552.332.6:550.93(571.56)

PECULARITIES OF MATERIAL COMPOSITION AND THE AGE OF KIMBERLITE ROCKS IN DUKEN, LUCHAKAN AND ARI-MASTAKH FIELDS OF YAKUTIAN PROVINCE

Z.A. Altukhova, A.I. Zaitscev

Institute of Geology of Diamond and Noble Metals, Yakutian Science Centre, Siberian Branch of RAS

The results of the studying of kimberlite bodies in Duken, Luchakan and Are-Mastakhs kimberlite fields are represented in this article. Primary magmatic and metasomatic mineral associations are recognized among kimberlites on the basis of petrographic and mineralogic evidence. Petrochemical diagrams have shown similarity of primary magmatic mineral associations of kimberlites with lamproites and carbonatization kimberlites with carbonatites. Geochronologic dating was made by Rb-Sr isotope method on microlithic phlogopite from kimberlites and the groundmass of kimberlite breccias in laboratory of mass-spectrometry method of analysis IGDNM SB RAS. The results of age determinations of kimberlite rocks showed the existence of five epochs of kimberlite magmatism: Middle Paleozoic, Early Mesozoic (Triassic), Later Jurassic, Cretaceous and Paleogene. The determination of primary isotopic value of strontium (I_0) shows isotopic heterogeneity of kimberlite protolith. It is suppose, that evolution of olivine-alkaline magma is defined by regime of volatile components. The formations of olivine lamproites and olivine-phlogopite-perovskite kimberlites connect with high content H_2O , but carbonatization kimberlites and carbonatites are formed by influence of fluid phase with high content CO_2 on the consolidation rocks.

Key words: kimberlite, alnoites, kimberlite breccias, age, fields, pipes.

, [Kaminsky, 2003]. . 1). ((3,1 [[, 1984].) • • 2003]. [., 1997].

(, , ,) (, , 1984]. . (1-5°) - , -

(320-340°).

. 1. [:

, 1984; Brakhfogel, 1995].

[..., 1983].

•

		-	,		-
,		0,5		,	-
2			(3-5)	
		-	,		-
	,	-			,
,		-	,	•	_
, .	,	-	,		-
				,	-
			,		-
			,		-
	2-3		,		-
		-			-
(1-5)		_			
					-
		((0,5-1,0)	(1-2 %))
30 60 %)		-	,	,	-
,	(1	20	-		
%),)		(2-3			_
,		_	,		-
	(5-		0,010.	
	,		010 001.	(0,02-0,10)	-
	1 %.	-			-
, 1		-			
				, ,	-
		•		0,3	, _
		-			
	23	-	-		
	,	-		(10-12 %),	-
		_	(10 %),	, (?)	_
,					-
		-		0,07-0,50 .	
,		-			-:
	-	,	,	,	
19831.	l				
., 1900].	,				

.

•

...,..

0,05

. 2.			• -	100,
. 2 –	. 3 –	,		-
			0,05 100,	. 4 –
		, « 160,	» « »	-
- ; -	; –	; –	; –	

2).	,	, , (. 2- , -	(0,01	0,6	_).
,	,	- , - « » - . (.2-4).	,		- : - , -
,	,	%.	,		10 25

,

-				-		
(5-10 %)						
)	()	(0,5-1	
				-		
		,	1-5			

			-		1-2 .	
()-	-	-			
,			- ()-	-	

33/63 (.3) _ 0,1-0,2 [-..., 1989]. _ (2-3) . 108/63, 12/63) ($Mg_{_{86-88}}\ c$ 3-5 . % [, 1990]. Mg₈₈(. 3). « , 1984]. [50 % (.3 , .129/63) (.102/63) . 1-2 (Fo₉₂. 0,5-30-40), 94-96 %. _ 92-93 %, (86-88 % Fo) -[Boyd, Nixon, 1978]. (2-3 %) -(3-5 %). [, 1988]. , NiO. [Mitchell, Fritz, 1973], Ni₂SiO₄, _ ..., 1974] $Mg_2SiO_4 - Ni_2SiO_4$ Ni NiO (5-10 %). .3) (10 %) (_ ()-(.3, 33/63) 0,05 0,5 . % (. 37/ . Fo₈₄₋₈₆ 63) Fo₉₂₋₉₄. -_

[, 1989].	NiO	FeO	(. 129/63), 12/63)	()	(.
	,	NIO (. 5)			(. 106/03).	-
			•	Al_2O_3 , TiO_2	(. 4	,)	,
NiO			-	(80-8	38 %)		
		,	, _	(. 72/6	3, 45/63, (199/63) . 58/87)	-
·		, [Simkin, Smith, 1	970],				
	,		-		10/49		, - , -
		3) -			Al ₂ O ₃ , TiO ₂ (.4)
-		, MnO .	-			-	-
MnO 0,5 . %	,	0,4-1,0 (Fo ₈₄₋₈ 0-	0,3- ₈) -0.25	104/91	-	,	-
. %.		· · · ·	-			4 % (. 4).
,		(0,1 .%) (0,2-0,4	- .	Fo ₈₂ .			-
%) 	[1988] r ₂ O ₃	l	-		, (. 4	· 4) -	-
,			-	-			
	,	·	-			,	-
		-	-			,	-
,	-	-	-				-
			- -		2-	,	-
FeO,	TiO ₂ (3-6.	%)	-	•		-	
		. (.4)	-	, 2	,		
			-	(82-86 %) ,

-

. . , . .

