

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta 70 (2006) 3717-3742

www.elsevier.com/locate/gca

Geochimica

Trace element partitioning in plagioclase feldspar

Jean H. Bédard *

Geological Survey of Canada, 490 de la Couronne, Ouebec, PO, Canada G1K 9A9

Received 12 July 2005; accepted in revised form 3 May 2006

Abstract

Compilation and interpretation of experimental and natural Nernst partition coefficient ($^{\text{plagioclase/melt}}D$) data show that, with a few exceptions, increases in plagioclase/melt D correlate with decreasing anorthite-content of plagioclase. In contrast, increases of plagioclase/melt Dfor Ga, Sc, Cu, Zn, Zr, Hf and Ti, are better correlated against decreasing melt MgO or increasing melt SiO₂ contents. ^{plagioclase/melt}D for Ti and the rare earth elements (REE) show little dependence on temperature, but increase as the melt water content increases. plagioclase/melt D for K and Sr are sensitive to pressure. Variations of D_0 (the strain compensated partition coefficient), r_0 (the size of the site into which REE substitute), and E (Young's Modulus of this site) were parameterized against variations of melt SiO₂, the An-content of plagioclase, and other combinations of variables, allowing $plagioclase/melt D_{REE-Y}$ to be calculated from a variety of input parameters. The interrelations of temperature, melt MgO and SiO₂ content, and plagioclase anorthite-content for wet and dry systems were also parameterized to facilitate interpolation where such data are lacking. When combined, these semi-empirical parameterizations yield $^{\text{plagioclase/melt}}D$ results comparable to available experimental and natural data. Her Majesty the Queen in right of Canada © 2006 Published by Elsevier Inc.

1. Introduction

1.1. Plagioclase and D

The Nernst partition coefficient 'D' is the ratio of the weight concentration of a trace element in a solid phase divided by the concentration of the same element in its equilibrium liquid $(D = C_s/C_1)$, and is used extensively to model magmatic processes (e.g. Treuil and Varet, 1973; Langmuir, 1989; O'Hara, 1995; Shaw, 2000). The uncertainty with regard to D is a major source of error in modeling crystal/liquid fractionation or melting, and in applying inversion models to cumulates or restites (Blundy, 1997; Bédard, 1994, 2001). Plagioclase feldspar is the dominant mineral in the terrestrial continental crust and lunar highlands crust, is abundant in the lower oceanic crust, and also occurs in oceanic upper mantle rocks and some meteorites (e.g. Gass et al., 1984; Beckett and Grossman, 1988; Smith and Brown, 1988). In low-pres-

E-mail address: jbedard@rncan.gc.ca.

sure terrestrial lavas, plagioclase occurs throughout the magmatic compositional spectrum from basalt to rhyolite (e.g. Grove et al., 1982; Spulber and Rutherford, 1983; Villiger et al., 2004). Plagioclase fractionates trace elements of similar size and valency (e.g. $^{\text{plagioclase/melt}}D_{\text{La}}$ $plagioclase/melt D_{Yb}$ is between 5 and 35), leading to relative light rare earth element depletion in derivative liquids. Plagioclase also concentrates Sr and Eu, generating the diagnostic positive trace element peaks indicative of plagioclase accumulation in gabbroic rocks, and negative peaks indicative of plagioclase extraction in derivative liquids.

Until the groundbreaking paper of Blundy and Wood (1991), who parameterized plagioclase/melt D variations of Sr and Ba against temperature and the anorthite-content of plagioclase (An = Ca/Ca + Na + K), most trace element modeling studies assumed that values of $^{\text{plagioclase/melt}}D$ were constants. Bindeman et al. (1998) and Bindeman and Davis (2000) extended this approach to a wider range of trace elements, and pointed out problems with experiments involving doping. Available experimental and natural partitioning studies were compiled in an effort to complete and update these previous studies.

Fax: +1 418 654 2615.

Table 1 Data sources used in this paper

Experimental data B = Baker and Eggler (1987)b = Bartels et al. (1991)b1 = Berndt (2002)b2 = Bindeman et al. (1998)b3 = Bindeman and Davis (2000)b4 = Blatter and Carmichael (2001)b5 = Blundy (1997)b6 = Blundy et al. (1998) b7 = Brugger et al. (2003)b8 = Beard et al. (1993)b9 = Berndt et al. (2001) C = Carroll and Wyllie (1989)c = Costa et al. (2004)c2 = Couch et al. (2003)c3 = Capobianco et al. (1991)D = Drake and Weill (1975) d1 = Dunn and Sen (1994)d2 = Duncan and Green (1987)d3 = Douce and Beard (1995)d4 = Douce and Beard (1996)d5 = Douce (2005)F = Falloon et al. (1999)f = Fram and Longhi (1992) f1 = Freise et al. (2003)G = Grove and Juster (1989)g = Grove et al. (1982)g1 = Grove et al. (2003)g2 = García-Casco et al. (2003) $g3 = Gerke \ et \ al. \ (2005)$ H = Holtz et al. (2005)j = Johnston (1986)K = Kinzler and Grove (1992) k = Koepke et al. (2003)L = Longhi et al. (1999)l2 = López and Castro (2001) $13 = L \circ pez et al. (2005)$ 14 = Larsen (2005)M = Montel and Vielzeuf (1997)m = Moore and Carmichael (1998) ml = Müntener et al. (2001) m2 = Médard et al. (2004)m3 = Malvin and Drake (1987)m4 = McKay and Weill (1976) m5 = McKay and Weill (1977) m6 = Martel et al. (1999)m7 = Métrich and Rutherford (1998)N = Nair and Chacko (2002)n = Nekvasil et al. (2004)P = Douce and Harris (1998)p = Pertermann et al. (2004)p2 = Prouteau and Scaillet (2003) p3 = Panjasawatwong et al. (1995) $\mathbf{R} = \mathbf{Righter}$ et al. (1995) S = Scaillet and Evans (1999)s = Skjerlie and Johnston (1996) s1 = Schmidt and Thompson (1996) s2 = Simon et al. (1994)s3 = Singh and Johannes (1996) s4 = Springer and Seck (1997)s5 = Sisson et al. (2005)T = Thy (1995)t = Toplis and Carroll (1995) & Toplis et al. (1994) t1 = Tormey et al. (1987)t2 = Tuff et al. (2005)

Table	1	(continued)
-------	---	-------------

t3 = Takagi et al. (2005)
v = Van der Auwera et al. (2000)
v2 = Villiger et al. (2004)
w = Wilke and Behrens (1999)
y = Yang et al. (1996)
Natural data
1 = Arth and Barker (1976)
2 = Bédard (1994)
3 = Bacon and Druitt (1988)
4 = Dodge et al. (1982)
5 = Dostal and Capedri (1975)
6 = Dostal et al. (1983)
7 = Ewart and Griffin (1994)
8 = Francalanci (1989)
9 = Fujimaki et al. (1984)
10 = Gromet and Silver (1983)
11 = Luhr and Carmichael (1980)
12 = Michael (1983)
13 = Nagasawa and Schnetzler (1971)
14 = Nash and Crecraft (1985)
15 = Schnetzler and Philpotts (1968)
16 = Vernières et al. (1977)
17 = Villemant et al. (1980)
18 = Wörner et al. (1983)
19 = Ren et al. (2003)
20 = Dudas et al. (1971)
21 = Phinney and Morrison (1990)

