типы II/3, III/8) с высоким содержанием водородных дефектов (от 0,9 до 2,3 см-1) и октаэдры, их сильно растворенные и деформированные разновидности (округлые алмазы с блоковым рельефом поверхности, типы VI/5, II/1) со значительным по сравнению с первой группой содержанием плейтелетс (от 0,8 до 2,5 см-1).

По соотношению дефектов плейтелетс и водорода изученные кристаллы алмаза можно разделить на три группы (рис. 6). В Іб группу входят образцы алмаза с низкими постоянными значениями содержания атомов водорода (0—0,6 см⁻¹) при концентрации плейтелетс (от 0 до 23 см⁻¹). Ко ІІб группе отнесены кристаллы с низкими содержаниями

плейтелетс (0-3,0 см-1) и повышенными концентрациями дефектов водорода (1,0-3,0 см-1). IIIб группа состоит из алмазов с повышенными содержаниями плейтелетс (от 7,0 до 30 см-1) и водорода (от 1,5 до 3,5 см⁻¹). Кристаллы этих трех групп также отличаются по морфологическим особенностям. В Іб группу входят типичные кристаллы октаэдрического (типы I, II), переходного (III, VII) и ромбододекаэдрического (VI) габитусов, образующиеся при растворении октаэдрических форм. Среди изученных кристаллов выделяется IIб группа — восемь кристаллов (№ 31, 115, 180, 190, 135, 369, 454, 300), отличающихся по содержанию дефектов (рис. 6) и морфологическим особенностям от остальных образцов. Это кубические, псев-

Рис. 5. Соотношение содержания оптически активных центров азота в В-форме и плейтелетс в кристаллах алмаза из месторождения им. В. Гриба: Ia, IIa – группы

докубические (типы II/3, III/8, [1]) и округлые индивиды ромбододекаэдрического и переходного габитусов (тип V), которые имеют значительные следы пластической и механической деформации. На поверхности наблюдается шагреневый и лентовидно-блоковый рельефы.

В III6 группу попадают кристаллы с ярко выраженным ступенчатым ростом переходных от треугольных к дитригональным (тип III/1) граней (111), с развитыми поверхностями (101).

Образование плейтелетс происходит в условиях повышенной температуры и пониженных скоростей роста — термодинамической стабильности кристаллизации алмаза [6, 7]. Поэтому кристаллы со значительным и повышенным содержанием плейтелетс имеют типичную для алмаза форму кристаллизации — октаэдр, которая в результате растворения может преобразовываться в переходную октаэдро-ромбододекаэдрическую и додекаэдрическую. При пониженной температуре кристал-

Рис. 6. Соотношение содержания оптически активных центров водорода и плейтелетс в кристаллах алмаза из месторождения им. В. Гриба: 16, 116, 116 – группы

VI WVIVIAN AND AND

саэдрического габитусов и сложные блоковые формы с волокнистым и радиально-лучистым внутренним строением. Такие кристаллы характеризуются пониженным количеством плейтелетс и повышенным содержанием водорода [7]. По степени агрегированности азота (концентрация дефектов в *B*-форме) можно судить о температурных условиях образования и нахождения алмаза.

Следует отметить, что распределение примесных дефектов в алмазе из трубки им. В. Гриба имеет два максимума (рис. 7): первый в зоне более низких значений концентраций, второй, встречающийся реже, в зоне более высоких концентраций дефектов. Данное распределение, по-видимому, связано с присутствием в трубке двух генераций кристаллов алмаза.

ЛКутип и други ресте

кой концентрацией, сходные с алмазом из трубок месторождения им. М.В. Ломоносова, и с низкой концентрацией, похожие на низководородные алмазы Мало-Ботуобинского района Якутии.

3. Содержание азота в *A*- и *B*- формах и плейтелетс в кристаллах из трубки им. В. Гриба в целом ниже, чем в алмазе из трубок месторождения им. М.В. Ломоносова. Некоторое сходство с кристаллами алмаза из трубки им. Ломоносова наблюдается в распределении азота в *A*-форме.