,		-
	,	
	-	
	, , , -	(.5).
	,	
		_
	0,1 , [']	
	, -	-
		[, -
	-	, 1965]
	-	, , , -
	aO, TiO_2 , Al_2O_3 , -	
	MgO, FeO, MnO, NiO	
	-	
	MgAl ₂ O ₄ , -	
	$(MgFe_2O_4),$ $(FeFe_2O_4) - (Fe_TiO_2).$,
	-	-
	· · · ·	-
	-	, ,
	-	2 5'
		Na,O
		(0,8 .%)
10 1	6 . %. 2-4 10-15 %	, - (1) -
		$SiO_2, Fe_2O_3,$
	-	$-CO_2, H_2O(2)$
	10-12 . %	-
	-	
	20-22 %,	45 75 (. 6).
2	23-27 %.	, -
		_
	10-12 . % .	, CO., Fe.O., P.O.,
	- 15-20, -	MgO, FeO, H_2O , Na_2O
	- 40 . %, -	SiQ TiQ -
		, , , , , , , , , , , , , , , , , , ,
	2-3 %.	

, . .

100-

80

60

40[.] 20

0

100 -

80 60

40⁻ 20⁻

№ ан.	N≙ oбp.	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	K ₂ 0	CaO	Na ₂ O	H ₂ 0 ⁻	H_2O^+	P2O5	s	CO ₂	ĹĹ	Сумма
							Оливин	флогоп	ит-перов	скитовы								
4A-90	4A9041	34,94	3,58	3,62	10,50	3,81	0,23	29,35	1,60	3,58	0,07	1,27	8,05	0,21	0,04	0,00		99,58
41-63	41631	31,03	5,32	3,63	10,33	2,70	0,20	29,69	4,17	3,19	0,11	0,70	8,15	0,23	0,02	0,00	0,02	99,26
103-63	103632	33,41	5,36	3,32	9,06	5,01	0,20	28,06	3,74	6,30	0,17	0,54	5,34	0,02	0,02	0,44	0,17	100,55
90-63	906312	30,92	3,15	3,02	7,76	5,87	0,20	27,45	1,13	7,67	0,19	0,73	9,21	0,65	0,05	2,34	0,31	99,79
129-63	129632	26,75	2,80	3,17	10,99	2,23	0,21	27,31	1,10	10,41	0,18	0,55	8,00	1,32	0,03	6,06	Ι	100,55
49-89	49893	37,19	5,47	3,41	11,97	4,42	0,28	20,45	0,46	8,24	0,11	3,12	3,97	1,46	0,02	0,57	0,30	100,50
M6-1	M6-1	38,67	4,47	7,39	9,91	2,76	0,17	19,60	2,58	8,71	0,29	3,54	3,33	1,04	0,05	0,55	Ι	99,51
97-63	976311	32,92	5,59	4,27	7,30	6,91	0,22	25,25	3,23	6,45	0,14	0,96	6,68	0,50	0,10	0,56	0,38	100,35
64-63	64631-2	29,59	7,03	3,18	14,29	2,15	0,25	24,64	1,51	7,79	0,15	0,72	8,61	1,19	0,01	0,00	0,23	100,53
58-89	588914	27,50	5,18	3,34	12,66	3,49	0,29	24,01	0,33	9,42	0,12	1,12	9,86	0,78	0,10	2,78	0,16	99,95
94-631	946312	24,37	2,92	2,25	17,96	2,89	0,34	25,38	0,42	9,61	0,51	1,08	7,47	2,23	0,12	3,62	0,20	100,24
							Мон	тичеллит	говый ал	ьнеит								
42-89	42893-1	22,07	4,28	3,70	8,81	5,18	0,25	18,82	2,29	18,24	0,10	0,24	5,33	3,97	0,08	6,62	0,28	99,90
44-89	44894-3	24,78	2,25	2,78	7,69	4,15	0,27	18,19	1,17	23,43	0,43	0,46	6,01	2,39	0,15	6,63	0,22	100,45
101-63	101632	26,94	3,36	4,22	12,23	0,51	0,21	21,53	0,64	19,69	0,78	2,30	6,45	0,59	0,52	1,70	Ι	99,38
4A-90	4A9041	34,94	3,58	3,62	10,50	3,81	0,23	29,35	1,60	3,58	0,07	1,27	8,05	0,21	0,04	0,00	Ι	99,58
17-63	176311	27,26	5,38	4,17	7,55	5,85	0, 19	24,97	1,58	10,56	0,16	0,83	7,60	0,51	0,12	4,37	0,32	100,47
33-89	33895-1	29,64	7,51	4,56	8,90	6,18	0,22	22,68	0,90	12,16	0,22	0,92	3,54	0,15	0,18	3,60	0,20	100,57
36-89	36893-2	28,33	4,25	3,60	9,29	4,25	0,25	21,88	1,69	13,67	0,29	1,62	6,85	0,21	0,68	3,91	0,16	99,26
36-63	366311	27,47	3,64	4,16	5,94	5,66	0, 19	18,70	2,53	19,29	0,31	0,57	5,10	1,13	0,06	5,70	0,39	100,12
41-63	41631	31,03	5,32	3,63	10,33	2,70	0,20	29,69	4,17	3,19	0,11	0,70	8,15	0,23	0,02	0,00	0,02	99,26
74-63	746331	29,68	2,93	3,23	10,80	2,41	0,21	23,67	0,29	16,33	0,20	0,46	7,98	1,01	0,16	1,11	0,12	100,08
	103632	33,41	5,36	3,32	9,06	5,01	0,20	28,06	3,74	6,30	0,17	0,54	5,34	0,02	0,02	0,44	0,17	100,55
1263	126312	28,72	2,41	2,83	8,82	3,48	0,22	25,56	1,96	14,47	0,29	1,12	6,88	1,35	0,19	2,49	0,38	99,89
102-63	1026331	26,78	3,46	4,20	11,33	2,34	0,20	20,53	0,61	20,15	0,97	2,30	5,47	0,71	0,52	2,66	0,12	100,01
44-89	44894-3	24,78	2,25	2,78	7,69	4,15	0,27	18,19	1,17	23,43	0,43	0,46	6,01	2,39	0,15	6,63	0,22	100,45
						Серпен	иго) нит	вин)-фле	огопит-м	гонтичел	литовые							
37-89	378922	25,49	3,23	3,44	10,73	2,42	0,20	26,23	1,32	10,91	0,88	0,80	8,80	1,48	0,13	5,26	0,17	100,69
40-89	40/89	28,48	3,19	3,76	8,29	6,11	0,21	23,29	0,83	12,75	0,34	1,22	4,20	2,31	0,04	5,84	0,02	99,76