The letter and number codes are those used in all figures.

plagioclase/melt D data originating from analysis of phenocrysts in lavas or intrusions are referred to as 'natural' data here, and have number codes, while experimental partitioning data are given letter codes. Table 1 gives data sources and codes, which also appear in some figures. For simplicity, sub/superscripts will be left out henceforth (e.g. D Sc = $^{\text{plagioclase/melt}}D_{\text{Sc}}$). The dataset is available as an electronic appendix from the author. Mineral/mineral partitioning studies were not considered because of subsolidus reequilibration effects (e.g. McDonough et al., 1992; Loucks, 1996). Much of the data on partitioning of Ti and K were gleaned from phase equilibrium studies. It is the purpose of this paper to synthesize these data in order to provide an objective algebraic parameterization of the values of D, and of the dominant trend of variation of D values, which can be used to model igneous processes in common magmatic suites.

1.2. Input parameters

What should be the input variable(s) for the parameterization of D variations? The ability to reproduce the data is the main criterion, but ease of application must also be considered. Blundy and Wood (1991) and Bindeman et al. (1998) proposed simple equations of the form:

$$RT\ln D = X \operatorname{An} + Y,\tag{A}$$

where R is the gas constant, An is the fraction of anorthite component in plagioclase, T is temperature (Kelvin), while

Regression results for interrelation of plagioclase An-content, melt composition and	d temperature, for	wet and dry sy	stems							
<i>T</i> in K, <i>P</i> in kbar, Ca# = 100Ca/(Ca + Na); Al# = 100Al/(Al + Si) An mole% = $(-63.970/T) - 164.1 - (2575.3 P/T) + (41.836 ln (Ca#melt)) + (33.434)$	ln(Al#melt))							Eq. # 1 ^a		
T in K, P in bar, An in mole%, H ₂ O in wt% lnAn = (927.91/T) - 0.86298 - (0.02693 P/T) + (0.01674 H ₂ O)										
Unknown	AR-IV	Y intercept	Standard error Y	R^2	N	Slope X	Standard error X	Eq.#		
An of plagioclase from MgO in melt ($wt\%$), for dry melts ($An = X MgO + Y$)										
An molar	MgO > 1%	0.42132	0.07065	0.700	342	0.04448	0.00158	3a		
An molar	MgO < 1%	0.10090	0.10362	0.572	25	0.50206	0.09061	3b		
	(Intersection of Eqs. 3a and 3b at 0.7003% MgO)									
An of plagioclase from $lnMgO$ in melt (wt%), for wet melts. ($An = X lnMgO + Y$)										
An molar	All	0.57229	0.13285	0.485	610	0.10639	0.00444	3c		
Multiple regression: an of plagioclase from T (°C), P (GPa), H_2O (wt%) & Melt h	nMgO (wt%)									
An molar	All	0.06619	0.06042	0.5439	988	(SE = 0.11)	2821)	4		
	Т					0.00047	0.00006			
	Р					-0.10239	0.00901			
	H_2O					0.02206	0.00187			
	lnMgO					0.06484	0.00530			
$10,000/T (^{\circ}C)$ from $\ln MgO (wt\%)$ of melt, $(10,000/T (^{\circ}C) = X \ln MgO + Y)$										
lnMgO	All	10.3758	0.0232	0.7513	1015	-0.95668	0.01728	5a		
T (°C) from SiO ₂ wt% of melt, (T (°C) = X SiO ₂ + Y)										
SiO ₂	All	1712.0	90.26	0.6206	577	-11.691	0.3618	5b		

Table 2

Unknown, value to be calculated. AR-IV, applicable range (AR) for regression, and/or, (IV) input variable from which the unknown is calculated. Estimates of the errors on the regressions and the fit (R^2) are also given. In the multiple regressions, SE: standard error. ^a From Panjasawatwong et al. (1995). ^b From Takagi et al. (2005).

'X' is the slope and 'Y' the intercept in an $RT \ln D$ vs. An plot. Use of the 'RT' factor partly corrects for the influence of temperature and slightly improves the fits (Blundy and Wood, 1991). Pressure and temperature (Shimizu, 1974; Green and Pearson, 1985), melt composition (Mysen and Virgo, 1980; Nielsen, 1985; Gaetani, 2004), and melt H₂O content (Wood and Blundy, 2002), have been advocated as important factors responsible for D-variations in other minerals, but these effects have not been explored as systematically for plagioclase. Indices of melt compositional evolution considered here are the SiO₂ and MgO contents. the values of which can be calculated from coexisting minerals through the application of exchange and distribution coefficients (e.g. Markl and Frost, 1999; Sugawara, 2000); or which can be constrained empirically from lava, glass or melt inclusion analyses.

A multiple linear regression approach was used to constrain D variations where the database was adequate. However, a complete range of possible input parameters is not found in each experiment or natural partitioning dataset. Some are simplified systems, while others do not provide complete melt or mineral analyses. Furthermore, natural partitioning observations cannot provide exact values for pressure or temperature. Consequently, datasets that lack certain input variables cannot be included in many multiple regression analyses. In addition, many modeling situations, such as inversions applied to cumulate rocks, do not provide the necessary input (e.g. knowledge of the melt composition, temperature, pressure, volatile contents) for such an approach. Since the 'bottom-line' is useability, a simplified approach that considers fewer input parameters is also included. While inherently less precise than a simultaneous consideration of the influence of all potential input variables on D variations, the simplified approach at least has the benefit of being applicable to all modeling scenarios, including inverse calculations. Where possible, both the simple regressions and the multiple regression analyses are provided, to give modelers flexibility.

This partly empirical approach is not meant as a substitute for thermodynamically based partitioning models (e.g. Beattie et al., 1991; Blundy et al., 1996; Wood and Blundy, 1997; Gaetani, 2004). However, despite the con-

Fig. 1. Plagioclase An-content plotted against: (a) temperature in $^{\circ}$ C, (b) melt lnMgO (wt%) content for wet systems, and (c) for dry systems. Note the extensive scatter in the 'wet' data (a), and the generally higher An-contents of the 'wet'data for a given temperature. (b) Regression for data from 'wet' systems plotted against lnMgO (Eq. 3c, Table 2). (c) Regression for data from 'dry' systems plotted against melt MgO (Eqs. 3a,b. Table 2), with the regression from (b, wet systems) shown as a dashed line. (d) Comparison of observed An-contents with those calculated with Eq. 4, Table 2.

siderable progress achieved in their development (e.g. Blundy and Wood, 2003), it is not yet possible to obtain the values of D for all trace elements and P-T-X conditions of interest from such theoretical models, or to quantify how the Ds vary: and realistically, it will be many years before this becomes possible. For those needing a set of D values to model a given magmatic suite, a common sense approach has been to use D values from an experiment conducted at appropriate pressure-temperature conditions on a melt composition that is 'similar' to the suite being investigated. However: (a) few bulk compositions have been investigated in enough detail to do this; (b) few partitioning studies consider the entire geochemical spectrum, handicapping users of multi-element plots (e.g. Thompson et al., 1983); and (c) the extent to which Ds vary with changing P-T-X conditions would still not be accounted for. Given the need for a systematic, quantitative, multi-element estimate of plagioclase/meltD. and for how these Ds vary, the semi-empirical parameterizations proposed here represent an interim, practical solution, which at least provides a realistic estimate of the uncertainty in D, and which may help guide subsequent experimental efforts.