4. По усредненным относительным содержаниям водорода (Н) и азота в *B*-форме (*B*) в алмазах выделяются три поля концентраций: I группа — с низкой концентрацией Н (<0,5 см⁻¹) и *B* от 0 до 60 %; II группа — Н от 1,0 до 2,7 см⁻¹ и *B* от 15 до

По распределению структурных дефектов кристаллы алмаза из трубки им. В. Гриба сходны с алмазом из трубки им. Ломоносова [4, 6], однако содержание азота в *B*-форме и плейтелетс значительно выше в кристаллах из трубки им. М.В. Ломоносова (рис. 7). Как и для кристаллов из трубки им. В. Гриба, двойные максимумы присутствуют на графиках распределения азота в *A*-форме и структурного водорода (рис. 7).

В результате исследования кристаллов алмаза из трубки им. В. Гриба методом ИК-спектроскопии установлено:

1. В них присутствуют оптически активные центры, характерные для алмазов кимберлитового типа в целом: структурный азот в *A*-, *B*₁- и *B*₂-формах, водород (Н) и плейтелетс (Р). 30 %; III группа — Н от 1,0 до 3,5 см⁻¹ и B от 35 до 60 %, что указывает на присутствие в трубке алмазов двух (трех) типов с разными структурными особенностями.

5. Концентрации структурных дефектов в изученных алмазах взаимосвязаны с их кристалломорфологией.

6. Октаэдры с тригональной формой граней являются низкоазотными: $N_A < 300$ at. ppm. При этом $N_A > N_B$ и такие кристаллы алмаза отличаются пониженной концентрацией Н (0,1—0,4 см⁻¹). Для алмаза кубического габитуса из трубки им. В. Гриба характерно повышенное содержание водорода и суммарного азота, а также очень незначительные концентрации плейтелетс. Это общая особенность алмазов кубического габитуса, в том числе и из месторождения им. М.В. Ломоносова и из трубок Якутии. Кристаллы с дитригональной формой граней (октаэдры, комбинационные формы), а также додекаэдроиды не обнаруживают четких закономерностей в распределении оптически активных центров. Среди общих закономерностей следует отметить повышенное количество плейтелетс (от 6 до 30 см⁻¹) среди кристаллов морфологической группы III, по классификации З.В. Бартошинского [1]. При концентрациях плейтелетс более 20 см-1 увеличивается содержание азота в А- или В-форме (от 700 до 1200 at. ppm).

ЛИТЕРАТУРА

- Бартошинский З.В. Минералогическая классифика-ция природных алмазов // Минер. журнал. 1983. Т. 5. № 5. C. 84-93.
- 2 Богатиков О.А., Гаранин В.К., Кононова В.А. и др. Архангельская алмазоносная провинция. М.: Изд-во МГУ, 1999. 522 с
- Кудрявцева Г.П. и др. Атлас: Морфогенез алмаза и его 3. минералов-спутников из кимберлитов и родственных им пород Архангельской алмазоносной провинции. М.: Изд-во
- «Полярный круг», 2005. 624 с 4. Махин А.И. Кристалломорфология и физические свойства алмаза из месторождения М.В. Ломоносова (Архангельская алмазоносная провинция). Автореф. дис. ... канд. геол.-мин. наук. Львов: Изд-во ЛГУ, 1991. 20 с Хачатрян Г.К. Усовершенствованная методика оценки
- концентраций азота в алмазе и ее практическое применение

// Геологические аспекты минерально-сырьевой базы АК «АЛРОСА»: современное состояние, перспективы, решения. Мирный, 2003. С. 319–322. К h a c h a t r y a n G.K., K a m i n s k y F.V. «Equilibrium» and

6. «non-equilibrium» diamond crystals from deposits in the east European platform, as revealed by infrared absorption data // Canadian Mineralogist. 2003. V. 41. P. 171–184. K h a c h a t r y a n G.K., K a m i n s k y F.V. The relationship between the distribution of nitrogen impurity centers in diamond

crystals and their internal structure and mechanism of growth // Lithos. 2004. V. 77. P. 255-271.

> Московский государственный университет О.В. Палажченко — аспирант Рецензент — А.А. Маракушев

e oraș de la constructive de la cons