ОСОБЕННОСТИ ВЕЩЕСТВЕННОГО СОСТАВА И ВОЗРАСТ

-

№ ан.	№ oбp.	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	K_2O	CaO	Na ₂ O	H ₂ 0 ⁻	$\mathrm{H_2O^+}$	P_2O_5	S	CO ₂	ĹĿ	Сумма
1263	126311	28,01	2,19	3,44	9,11	3,37	0,20	24,90	2,77	10,63	0,18	0,93	7,58	0,95	0,04	6,04	0,38	99,64
101-63	101631	32,57	3,60	4,19	8,79	2,12	0,12	22,21	1,76	11,03	0,06	1,75	7,08	0,79	0,08	6,12	-	100,54
40-89	408911	27,62	3,36	4,08	9,29	4,75	0,21	20,17	0,81	14,34	0,25	1,62	5,50	2,49	0,12	6,71	0,21	99,83
36-63	366321	27,35	3,84	4,72	7,18	4,82	0,18	18,43	3,68	16,03	0,28	0,40	4,61	0,95	0,33	6,76	0,27	99,32
M-15-1	M-15-1	36,67	3,11	3,57	7,65	2,92	0,16	12,67	1,56	19,62	0,65	2,23	3,55	0,99	0,02	6,99	0,39	100,36
98-63	986311	27,27	2,79	3,17	7,91	4,35	0,21	24,97	0,32	12,87	0,08	0,72	7,81	1,00	0,05	7,36		100,16
31-63	316321	27,57	3,11	4,90	9,06	3,15	0,21	19,67	3,58	14,15	0,25	0,08	4,95	1,01	0,05	7,71	0,11	99,44
33-63	336331	28,31	2,83	5,06	8,65	2,32	0,18	19,71	1,36	14,64	0,22	1,28	8,47	0,78	0,06	7,80	0,17	100,49
56-89	568914	29,73	3,05	5,93	8,01	3,04	0,20	15,24	3,01	17,72	0,26	1,76	3,96	0,92	0,00	7,84	0,23	99,40
55-89	55893	23,33	5,51	4,35	13,01	1,75	0,21	20,63	0,72	14,79	0,14	1,25	7,71	0,32	0,03	7,95	0,15	100,55
48-89	488923	27,69	4,27	4,06	9,91	1,79	0,21	19,65	2,62	15,01	0,22	1,47	4,91	0,80	0,17	8,20	1	99,51
101-63	101632	30,57	3,11	4,02	9,18	2,00	0,12	17,32	2,06	14,11	0,30	2,76	7,32	0,98	0,08	9,05	0,37	100,43
104-63	104631	27,36	4,53	4,02	11,97	2,92	0,16	15,67	1,39	17,21	0,24	2,80	6,08	1,66	0,06	9,62	0,30	100,35
)	Серпент	ин-флого	опит-кар	бонатны	le							
38-63	38632	27,46	4,07	3,22	11,35	1,60	0,28	23,31	1,08	9,99	0,06	1,86	5,97	1,04	0,01	11,21	0,01	100,73
128-63	1286311	24,60	2,56	3,05	10,43	1,36	0, 19	23,97	1,04	16,56	0,17	0,71	6,54	1,31	0,14	8,62	I	100,54
129-63	1296341	23,39	2,45	2,60	9,71	2,22	0,24	25,43	0,62	15,13	0,24	0,28	8,01	0,61	0,02	9,66	0,12	100,39
199-63	1996311	24,80	3,93	2,91	9,03	3,17	0,20	21,36	1,05	15,25	0,28	1,06	6,58	1,23	0,12	10,01	0,27	100,09
37-63	376311	23,56	3,29	3,13	5,57	6,03	0,18	23,87	0,38	17,46	0,22	0,34	4,36	1,12	0,39	10,20	0,10	99,84
108-63	108631	24,32	2,92	2,98	9,34	2,79	0,19	21,45	1,06	16,63	0,16	1,16	6,19	1,86	0,11	10,44	-	100,47
48-89	488913	22,55	4,34	2,82	8,41	3,86	0,24	20,54	1,58	18,73	0,13	0,87	4,62	1,78	0,12	10,56	0,35	100,50
48-89	488913	22,55	4,34	2,82	8,41	3,86	0,24	20,54	1,58	18,73	0,13	0,87	4,62	1,78	0,12	10,56	0,35	100,50
28-89	2889101	25,85	1,74	2,52	5,72	4,08	0,15	20,83	2,49	17,02	0,16	0,58	6,88	1,38	0,12	10,73	0,45	99,95
53891-3	53891-3	20,40	3,56	3,04	7,90	4,30	0,32	17,77	2,43	21,54	0,08	0,24	4,77	2,22	0,36	11,03	0,24	99,85
53891-3	53891-3	20,40	3,56	3,04	7,90	4,30	0,32	17,77	2,43	21,54	0,08	0,24	4,77	2,22	0,36	11,03	0,24	99,85
113-63	113631	23,41	3,39	2,30	7,97	4,28	0,27	21,47	1,69	17,65	0,14	0,36	5,14	0,70	0,15	11,04	0, 19	99,71
38-89	38893	24,29	2,44	2,69	5,96	5,62	0,20	20,70	2,83	19,81	0,10	0,10	2,91	1,41	0,16	11,16	0,16	100,43
38-89	38893	24,29	2,44	2,69	5,96	5,62	0,20	20,70	2,83	19,61	0,10	0,10	2,91	1,41	0,16	11,16	0,16	100,63
43-63	436311	25,63	3,19	3,16	7,59	4,05	0,18	16,53	0,92	19,11	0,31	1,40	5,79	1,21	0,12	11,43	0,27	99,39
128-63	1286331	23,63	2,63	2,52	7,34	4,63	0,21	26,42	1,20	15,12	0,19	0,53	4,23	0,51	0,20	11,47	0,30	100, 49