1.3. Sources of error and uncertainty

This is a compilation of data from both experimental and natural partitioning studies, analyzed over a span of 25 years with different methods in different laboratories. Consequently, one has to consider the probability of inter-laboratory biases, the progressive improvements in precision and accuracy that have occurred, the possibility that kinetic or pneumatolytic effects perturbed some experiments or observations, and finally, the probability of experimental or typographical errors. When analyzing the partitioning data, discrepant datapoints were excluded from some regressions. Although discrepant data that result from experimental errors can safely be neglected, data outliers could also reflect systematic differences in pressure, f_{O_2} , volatile activity, bulk composition, crystal chemistry..., etc. These alternatives were investigated where the database was adequate, but it was not always possible to determine why some datapoints or datasets were discrepant. There are four main groups of discrepant data: (1) those from older datasets, (2) natural data (phenocryst/matrix or phenocryst/whole-rock), (3) data obtained from phase equilibrium studies, and (4) data from synthetic bulk compositions.

(1) The anomalous values of some older data presumably represent analytical limitations, and after comparison, some of the most discrepant older data were excluded from the regressions. (2) Partitioning data obtained from natural phenocryst/matrix pairs are not as well constrained as experimental data because: (a) D is commonly calculated assuming that the matrix or bulk composition represents liquid compositions, (b) the assemblage may not be in equilibrium (e.g. Albarède and Bottinga, 1972; Tepley et al., 2000; Perugini et al., 2003), (c) the potential effects of mineral or melt inclusions in mineral separates are not always considered (e.g. Michael, 1988; Lutz, 1991), and (d) temperature and pressure are rarely constrained. Nevertheless, although treated with caution, many of these 'natural' partitioning values are also considered here because there are no experimental data available for some elements and melt compositional ranges. (3) A potential problem with partitioning data obtained from phase equilibrium studies (Ti, K), is that routine minor element analyses may not

Fig. 2. LnMgO (wt%) in the melt plotted against 10,000/temperature °C, for wet (a) and dry (b) systems (Eq. 5, Table 2). (c) Compares results calculated from the MgO-T °C regressions (Eq. 5) against experimental temperatures.

have been controlled as carefully as in the dedicated partitioning studies. However, while inclusion of natural and phase equilibrium data increases scatter somewhat, it also provides improved coverage of the P-T-X spectrum. (4) Some experimental studies use synthetic bulk compositions that are very different from natural melts; which affected the value of the partition coefficient, at least in some cases.

1.4. Approach

First, I parameterize the distribution of data linking the An-content of plagioclase to temperature, pressure and melt composition (Table 2, Figs. 1 and 2). These equations will be used to model natural data in terms of $RT \ln D$ against variations of An-content or melt composition. Because TiO₂ and K₂O can be analyzed with the electron microprobe, the D Ti and D K datasets are large enough to allow causal mechanisms to be explored (Tables 3 and 4, Figs. 3–7), providing insight when considering smaller datasets for geochemically similar elements. Similar regressions were performed for all elements where sufficient data exist (Figs. 7-13, Table 4), and a choice of input parameters is provided wherever possible, which allows flexibility in different modeling scenarios. The best regression coefficients obtained are provided in the Tables. Where no perceptible correlations were found, or data are too scanty, averages were computed (Table 4). Comparisons of the regression results for D REE-Y (Fig. 14) with the Lattice Strain Model of Blundy and Wood (1994) were then used to derive equations linking a variety of input variables with D_0 (the strain compensated partition coefficient), E (Young's Modulus), and r_0 (the size of the REE-hosting site) (Fig. 15, Table 5). From

Table 3

Regression results for variations of $^{\text{plagioclase/melt}}D$ Ti against different input parameters, including anorthite content of plagioclase, temperature, melt composition, pressure and water content