З.А. Алтухова, А.И. Зайцев

-

ОСОБЕННОСТИ ВЕЩЕСТВЕННОГО СОСТАВА И ВОЗРАСТ

Ia	15	ŝ		6	ŝ		0	9	L	0	2	5	2	0	6	6	0	6	E	2	5	5	5	55	ŝ	5	S	8	5
Cymn	99,7	100,5	5,99,5	100,4	100,8		5,99,5	99,5	100,1	99,5	5,99,5	9,66	5'66	99,4	100,3	100,3	100,1	100,1	100,5	9,66	99,7	99,7	100,0	5,99,5	99,5	100,3	99,5	99,1	99,7
ц	0,20	I	0,33	0,36	0,16		0,40		0,76	0,23	0,25	0,24	0,39	0,50	0,40	0,40	0,34	1	0,32	0,28	0,31	0,31	0,70	0,43	0,29	0,18	0,29		0,17
CO ₂	11,72	12,01	12,18	12,42	12,85		13,24	13,39	13,39	13,55	13,60	13,85	13,92	14,08	14,73	14,73	14,95	15,57	15,74	16,43	17,25	17,25	17,61	18,62	19,88	21,09	21,61	23,16	31,37
s	0,02	0,02	0,10	0,02	0,05		0,13	0,06	0,03	0,09	0,09	0,03	0,02	0,37	0,18	0,18	0,01	0,02	0,05	0,37	0,04	0,04	0,31	0,09	0,62	0,10	0,05	0,32	0,13
P_2O_5	1,27	1,11	1,61	1,75	1,09		1,36	0,64	1,67	2,70	2,31	1,23	0,98	1,56	0,77	0,77	1,80	1,68	1,27	2,01	1,38	1,38	0,95	2,12	1,71	0,80	3,10	1,85	1,42
$\mathrm{H_2O^+}$	8,38	3,55	4,62	4,63	7,51		5,56	4,45	3,58	5,50	3,20	5,39	7,32	6,37	4,37	4,37	4,89	6,34	3,36	3,41	2,91	2,91	2,56	3,21	1,56	2,88	1,51	2,65	1,86
H ₂ 0	0,58	1,30	0,88	2,90	0,94		0,92	1,88	1,33	0,58	0,96	0,70	0,58	0,76	0,70	0,70	2,11	0,59	3,94	0,36	0,50	0,50	0,63	0,80	0,42	0,42	0,72	0,79	0,92
Na ₂ O	0,16	0,10	0,13	0,15	0,41		0,06	0,09	0,21	0,16	0,12	0,09	0,09	0,15	0,18	0,18	0,11	0,14	0,29	0,21	0,34	0,34	0,13	0,19	0,13	0,25	0,14	0,12	0,08
CaO	16,86	17,82	18,73	19,69	16,24	титовые	18,64	20,78	21,66	8,25	21,46	17,97	19,11	19,12	21,65	21,65	21,08	23,58	21,96	23,74	22,33	22,33	24,32	26,81	24,15	21,73	26,55	31,72	41,97
K_2O	0,32	1,49	1,20	1,15	0,23	опит-апа	0,61	0,12	3,34	1,80	2,25	1,45	0,61	0,67	3,77	3,77	0,54	0,07	1,15	0,31	3,55	3,55	2,33	1,80	1,97	3,05	2,44	1,74	0,59
MgO	21,64	20,21	19,96	14,78	20,49	ат-флого	22,71	15,90	12,75	25,56	13,96	19,77	23,04	22,10	15,73	15,73	13,95	17,81	5,97	19,57	14,41	14,41	13,29	12,40	17,60	15,53	10,40	11,00	4,27
MnO	0,12	0,34	0,25	0,82	0,30	Карбон	0,14	0,37	0,16	0,29	0,25	0,20	0,05	0,19	0,18	0,18	0,15	0,21	0,11	0,27	0,20	0,20	0,25	0,20	0,20	0,23	0,17	0,16	0,20
FeO	2,30	4,73	3,36	1,53	2,15		2,76	3,16	1,76	4,59	3,74	8,76	2,48	2,82	3,81	3,81	3,10	2,43	2,99	3,27	3,57	3,57	5,65	5,22	4,33	4,04	2,29	2,20	1,01
Fe ₂ O ₃	6,06	7,96	9,45	11,93	13,21		6,46	10,24	8,18	10,50	8,74	2,85	3,47	6,86	4,59	4,59	10,04	7,45	12,65	11,99	5,92	5,92	8,19	6,24	4,38	9,30	9,72	3,71	3,95
Al ₂ O ₃	2,94	3,19	2,42	3,30	2,30		2,94	3,85	4,49	2,88	3,19	2,40	2,11	2,41	3,64	3,64	2,65	2,96	5,00	1,74	2,48	2,48	3,22	2,61	2,43	2,23	3,23	2,46	2,49
TiO ₂	2,02	3,36	3,13	3,79	2,17		2,04	4,25	3,57	3,98	3,30	3,28	1,46	2,07	2,44	2,44	2,83	2,62	6,45	2,30	1,94	1,94	2,59	3,12	1,82	2,31	3,59	1,39	2,68
SiO ₂	25,84	24,62	22,17	24,30	21,71		22,62	22,25	24,93	19,52	23,15	22,27	25,02	20,35	24,13	24,13	23,80	19,31	23,54	16,62	23,23	23,23	18,23	16,65	18,57	16,72	14,59	16,69	7,65
№ oбp.	28a8931	4A9051	109632	4A9081	98632		10863-5	4A9031	1226311	46632	32891-2	45631	288921	108635	316332	316332	1026332	108633	48961	946311	45633-2	45633-2	228941	466381	466381	66634-1	228911	301633-2	228931
№ ан.	28a-89	4A-90	109-63	4A-90	98-63		108-63	4A-90	122-63	46-63	32-89	45-63	28-89	108-63	31-63	31-63	102-63	108-63	48-96	94-63	45-63	45-63	22-89	46-63	66-63	22-89	301-63	22-89	45-63

Сумма	100,1	99,56	99,75	99,81	99,55	100,1	100,2	99,58	99,58	100	100,2	99,62	99,64	99,52	99,64	99,77	99,67	90,06	99,63	99,61	99,75	
Cr_2O_3	0,036	0,028	0,02	0,063	0,088	0,035	0,025	0,048	0,026	0,058	0,09	0,004	0,015	0,023	0,062	0,058	0,054	0,05	0,037	0,032	0,1	Ņ
C00	0,02	0,02	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,02	0,01	
NiO	0,126	0,013	0,053	0,098	0,108	0,089	0,104	0,030	0,050	0,119	0,044	0,059	0,060	0,053	0,081	0,057	0,044	0,057	0,057	0,059	0,072	Ņ
CO_2	1,95	6,86	9,46	2,92	6,96	15,8	8,07	19,76	1,26	0	17,81	6,06	9,83	3,14	10,02	10,02	23,65	1,83	0,27	0,27	1,64	
P_2O_5	0,62	0,82	0,85	0,38	0,7	0,51	0,48	0,45	0,82	0,71	0,86	0,32	0,35	0,62	0,56	0,59	0,65	0,58	0,96	0,7	0,76	
$\mathrm{H_2O}^+$	7,60	6,48	6,34	9,60	7,54	6,40	7,40	5,06	8,16	9,90	4,51	6,12	4,63	7,68	5,90	7,28	2,79	2,99	2,63	2,65	4,60	
H ₂ 0 ⁻	0,50	0,82	1,10	1,66	0,96	0,64	1,94	0,98	0,76	0,96	1,14	0,68	1,16	1,34	1,68	1,86	1,02	1,20	1,18	1,08	2,04	ľ
Na_2O	0,24	0,25	0,27	0,24	0,22	0,27	0,24	0,37	0,35	0,18	0,34	0,27	0,37	0,25	0,42	0,30	0,68	0,70	0,75	0,73	0,58	:
CaO	6,20	12,38	15,05	7,88	9,65	20,40	14,80	30,58	17,88	6,90	23,63	12,81	16,98	9,28	15,19	14,73	30,11	17,65	17,62	17,76	8,32	:
K_2O	1,27	1,42	1,12	1,00	1,03	0,16	0,37	0,80	1,39	0,08	1,49	2,04	1,11	1,62	2,13	0,53	1,26	1,46	1,40	0,97	1,18	
MgO	26,85	21,94	20,60	24,75	25,10	19,75	19,65	11,88	19,69	29,20	13,50	21,00	19,72	23,92	17,70	20,55	8,88	19,34	17,62	19,69	21,80	
MnO	0,16	0,24	0,23	0,27	0,22	0,12	0,22	0,15	0,23	0,17	0,22	0,26	0,22	0,25	0,18	0,18	0,23	0,23	0,27	0,27	0,24	1
FeO	6,40	4,60	4,53	3,59	5,17	2,26	3,71	1,01	5,32	1,65	2,33	6,75	5,72	5,30	4,24	3,70	1,76	8,20	0,27	8,91	7,60	ļ
Fe ₂ O ₃	6,70	8,89	7,80	9,86	6,40	7,57	10,70	5,88	6,34	7,40	7,91	6,10	5,31	8,25	6,09	6,37	7,80	4,70	8,77	5,15	5,95	
Al ₂ O ₃	3,25	4,30	3,50	3,50	2,95	2,60	3,00	2,95	5,65	4,00	4,65	4,80	4,80	4,60	5,05	4,80	3,75	5,20	5,75	5,70	6,70	
TiO ₂	4,60	4,80	4,23	4,18	3,34	3,31	4,18	1,42	2,64	1,79	2,64	3,93	3,06	3,88	2,52	2,46	2,09	3,26	3,56	3,62	3,66	Ņ
SiO_2	33,70	26,00	24,40	29,60	29,10	20,20	25,30	18,20	29,00	36,90	19,00	28,40	26,30	29,30	27,80	26,35	14,90	32,20	32,00	32,00	34,60	
Порода	Альнеит	кимберлит	кимберлит	кимберлит	кимберлит	Альнеит	Альнеит	Альнеит	Альнеит	KB	KBM	кимберлит	кимберлит	кимберлит	KBA	KBA	KBK	Альнеит	Альнеит	Альнеит	Альнеит	
Трубки	Арктика	Небайбыт	Небайбыт	Мачала	Мачала	Ан. 143-752	То же	Улыбка	Виктория	Летняя	Аном. 197	Спортивная	Спортивная	Спортивная	Тылкача	Тылкача	Ухтинская	Дельта	Дельта	Дельта	Дельта ,	;
No	1	2	3	4	5	6	2	~	6	10	11	12	13	14	15	16	17	18	19 ,	20	21	