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Eq. #
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
RT ln D TiAn (all) -18.482 10.594 0.0394 344 -16.353 4.3651 8Binned data for D Ti calculated from An-content of plagioclase, using data $P \le 0.2$ GPa, $H_2O \le 1\%$, $SiO_2 < 70\%$ $RT \ln D Ti$ $(<50\% SiO_2)$ -26.979 5.3020 0.0113 16 -5.6090 14.035 $9a$ RT ln D Ti $(50-55\%SiO_2)$ -34.258 3.9394 0.0048 14 3.1360 13.096 94 RT ln D Ti $(55-60\% SiO_2)$ -34.688 4.6305 0.0007 35 1.3636 9.3100 96 RT ln D Ti $(60-70\% SiO_2)$ -22.237 4.9308 0.1494 45 -22.905 8.3352 96 RT ln D Ti $(2\% MgO)$ -37.560 4.7478 0.0607 14 13.301 15.107 100 RT ln D Ti $(2-4\% MgO)$ -24.131 3.4357 0.0861 52 -16.847 7.7640 100 RT ln D Ti $(2-6\% MgO)$ -29.506 8.2232 0.0097 16 -13.738 37.177 100 RT ln D Ti $(>2\% MgO)$ -21.825 4.9273 0.1495 96 -21.067 5.1822 100 D Ti calculated from temperature T (°C), using data $P \le 0.2$ GPa, $H_2O \le 1\%$ $I10$ $I1$ $(60-70\% SiO_2)$ -2.328 0.4634 0.0028 15 -0.00031 0.00164 110 In D Ti $(50-55\% SiO_2)$ -3.257 0.3957 0.0204 40 0.00030 0.00034 110 In D Ti <td>7</td>	7
Binned data for D Ti calculated from An-content of plagioclase, using data $P \le 0.2$ GPa, $H_2O \le 1\%$, $SiO_2 < 70\%$ RT ln D Ti(<50% SiO_2)	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9d
RT ln D Ti $(2-4\% \text{ MgO})$ -24.131 3.4357 0.0861 52 -16.847 7.7640 160 RT ln D Ti $(4-6\% \text{ MgO})$ -27.972 4.9555 0.0457 28 -11.544 10.346 160 RT ln D Ti $(>6\% \text{ MgO})$ -29.506 8.2232 0.0097 16 -13.738 37.177 160 RT ln D Ti $(>2\% \text{ MgO})$ -21.825 4.9273 0.1495 96 -21.067 5.1822 160 D Ti calculated from temperature T (°C), using data $P \le 0.2$ GPa, $H_2O \le 1\%$ $I10$ I	10a
RT ln D Ti $(4-6\% \text{ MgO})$ -27.972 4.9555 0.0457 28 -11.544 10.346 10.77 RT ln D Ti $(>6\% \text{ MgO})$ -29.506 8.2232 0.0097 16 -13.738 37.177 10.77 RT ln D Ti $(>2\% \text{ MgO})$ -21.825 4.9273 0.1495 96 -21.067 5.1822 10.77 D Ti calculated from temperature T (°C), using data $P \le 0.2$ GPa, $H_2O \le 1\%$ $I10$ <td>10b</td>	10b
RT ln D Ti(>6% MgO)-29.5068.22320.009716-13.73837.17716RT ln D Ti(>2% MgO)-21.8254.92730.149596-21.0675.182216D Ti calculated from temperature T (°C), using data $P \le 0.2$ GPa, $H_2O \le 1\%$ InTi(60-70% SiO_2)-2.3280.46340.002815-0.000310.0016411ln D Ti(55-60% SiO_2)-5.2480.37210.2582160.002130.0009711ln D Ti(50-55% SiO_2)-3.2570.39570.0204400.000300.0003411ln D Ti(<50% SiO_2)-1.9410.37500.042944-0.01190.0008711	10c
RT ln D Ti(>2% MgO)-21.8254.92730.149596-21.0675.182216D Ti calculated from temperature T (°C), using data $P \le 0.2$ GPa, $H_2O \le 1\%$ 1%ln D Ti(60-70% SiO_2)-2.3280.46340.002815-0.000310.0016411ln D Ti(55-60% SiO_2)-5.2480.37210.2582160.002130.0009711ln D Ti(50-55% SiO_2)-3.2570.39570.0204400.000300.0003411ln D Ti(<50% SiO_2)	10d
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10e
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11b
$\ln D \operatorname{Ti} (<50\% \operatorname{SiO}_2)^{-1.941} 0.3750 0.0429 44 -0.00119 0.00087 11$	11c
	11d
D Ti calculated from melt composition, using data $P \le 0.2$ GPa, $H_2O \le 1\%$	
<i>RT</i> ln <i>D</i> Ti SiO ₂ -61.303 4.9825 0.2627 117 0.49849 0.07788 12	12a
$\ln D$ Ti SiO ₂ -5.0543 0.40476 0.2436 117 0.03850 0.00633 12	12b
<i>RT</i> ln <i>D</i> Ti ln MgO -24.073 5.5006 0.5533 126 -8.6543 0.69838 12	12c
ln D Ti lnMgO -2.1707 0.49347 0.4689 126 -0.65548 0.06265 12	12d
D Ti calculated from pressure (GPa). $SiO_2 \le 70\%$, $H_2O \le 5\%$	
$D \text{ Ti} \qquad (All) \qquad 0.058927 \qquad 0.029734 \qquad 0.0319 \qquad 171 \qquad -0.010135 \qquad 0.004295 \qquad 133$	13
D Ti calculated from melt H_2O (wt%) $P \le 0.2$ GPa	
D Ti (All) 0.05378 0.06303 0.3846 205 0.02692 0.00239 14	14a
$RT \ln D$ Ti (All) -33.256 8.2417 0.3044 217 2.9409 0.30318 14	14b

Values of the slope 'X,' and intercept 'Y' allow D values to be calculated. Estimates of the errors on the regressions and the fit (R^2) are also given. In the multiple regressions, SE, standard error. AR-IV, see Table 2. Filt, filtered data.

Table 4 Regression results for variations of $^{\text{plagioclase/melt}}D$ against different input parameters

	AR-IV	Y intercept	Standard error Y	R^2	N	Slope X	Standard error X	Eq. #
Unknown								
$RT \ln D K$	An (all)	-9.8186	5.9362	0.1346	653	-14.810	1.4721	15a
$RT \ln D$ K	An (filt1)	-8.6971	5.1627	0.2043	629	-16.745	1.3199	15b
$RT \ln D K$	An (filt2)	-8.2080	5.1994	0.2170	593	-17.907	1.3990	15c
$RT \ln D$ K	An ($P < 0.6$)	-10.548	5.0160	0.1331	395	-14.788	1.9039	15d
$RT \ln D$ K	P (all)	-19.998	6.1880	0.0587	583	3.1842	0.52880	15e
$RT \ln D K$	P (filt)	-20.033	5.7937	0.0735	578	3.4265	0.50683	15f
<i>RT</i> ln <i>D</i> K	P (3-7% MgO)	-20.206	5.8687	0.1367	179	4.9554	0.93611	15g
<i>RT</i> ln <i>D</i> K		7.3596	2.9861	0.3042	561	(SE	E = 5.0347)	15h
	SiO ₂ melt (wt%)					-0.1874	0.03778	
	MgO melt (wt%)					0.4466	0.16583	
	Molar An					-26.777	1.9940	
	P (GPa)					1.5259	0.46828	
$RT \ln D$ Cs	An	-12.801	5.8636	0.4674	27	-32.184	6.8700	16
<i>RT</i> ln <i>D</i> Rb	An	-12.208	8.1457	0.4674	90	-43.564	4.9573	17
<i>RT</i> ln <i>D</i> Ba	An (filt)	10.146	5.5904	0.6013	107	-35.204	2.7975	18a
<i>RT</i> ln <i>D</i> Ba	(filt)	-15.889	10.5904	0.6060	84	(SE	E = 5.6223)	18b
	SiO ₂ melt (wt%)					0.3082	0.12517	
	Molar An					-23.1593	5.5402	
$RT \ln D$ Sr	An (Dry Low P)	23.856	3.5815	0.5653	107	-20.710	1.7723	19a
$RT \ln D$ Sr	P (GPa)	13.238	3.1865	0.7090	9	-5.6447	1.3668	19b
D Sr	P (GPa)	3.8196	1.3171	0.4723	9	-1.4140	0.5649	19c
$RT \ln D$ Sr	H ₂ O	11 331	5 8482	0 1997	89	1 9205	0 4121	19d
DSr	H ₂ O	4,1253	5.1243	0.1560	89	1.4480	0.3611	19e
$RT \ln D$ Sr	2 -	-10.545	6.1986	0.7021	72	(SF	E = 3.0354)	19f
	H ₂ O melt (wt%)					0.7230	0.34500	
	SiO ₂ melt (wt%)					0.3964	0.08612	
	lnMgO melt (wt%)					0.6316	0.58071	
	Molar An					-4.4900	3.0256	
$RT \ln D$ Sr		-9 76305	4 87118	0 6958	79	(SF	E = 3.0680	19ø
	SiO ₂ melt (wt%)	51702002	110/110	010900		0 38369	0.05740	178
	Molar An					-3.4708	2.6915	
$RT \ln D$ Ph	An	0 14815	5 5534	0.0982	30	-10 4612	5 9924	20
In D I i	An	1 1839	1 0228	0.1903	45	-3 4432	1 0832	20
$RT \ln D$ Be	An	-22.670	5 2602	0.2090	24	22 600	9 3683	22
$RT \ln D Cr$	An	-4 6191	8 2035	0.3867	26	-42.000	11.028	22
$RT \ln D$ Ci	An	27 795	6 9911	0.5892	10	-75474	22 283	23
$RT \ln D Ga$	lnMgO	0 56898	4 6441	0.4492	22	-1 5845	0.39225	25a
$RT \ln D$ Ga	liningO	-44 089	11 8387	0.7014	22	(SF	R = 3,3370	25a 25b
	SiO ₂ melt (wt%)	111002	1110007	017011		0 5196	0 17625	200
	$\ln M_{\sigma}O$ melt (wt%)					-0.7780	0.92344	
	Molar An					21.728	5.236	
D Ge	MgO	0 29825	0.03673	9 4421	4	0.01567	0.01245	26
	Δn	0.08875	0.00856	0.8207	4	-0.09026	0.02983	20
$BT \ln D Sc$	MgO	-23.003	9 1170	0.5586	28	-7 5485	1 31594	28
$RT \ln D$ Sc	MgO An	-23.003	7 0050	0.3380	20	20,659	8 4125	20
$RT \ln D Cu$		27 318	115 /1	0.2317	10	-20.039 (SF	F = 6(1202)	30
KI IID Cu	SiO melt $(wt^{0/2})$	57.510	113.41	0.7427	10	0.4680	15400	50
	$M_{\rm f}O$ molt (wt%)					-0.4080	10.999	
	Molar An					-10.490	14 410	
	Wolai Ali					-11.810	14.419	
$RT \ln D \operatorname{Zn}$	MgO	-5.1217	8.4797	0.3430	35	-6.6545	1.6033	31
$RT \ln D$ Nb	An	-4.8347	17.686	0.2345	32	-47.519	15.673	32a
$RT \ln D$ Nb		-417.35	87.943	0.7177	25	(SE	E = 9.7630)	32b
	SiO ₂ melt (wt%)					5.259	1.1641	
	MgO melt (wt%)					10.344	4.287	
	Molar An					40.879	14.094	
<i>RT</i> ln <i>D</i> Ta		-271.60	60.586	0.4630	18	(SE	E = 6.1292)	33
	SiO ₂ melt (wt%)					3.157	0.8092	
	MgO melt (wt%)					8.926	3.1641	
	Molar An					26.501	16.851	
							(continued on n	art naga)