Пымыланыы, КК – кимбаннитоваа быакнии; ККМ – кимбанпитоваа быакниа с малсивцой тексткой кимбанпить, ККА – кимбанпитоваа бывния с авто.

.

I

••

ī

ī

••• •••

(1%)	10 %,				-
	2-3 %.		-		,	-
			-		[- , 1984],
			, -			
	Fe,		-	ſ	1995]	
)	?	(L	., 1770].	-
	·		- r			,
,	, 197	78]	l - -			-
0,3	. Rb-Sr		-	, , ,		-
		:	-			
()		•	-	-		
	r	10021	-	-	•	
	L	., 1992]. Rb-Sr	-		(. 3).
			-			
	-1201-		-	. Rb-Sr		-
,		Rb	Sr -	(288-382 .).		-10/98
[., 1992	2]. ⁸⁷ Sr/ ⁸⁶ Sr	-	(314)		
0,03,		Dh Sr	- 87 5 r/86 5 r	(314 .)	(370	.), -
0,5	2, 0,50 0,03	K0, SI 35 %		et al., 1991].	,	LPHISIOM
			-			-
			, -	,),	
			-		Rb-Sr	- 216-
			-	227 . K-Ar		
			·			342
				. , – 242		- ,
			-			-
		,	-			-10/98 - 368
			: -			-
	,	(),			-

				Іо		
1	12/63	126311	348±16	0,70311±0,00009		
2	43/63	436311	330±1	0,70562±0,00001		
3	94/63	946311	321±1	0,70393±0,00008		
6	129/63	1296341	323±12	0,70522±0,00007		
7	199/63	1996311	310±1	0,70348±0,00001	()-	
8	74/63	746311	332±1	0,70432±0,00001		
9	28/89	2889101	318±1	0,70594±0,00001		
		•			•	
	-	(T_{2+3})				
10	36/63	36631111	233±11	0,70483±0,00010		
11	90/63	906312	235±1	0,70421±0,00001		
12	104/63	104631	205±1	0,70466±0,00001		
13	31/63	316321	162±1	0,70499±0,00001		
14	31/63	316332	171±1	0,70614±0,00001	()-	
16	45/63	456332	158±1	0,70739±0,00001		
17	46/63	46632	167±1	0,70466±0,00001		
18	102/63	1026331	149±1	0,70490±0,00001		
19	108/63	108/63-5	180±1	$0,70636 \pm 0,00001$		
20	22/89	228911	168±2	0,70445±0,00008		
21	28/89	288921	175±1	0,70586±0,00001		
22	28 /89	28 -8931	162±1	0,70587±0,00001		
		•				
15	33/63	336331	169±5	0,70497±0,00006	-	
23		- /1	179±17	0,70702±0,00007		
24		- /1	170±1	0,70537±0,00001		
25	94/63	946312	150±12	0,70410±0,00008		
26	42/89	42893-1	179±22	0,70381±0,00016		
27	44/89	448943	158±24	$0,70507 \pm 0,00017$		
28	53/89	538913	163±13	$0,70572 \pm 0,00012$		
29	56/89	56894	163±1	$0,70517 \pm 0,00001$		
30	98/65	98653	268±12	$0,70517 \pm 0,00012$		
31	95/65	95652	222±5	0,70621±0,00005		
32	109/65	109651	173±1	0,70430±0,00001		
					1	
	(2-3)	1	1		
33	-2	102	220±9	0,70579±0,00009		
34	-2	102	227±6	K-Ar		
35	-2	105-1	229±15	0,70602±0,00016		
36		120-1	150±9	0,70543±0,00012		
37		120-1	229±9	K-Ar		

-

,

				Іо	
					(1,2), (3, 4)
38	-2		246±10	K-Ar	1
39			253±10	K-Ar	2
40	. 89/68		238±8	K-Ar	1
41			232±8	K-Ar	3
42			217	U-Pb	4
43			236±8		
40			240±9	K-Ar	
41	15/95	1511	177±7	0,70478±0,00008	()-
				-	
		1	1	1	
42	24/87	248701	133)
43	58/87	588711	160±4	$0,70558\pm0,00008$	
				-	
		/1	200.7*	0.70242.0.00022	
44		- /1	280±/*	0,70342±0,00022	()
45		- /2	382±1*	$0,70373\pm0,00001$	()
40	/1	5150/2	322±101	$0,7037\pm0,0031$	
47	- /1	-5150/5	314±3*	0,7041±0,00010	
40		-119	242	K-Af	()
49		-119	342 254+15	K-Al V Ar	()
50		-117	234±13	K-AI	. –
					30%
51	-10/98	10983	368±19	0,70498±0,00020	
					(12) (3)
52	1//98	1981	178±12	0,70558±0,00010	1
53	1//98	1982	171±24	0,70548±0,00015	2
54	72//63	72634-2	226±1	0,70491±0,00001	3
55	-1/98 (n=6)		179±16	0,70551±0,00003	Rb-Sr (n=6)
	-	(T_{2+3})			
56	106//91	106912-1	214±70	0,70504±0,00012	
57	105/91	105914	159±9	0,70456±0,00006	
		1		1	
58	- /2		216±11	0,70784±0,00025	()
59	- /3		227±4	0,7047±0,00011	()
			241±60	$0,7056\pm0,00014$	Rb-Sr (N=9)
		1 .	010.00	0.00010.00001	
60		1	213±28	0,70617±0,00016	
61		1	216±26	0,70623±0,00013	
62		1/2	235 ± 12	0,70412±0,00007	
03			2130±13	$0,700200\pm0,00007$	KD-SF (IN=6)
64			232±4	01-10	

<u> </u>		1	1		1	
				Іо		
65			239	K-Ar		
66	1	1/1	221+1	0 70477+0 00001		
67	-	1/2	221 ± 1 219+4	0,70477±0,00007		
68		1/2	217± 4 226+6	$0,70430\pm0,00007$ 0,70479±0,00008		
00			220±0	0,70479±0,00008		
69	-3	3/2	229±37	0,70796±0,00050		-
70	-3		226±30	0,7081±0,0003		
71	-3	- 3/1	205±1	0,7065±0,00001		
71	-3	- 3/2	206±48	0,70831±0,00013		
72	-4	- 4/1	206±1	0,70673±0,00001		
73		Dm2- 5238/2	229±3	Ur-Pb	()-	-
74	-3	3- 5347/1		Ur-Pb	()-	-
75	-11/98	11984/1	149	0,70467		
76		- /2	100±14	0,70529±0,00013		-
77	-2	-226/12	157±65	0,70441±0,00024		
78	-2	- /3	172*			
79	-2	- /3	152±4	0,7052±0,00018		
80			101±18	0,70605±0,00019	Rb-Sr (n=6)	
01		110	00 56	0.70552+0.00114		
81		-119	99±30	$0,70532\pm0,00114$ 0.70520±0.00012		-
82		1	100 ± 14	$0,70529\pm0,00013$		
83		110	101±12	0,70539±0,00020		
84		-119	370*			
85	-2	2/1	51±30	0,70634±0,00009		-
86	-2	2/2	55±1	0,70628±0,00001		-
87	-2		54±4	0,70631±0,00003	Rb-Sr (n=6)	
88	-1	1/1	53±4	0,70622±0,00004		-
					(1),	(2)
89	-2	2/1	52±1	0,70647±0,00001	1	-
90	-2	2/2	55±4	0,70634±0,00006	2	
91			54±5	0,70640±0,00008		
1990	* ** – Rb-Sr J]; U-Rb	- (.).		([- , , , (. , , ., 2004], [., 1997]. K-Ar	(?)).)[, , 1984].
	-			- [. 1984]	-

57

[

, 1984],

. Rb/Sr	
.)3 -4 (205-206	-
), -1 -3 (219-229	-
), -1 (235 .),	, -
(213-216 .) $-72/63(226 .)$ $-106/91(214)$	-
-1 U-Pb (-	-
SHRIMP) (232 .)	-
[. 1997] - K_Ar _ 239	: , -
K-AI = 237	, , ,
. U-	· · · · · ·
Pb	
-2(229)	-
1997].	(7).
Rb-Sr -	310-367 .
K-Ar (168 93)	, -
-	, –
	, SiO TiO C2O K O
. Rb-Sr	510 ₂ , 110 ₂ , cu0, K ₂ 0
,	MgO
-1/98 (171-178 .), $-11/98 (149) 105/01 (159)$	H_2O^+ ,
-2 (152-157 .).	
[Bristow et al., 1991], -	()
-2 -	-
	(5),
: (99 104 .)	,
(100-109 .).	
-	231
-	235
., , ,	SiO ₂ (27-
- -	$(12-15, \%)$, $HO_2(3,2-4,5\%)$, (12-15, % FeO+Fe ₂ O ₂), -
XIII	(
 [1007]	$MgO/SiO_2 c c c 0,68,0,82$
[., 1995].	(6 21 %) -
	140-210
, -	-
Rb-Sr _2 (51_55	•
-1 (53 .)	(16)
· · · · · · · · · · · · · · · · · · ·	122 180
2 (52-55 .).	. ,
-	100-170

2

, [- , - , - , 600°, -

[Kimberlite..., 1979]

SiO₂, MgO 10-12 %,

hoogen, 1962]

10-86

.

, 1964].

, $6Fe_{2}TiO_{4} + O_{2} = 2 Fe_{3}O_{4} + 6FeTiO_{3}$ [Basta, 1961].

700°

,

[Nixon, 1981].

		, –
—		-
		-
	,	
	•	
		-
		, –
	,	
	[19/4], .	 [1001]
[1909],	•••	, [1901]
	,	
		-
	,	,
	[1981]	
	[1701]	(5-50%)
20 %:	(5-8 %).	10 %.
,	(//)	1 -
		,
		•
	2	-
	2	
	-	
		-
,	,	
,		
		, -
41.37		T1, Mg,
AI, Mn.		-
20 0/	,	, -
50 . %, %		- 20
. /0. 10	0/0	-
10	. /0.	