(continued on next page)

Table 4 (continued)

	AR-IV	Y intercept	Standard error Y	R^2	N	Slope X	Standard error X	Eq. #
<i>RT</i> ln <i>D</i> Zr	(all) An	-0.32496	18.0034	0.4841	74	-84.6797	10.3023	34a
$RT \ln D Zr$	(filt) An	3.6141	13.7207	0.7102	60	-103.900	8.71293	34b
<i>RT</i> ln <i>D</i> Zr	(filt) SiO ₂	-187.27	11.785	0.7664	62	2.26018	0.16087	35
$RT \ln D Zr$	(filt)	-191.68	12.238	0.8004	54	(SE	E = 10.883)	36b
	H_2O melt (w	/t%)				1.209	0.9973	
	SiO_2 melt (w	/t%)				2.290	0.1881	
$RT \ln D$ Th	An	-11.646	8.9249	0.3063	36	-31.369	8.0968	37
$RT \ln D$ U	An	-7.6146	4.6913	0.8268	17	-47.279	5.5879	38a
$\ln D$ U	An	-1.7129	0.57865	0.4681	25	-2.7716	0.61608	38b
$RT \ln D P$	An	-17.470	3.2816	0.3161	25	-19.200	5.8891	39
$RT \ln D$ Hf	An	-8.2507	9.9891	0.4577	36	-54.245	10.964	40a
$RT \ln D$ Hf	S_1O_2	-126.86	6.6721	0.7638	25	1.3989	0.16222	406
$RT \ln D$ Hf	(filtered)	-146.68	41.438	0.7496	24	(SE 1.670	b = 6./68/)	40c
	M_{gO} melt (w	vt%)				1.070	2.4398	
	1.1g0	2 1146	4 90.52	0.((22	(2)	27.000	2.2770	41.
$RT \ln D$ La	An	2.1146	4.8953	0.6632	63	-37.009	3.3770	41a
$RT \ln D$ Ce	An	-3.0812	4.8375	0.6570	/0	-33.822	2.9636	42a 42a
$RT \ln D \operatorname{Pl}$	An	-0.8023	6 5437	0.0849	15 60	-20.094	J.5508 4 5074	45a 44a
$RT \ln D$ Nu	An	-8.6767	7 3051	0.4113	73	-30.830 -33.320	4.3074	44a 45a
$RT \ln D$ Shi	An	-1 9714	7.8367	0.4702	12	-59.897	13 506	47a
$RT \ln D$ Gu	An	-4 3691	4 6964	0.0022	33	-44 528	4 4196	48a
$RT \ln D$ Dv	An	-2.2521	5 41 39	0.7774	29	-58 215	5 9946	49a
$RT \ln D Y$	An	-45269	7 4062	0.6865	50	-51.811	5.0540	50a
$RT \ln D$ Er	An	-8.5000	6.3497	0.7256	14	-57.253	10.164	51a
<i>RT</i> ln <i>D</i> Yb	An	-9.2954	9.2898	0.6056	45	-52.923	6.5126	52a
<i>RT</i> ln <i>D</i> Lu	An	0.61501	7.2699	0.6381	23	-70.378	11.565	53a
<i>RT</i> ln <i>D</i> La	SiO_2	-70.741	5.0674	0.7071	44	0.82717	0.08215	41b
$RT \ln D$ Ce	SiO ₂	-72.837	4.9855	0.6808	50	0.79844	0.07892	42b
$RT \ln D$ Nd	SiO_2	-84.698	5.1606	0.6961	47	0.96052	0.09460	44b
$RT \ln D$ Sm	SiO_2	-93.113	5.6815	0.7211	52	1.02567	0.09021	45b
<i>RT</i> ln <i>D</i> Eu	SiO ₂	-47.071	9.8852	0.2536	55	0.68936	0.16246	46b
$RT \ln D$ Gd	SiO ₂	-102.76	4.1352	0.8859	8	1.16211	0.17023	47b
$RT \ln D$ Tb	S ₁ O ₂	-88.152	5.2885	0.6754	24	0.93216	0.13779	48b
$RT \ln D$ Dy	S1O ₂	-114.16	4.9589	0.7976	28	1.26/33	0.12519	49b
$KI \ln D Y$	S1O ₂	-121.93	8.3243	0.6598	48	1.30840	0.14488	500
$RT \ln D El$	SIO ₂	-111.43	10.400	0.0399	20	1.14318	0.23820	52b
$RT \ln D I u$	SiO_2	-114.23 -115.04	4 6417	0.3409	17	1.17900	0.17042	520
$RT \ln D Lu$	5102	-43 254	13 323	0.7262	44	1.20414 (SF	S = 4.8426	41c
Iti mb Lu	SiO ₂ melt (w	/t%)	10.020	0.7202		0.5325	0.15351	110
	Molar An					-16.594	7.4287	
$RT \ln D$ Ce		-40.236	11 018	0 7288	50	(SF	E = 45478	42c
	SiO ₂ melt (w	/t%)	111010	0.7200	50	0.4444	0.13212	.20
	Molar An					-18.566	5.7641	
$RT \ln D$ Nd		-60 108	11 019	0 7162	47	(SF	3 = 4.9323	44c
MI IIID ING	SiO ₂ melt (w	/t%)	11.017	0.7102	/	0 7080	0 14244	110
	Molar An	-,-,				-16.425	7.1601	
$RT \ln D$ Nd		9 3313	29 755	0.8597	20	(SF	5 - 2.9510	44d
KI IID IVU	H ₂ O melt (w	2.5515 zt%)	27.155	0.0577	20	2 2675	1.0709	
	SiO ₂ melt (w	/t%)				-0.27180	0.38863	
	MgO melt (v	wt%)				-3.8159	1.6138	
	Molar An	,				-6.7770	11.193	
$RT \ln D$ Sm		-82.358	11.912	0.7159	52	(SE	E = 5.6779	45c
	SiO ₂ melt (w	/t%)				0.9107	0.14342	
	Molar An	, ,				-6.1352	5.9499	
<i>RT</i> In <i>D</i> Eu		88 743	21.970	0.9227	17	(SF	E = 2.0544)	46c
	log for				- '	-3.0048	0.2403	
	SiO ₂ melt (w	/t%)				-1.9547	0.3568	
	MgO melt (v	wt%)				-2.9235	0.6803	
	,							

Table 4 (continued)

	AR-IV	Y intercept	Standard error Y	R^2	N	Slope X	Standard error X	Eq. #
<i>RT</i> ln <i>D</i> Gd	SiO ₂ melt (wt%) Molar An	-80.023	14.992	0.9059	8	(SE = 0.9450 -20.605	= 3.4775) 0.18446 11.039	47c
<i>RT</i> ln D Tb	SiO ₂ melt (wt%) Molar An	-28.322	20.464	0.7588	24	(SE = 0.2452 -31.058	= 4.4583) 0.25289 10.052	48c
<i>RT</i> ln D Dy	SiO ₂ melt (wt%) Molar An	-69.685	16.4202	0.8400	28	(SE = 0.7924 -27.132	= 4.3268) 0.19124 8.9685	49c
$RT \ln D Y$	SiO ₂ melt (wt%) Molar An	-118.14	20.154	0.6451	48	(SE = 1.3274 -2.1499	= 8.4119) 0.24103 9.8457	50c
Element <i>RT</i> ln <i>D</i> Er	SiO ₂ melt (wt%) Molar An	-79.808	21.351	0.6780	15	(SE = 0.8502 -25.099	= 6.8359) 0.26630 13.1236	51c
<i>RT</i> ln <i>D</i> Yb	SiO ₂ melt (wt%) Molar An	-61.048	36.287	0.3428	40	(SE = 0.5258 -18.441	= 12.1524) 0.42449 18.598	52c
<i>RT</i> ln <i>D</i> Lu	SiO ₂ melt (wt%) Molar An	-94.967	16.727	0.8798	17	(SE = 1.0730 -16.526	= 4.5191) 0.18344 12.233	53c
$RT \ln D \text{ Nd}$ $RT \ln D \text{ Y}$ $\ln D \text{ La}$ $\ln D \text{ Ce}$ $\ln D \text{ Nd}$ $\ln D \text{ Sm}$ $\ln D \text{ Y}$ $\ln D \text{ Yb}$	H ₂ O (wt%) H ₂ O (wt%) T (°C) T (°C) T (°C) T (°C) T (°C) T (°C) T (°C)	$\begin{array}{r} -20.625 \\ -28.386 \\ -2.2695 \\ -1.9980 \\ -2.3058 \\ -3.5171 \\ -6.6560 \\ 1.9562 \end{array}$	6.3101 12.660 0.29372 0.28792 0.38069 0.48943 0.64144 0.40171	0.2280 0.0798 0.0288 0.0003 0.0052 0.0635 0.1083 0.7232	28 44 26 25 23 24 18 13	5.4674 2.5509 0.000415 -0.00004 0.000214 0.001015 0.002721 -0.006125	1.9728 1.3368 0.000492 0.000486 0.000646 0.000831 0.001952 0.001142	44e 50e 54 55 56 57 58 59
Regression con. $RT \ln D$ B $RT \ln D$ F $RT \ln D$ Cl Polynomial reg	stants ^a An An An gression : $N = 17$	9.9 23.6 11.0	3.8 7.1 5.3 $R^2 = 0.5607$			-0.61 -37.8 -24.5	0.5 11.5 9.5	61 ^a 62 ^a 63 ^a 46d
KI in D Eu =	$\pm 21.987 \pm 3.9456$	± 0.1690 ± 0.1690 Standard deviation	N	Source				
Sb Mo As Re Ru Rh Pd	0.2686 0.39 0.2491 0.01 <0.3	0.1366 — 0.1420	3 1 3 1 1 1 1 1	(4,7) (d1) (7) (R) (c3) (c3) (c3)				

Average values are given where data were inadequate to allow regression. Values of regression constants for D F, D Cl, D Li and D B are from Bindeman et al. (1998). Estimates of the errors on the regressions and the fit (R^2) are also given.

^a From Bindeman et al. (1998).

these equations, values of D REE-Y can then be calculated with the Lattice Strain Model, and combined with the other regressions, in order to generate a composite parameterization that is consistent with theory, which can easily be integrated into existing spreadsheets and modeling algorithms, and that applies to a wide range of melt compositions (Fig. 16).

2. Results

2.1. Plagioclase An-content vs. temperature, pressure, and melt composition

Both plagioclase An-content and temperature are needed to calculate the partition coefficients using Eq. (A).

Fig. 3. (a) $RT \ln D$ Ti plotted against plagioclase anorthite content. Note the extensive scatter. Experimental and natural data are not distinguished here. There are very few natural data, and they all fall in the main cluster. Temperatures for natural data were calculated from Eq. 5, Table 2. The dashed line labelled 'b2' is from Bindeman et al. (1998). The unlabelled grey line is Eq. 8 from Table 3. The heavy black line labelled 'F,6' shows how $RT \ln D$ Ti varies with An-content for the Ferrar dolerites as calculated from Eq. 6. A subset of low-pressure dry experimental data were binned into restricted (b) MgO (Eq. 10, Table 3), and (c) SiO₂ ranges (Eq. 9, Table 3); showing how $RT \ln D$ Ti generally increases as MgO drops and SiO₂ increases.