()-(

)-_

-

()-

2 2

, 12 4 2 %.

,

[Foley, 1986]

-	533-688 . , (
-) – 1067
1077]	-
	- Rb-Sr
-	
2 -	-
-	[Moller et al., 1998]
, - 	T(Sr) _{DM} -
_	642 1443 -
	850-900
	. ; – 640
	1346 . (800-900
	1050-1200 .); –
	: 750-850 900-1100 .).
- - (1)	- 730
(-0)	1025
-	
	582-
0,7081 0,7081 0,7031	/60 . , – 524- 678 – 553-732
0,7031, $ 0,7031$	· · · · · · · · · · · · · · · · · · ·
0,7078 - 0,7048	-
0,7060	,
(, -3, , -3).	-
I_0 (ε (T) = 1.78-57.55)	_
$(C_{\rm Sr}^{(1)}) = 1, 76-57, 55).$	-
- , -	
, -94/63, -104/63, -199/63, -12/63, -42/89	, -
) -	-
$(\varepsilon_{sr}(1) = -0, 4/14, 2/),$ -	, (-
[Kostrovitsky, Morikiyo, 1998;)
2004] $\varepsilon_{Nd}(T)$	[1987] -
, (^{1,4}),	
(-) $(-1.79 + 4.40)$ -	-
(+1,/8+4,40) -	•
	-
$\varepsilon_{\rm Nd}({\rm T})=-2,93,$	-
-	- 1350-1300, 1170-1200, 1000-1050, 840-
Sm-Nd (T(Nd)) -	890, 030-080 . , (760_
-	780, 600-610 .)
-	·

. .

, . .

, 1990. 218 . / . . , 1983. 183 . . ., . ., // . 1983. . 270. 3. . 696-700. // , 1981. . 36-55. ۰, . 2004. 9. . 915-930. . , 1984. 128 . ., // . 1997. 9. C. 20-24. . ۰, . 1978. . 133-139. 4. 11 . 1980. . 254. 3. . 175-179. . ., • •, , 1992. 246 . (SHRIMP) . 1997. . // 38. . 91-98. . ., ۰, , 1995. . 74-79. . ., •• , 1969. 288 .: . ., // 1990. 3. . 365-372. , 1989. 426 . .: . . , 1974. 119 .

, 1974. 514 , 1984. .: 213 . // . 1965. 12. . 73-79. : , 1973 355 (1977.291). .: ۰, ., // 5. . 3-5. . 2001. ., ۰, // « »: , 2003. . 186-191. . ., , 1994. 256 . • , 1993. 123 : . . : , 1981. 154 . . .

. 1.

1987.140 .

//

Basta E. Z. Natural and synthetic titanomagnetites (the system Fe₃O₄-Fe₂TiO₄-FeTiO₃) // Neues Jahrbuch fur Mineralogie. Abhandl. 1960. Bd. 94. 2, S. 1017-1048.

:

Boyd F.R., Nixon P.H. Ultramafic nodules from the Kimberlite pipes South Africa. // Geochim. osmochim. Acta. 1978. V. 42. 9. P. 1367-1382.

Brakhfogel F.F. The age division of the kimberlitic and related magmatites in the N.-E. of the Sibirian platform (methods and results) // 6th Int. Kimberlite Conf., Abstracts. Moskow, 1995. P. 60-64.

Bristow J.W., Brakhfogell F.F., Smith C.B. et al. A Review of the geochronology of Siberian Kimberlites and related rocks // Unpublished abstracts. 5 IKS. Araxa, 1991. P. 46-48.

Buddington A.F., Linsdley D.H, Iron titanium oxide minerals and synthetic equivalents // J. Petrol. 1964. V. 5, 2. P. 1150-1154.

Foley S.F. The oxidation state of lamproites mag-

//

_

. .

mas // Tsch. Min. Pet. Mitt. 1986. V. 34. P. 217-238.

Kaminsky F.V., Sablykov S.W., Sablukova L.I. Diamondiferous Archaean lamprophyres with comatiitic affinities from the Wawa area, Ontario, Canada // 8th Int. Kimberlite Conf. Abstracts. Victoria, 2003. P. 123.

Kimberlite symposium 1. Cambridge, 1979. Unpaged abstracts.

Kostrovitsky S.I., Morikiyo T. Sr-Nd isotopic data of kimberlites and related rocks from North of Yakutian kimberlite province (Russia) // 7-th Int. Kimberlite Conf. Ext. Abstracts. Cape Town, 1998. P. 466-468.

Mitchell R.H. Fritz P. Kimberlites from Somerset Island district of Franklin, N.W.T. Canada // J. Earth Sci. 1973. V. 10. 3. P. 384-393. *Moller A., Mezger K., Schenk V.* Crustal age domains and the evolution of the continental crust in the Mozambique belt of Tanzania: combined Sm-Nd, Rb-Sr and Pb-Pb isotopic evidence // J. Petrol. 1998. V. 39. 4. P. 749-783.

Nixon P.H., Rogers N.W., Gibson I.L., Grey A. Depleted and fertile mantle xenoliths from Southern African kimberlites: Ann. Rev. // Earth Plan. Sci. V. 9. P. 285-309.

Simkin T., Smith J. V. Minor-element distribution in olivine // J. Geol. 1970. V. 78. 3. P. 304-325.

Verhoogen J. Oxidation of iron-titanium oxides in igneous rocks // J. Geol. 1962. V. 70. 2. P. 168-181.

.- . . .