Fig. 4. (a) $\operatorname{Ln} D$ Ti plotted against temperature (°C). All of the lowpressure dry experimental data are shown, suggesting a trend of increasing $\operatorname{ln} D$ Ti as temperature drops. Temperatures for natural data were calculated from Eq. 5, Table 2. Ion probe data from Bindeman and Davis (2000, b3) are shown as shaded boxes. Note that these data show the same scatter as electron probe data. In (b) data are binned into restricted compositional ranges (Eq. 11, Table 3). Note that once the compositional effect is removed by binning, most data show no significant trend with cooling.

In ideal circumstances, both can be independently constrained, allowing an unique solution. However, in many cases one or both of these parameters are unknown, and it would be useful to derive expressions allowing them to be calculated if necessary. Plagioclase An-content tends to decrease as magmas cool and evolve (Bowen, 1928). However, plots of plagioclase An-content against temperature show considerable scatter (Fig. 1a), especially for hydrous melts, indicating that other factors than temperature are also important. Several studies have shown that pressure, melt composition and melt water content affect plagioclase An-content (Housh and Luhr, 1991; Panjasawatwong et al., 1995; Takagi et al., 2005). Both Panjasawatwong et al. (1995) and Takagi et al. (2005) provide equations linking plagioclase An-content to tempera-

Fig. 5. (a) $RT \ln D$ Ti plotted against $\ln MgO$ (Eq. 12c, Table 3), and (b) SiO_2 (Eq. 12a, Table 3) in the melt, for low-pressure dry experiments. Temperatures for natural data were calculated from Eq. 5, Table 2. The heavy black lines labelled 'F,6' show how $RT \ln D$ Ti varies for the Ferrar dolerites as calculated from Eq. 6.

ture and melt composition (Eqs.1 and 2, Table 2), but these equations only apply to a limited compositional range, and it would be useful to derive an equation of more general applicability. Fig. 1b and c show that An-content is reasonably well correlated against the MgO or lnMgO content of the melt. The regression coefficients of Table 2 (Eq. 3) can be used to link An-content to melt MgO for wet and dry systems. A multiple regression analysis of this dataset was performed against temperature, pressure, water content and melt MgO content (Eq. 4, Table 2) and yields a more accurate value of the An-content (Fig. 1d). Melt lnMgO content is plotted against inverse temperature for wet and dry systems in Fig. 2a and b. The dry data appear to define a dog-leg, but this may be an artefact caused by a lack of data for cooler melts. If a few outliers are excluded, then all of the data can be regressed together (Eq. 5, Table 2), allowing melt temperature to be calculated from the melt MgO content for any plagioclase-saturated system (Fig. 2c).

These expressions (Table 2) may be useful in a number of ways. For example, they allow plagioclase composition to be calculated in metavolcanic rocks if melt MgO content can be estimated from whole-rock or melt inclusion analyses. Conversely, if only the An-content of the feldspar can be analyzed directly (restites or cumulates), then these expressions allow melt MgO content and temperature to be estimated.

2.2. Plagioclase/melt D Ti

Data for D Ti is extensive. Plots of $RT \ln D$ Ti against plagioclase An-content show a diffuse trend of increasing D Ti as An-content decreases (Fig. 3a). The ion-probe D Ti data of Bindeman et al. (1998, b2) and Bindeman and Davis (2000, b3) are distinguished on some of the figures to highlight potential differences between electron- and ion-probe data. Although in most cases the dedicated ion-probe D Ti data appears better behaved than the more diffusely correlated electron-probe data (e.g. Figs. 3 and 4), some of the ion-probe D Ti determinations also plot apart from the main trend. All of the data were regressed together (Fig. 3a, Eqs. 7 and 8, Table 3), yielding a slightly shallower trend than that proposed by Bindeman et al. (1998). Nevertheless, the fit is poor, and other input variables must also be considered for their impact on D Ti variations.

Plots of $\ln D$ Ti vs. temperature show an overall increase of D Ti as temperature drops (Fig. 4a). Typical error estimates are shown for an ion-microprobe analysis from Bindeman et al. (1998, b2, 5% relative) and two phase equilibrium studies where TiO₂ was analyzed with the electron microprobe. Uncertainty in temperature is smaller than the symbol size. The datum at 1275 °C from Longhi et al. (1999) shows a restricted D Ti uncertainty that reflects the low analytical error of this study (TiO₂ melt 1.09 ± 0.04 , TiO₂ plagioclase 0.06 ± 0.01). The uncertainty on this electron probe analysis is comparable to that of the ion-microprobe data from Bindeman et al. (1998) and Bindeman and Davis (2000). Note also that the ion-microprobe data (shaded boxes in Fig. 4a) show a distribution roughly parallel to the main trend of the data, and show similar absolute variations of $\ln D$ Ti for a given temperature. The electron-probe datum at 951 °C from Martel et al. (1999) has a greater uncertainty that reflects a lower precision, the result mainly of lower abundances (TiO₂ melt 0.48 ± 0.09 , TiO₂ plagioclase 0.04 ± 0.03).

To establish a baseline from which variations of D Ti against changes of P-T-X can be understood, a subset of data for dry (H₂O < 1%), low-pressure (P < 0.2 GPa) experiments was binned for melt SiO₂ content and plotted against experimental temperature (Fig. 4b). The data from Bindeman and Davis (2000, b3) appear to define a trend of increasing ln D Ti as temperature drops (Fig. 4a), but the lower ln D Ti values correspond to low-SiO₂ melts and high-An feldspars, while the high ln D Ti values correspond to high-SiO₂ melts and low-An feldspars; so that it is not possible to discriminate between temperature,

Fig. 6. (a) *D* Ti plotted against pressure in GPa (Eq. 13, Table 3, 3 data excluded (X) from regression), and (b) $RT \ln D$ Ti plotted against wt% melt H₂O (Eq. 14b, Table 3). Only experimental data are shown in (a). Comparison between observed *D* Ti and *D* Ti calculated using: (c) Eq. 6 (Table 3) and (d) Eq. 12d corrected for pressure and water content using the slopes of Eqs. 13 and 14a.

crystal chemistry, and melt compositional effects without considering the entire dataset. In contrast to the overall trend of increasing $\ln D$ Ti with decreasing temperature (Fig. 4a), the binned data either show no trend, or very poorly defined trends of decreasing or increasing $\ln D$ Ti as temperature drops (Fig. 4b, Eqs. 11, Table 3: note the very low R^2 values). This implies that temperature variations alone cannot account for the overall ln D Ti increase seen in Fig. 4a. What is apparent from Fig. 4b, however, is that most $\ln D$ Ti values increase systematically from melts with $SiO_2 < 50\%$ to melts with $SiO_2 > 60\%$. This implies that the observed increase in $\ln D$ Ti has more to do with increasing melt SiO₂ than decreasing temperature. In Fig. 5, D Ti data $(RT \ln D Ti)$ from low-pressure, dry experiments (H₂O < 1%, P < 0.2 GPa) were plotted against melt SiO₂ and MgO contents, showing clear trends of increasing D Ti as melts evolve (Eqs. 12, Table 3). However, since changes in melt composition are intimately linked to changes in plagioclase An-content, a test is required to clarify the relative influences of melt vs. crystal chemistry. To this end, the same lowpressure, dry subset of D Ti data (H₂O \leq 1%, P < 0.2 GPa) was binned for different SiO₂ and MgO ranges and plotted against An-content (Fig. 3b and c),

to help determine whether the increase in D Ti is primarily due to changes in An-content or to melt compositional effects. As in Fig. 4b, the values of $RT \ln D$ Ti for more evolved melts consistently fall above those of more primitive melts (Fig. 3b and c), suggesting an important melt compositional control. However, many of the binned data also show trends of increasing $RT \ln D$ Ti as An-contents decrease (Eqs. 9 and 10, Table 3), which implies that there is also a crystal-chemical control.

If data from the most evolved (>70% SiO₂) and wettest (>5% H₂O) compositions are excluded, then plots of *D* Ti and *RT* ln *D* Ti vs. pressure (Fig. 6a) show a diffuse trend of *D* Ti decrease as pressure increases (Eq. 13, Table 3), with changes in the order of 0.01/GPa. If only low-pressure data are considered, then plots of *RT* ln *D* Ti and *D* Ti vs. melt H₂O (Fig. 6b) both show clear trends of increase as melt H₂O increases (Eq. 14), with *D* Ti increasing by about 0.027/wt% H₂O in the melt. Most of the data for melt H₂O contents was calculated by the difference method (100% minus analytical total), however, and is rather imprecise in consequence. The slopes of Eqs. 13 and 14 can be used in tandem with the simplified equations for variations of low-pressure anhydrous *D* Ti (or *RT* ln *D* Ti) linked to changes of melt composition

Fig. 7. (a) $RT \ln D$ K plotted against plagioclase anorthite content. The regression results of Bindeman et al. (1998) are shown as a dash-dot line labelled 'b2'. The other regressions are labelled according to the equations in Table 4. The heavy black line labelled 'F' shows how $RT \ln D$ K varies for the Ferrar dolerites as calculated from Eq. 15h. (b) $RT \ln D$ K plotted against pressure in GPa. (c) $RT \ln D$ Cs, and (d) $RT \ln D$ Rb plotted against plagioclase anorthite content. In (c) the grey line is the regression from this paper (Eq. 16, Table 4). In (d) the Bindeman et al. (1998) regression is labelled 'b2,' while the grey line is the regression from this paper (Eq. 17, Table 4). Representative error bars are shown.

or An-content (Eqs. 9, 10 or 12) to obtain a more precise estimate of D Ti if the pressure and water content of the melt are known. Variations of similar extent might be expected for other high-charge cations, such as the rare earth elements.

Multiple regression analysis implies that the dominant causes of variation of $\ln D$ Ti are melt SiO₂, melt MgO, and pressure; with temperature, water-content and plagioclase An-content being of secondary importance (Eq. 6, Table 3). The multiple regression results (Fig. 6c, Eq. 6, Table 3) fit much (but not all) of the data reasonably well $(R^2 = 0.4939)$, but there are serious discrepancies for some data (notably those from H, b7 and b1). Removal of these three datasets did not significantly improve the regression results, however. It is worth pointing out that the fit for low-pressure anhydrous data ($RT \ln D$ Ti) calculated from ln MgO (R^2 of 0.5533, Eq. 12c) is as good as the multiple regression analysis; and if the value of D Ti calculated from Eq. 12c is corrected for pressure and water content using the slopes of Eqs. 13 and 14a, the correlation with observed data is no worse than those of the multiple regression analysis for mafic melts (compare Fig. 6c and d).

To summarize: D Ti variations are complex functions of plagioclase composition (An), pressure, temperature, and melt composition (H₂O, MgO, and SiO₂ contents); which are only partly captured by the regression analysis. In practical terms, a straightforward way to approximate the D Ti value for the system of interest might be as follows:

- (A) For well constrained environments, use the multiple regression analysis (Eq. 6).
- (B) For poorly constrained scenarios, use the regressions based on melt lnMgO or SiO₂ (Eq. 12), and correct for pressure and H₂O content using Eqs. 13 and 14a.

2.3. Large ion lithophile elements (LILE) and alkaline earths: K, Cs, Rb, Ba, Sr, Pb, Li

The dataset for D K is very large because of the incorporation of data from phase equilibrium studies (Fig. 7a). Values of $RT \ln D$ K increase as An decreases (Fig. 7a), but results are scattered, despite fairly restricted 1- σ error estimates on most data. The regression

sion of Bindeman et al. (1998, b2) under-estimates most existing D K values (Fig. 7a), while a regression on all data (Eq. 15a, Table 4) has a slope that is slightly too

Fig. 8. (a) $RT \ln D$ Ba, (b) $RT \ln D$ Pb, and (c) $RT \ln D$ Sr plotted against plagioclase anorthite content. The regression results of Bindeman et al. (1998) are shown as a dash-dot lines labelled 'b2'. The dashed lines labelled 'BW' are regressions proposed by Blundy and Wood (1991). The continuous grey lines are regression results from this paper (Table 4). Error bars show 1- σ error estimates. The heavy black lines labelled 'F,18b' (in a) and 'F,19f' (in c) show how $RT \ln D$ Ba and Sr vary for the Ferrar dolerites as calculated from Eqs.18b and 19f, respectively.

shallow to reproduce many data from very felsic or mafic melts. As a palliative, the extreme outliers were excluded (Eq. 15b, 'X' symbols on Fig. 7a), the same outliers as well as the data from 'b1' were excluded (Eq. 15c, shaded boxes on Fig. 7a), and only low-pressure data were regressed (Eq. 15d). All results are similar, however, with the best statistics being those of Eq. 15c. A scattered trend of increasing *RT* ln *D* K as *P* increases is also seen (Fig. 7b). Multiple regression analysis implies a significant role for An-content, pressure and for melt MgO and SiO₂ contents, and yields the best (although still poor) fits ($R^2 = 0.3042$, Eq. 15h, Table 4).

Data for *D* Cs is scanty, and two older data were excluded (Eq. 16, Fig. 7c). The new *D* Rb regression (Eq. 17) closely resembles that of Bindeman et al. (1998) if a few outliers are excluded (Fig. 7d). Data for *D* Pb are scattered (Fig. 8b); and the new regression (Eq. 20) is significantly shallower than that of Bindeman et al. (1998). An 0.05 decrease of *D* Pb for each % H₂O in the melt was observed (not shown). Data for *D* Li scatter widely and yield only a poorly constrained regression against An-content (Eq. 21, Table 4).

Values of $RT \ln D$ Ba show systematic increases with increasing contents of An, melt SiO₂, and with decreasing melt MgO. There are too few high-pressure data to allow this variable to be evaluated, while variations in water content are unsystematic. The equations of Blundy and Wood (1991) and Bindeman et al. (1998) both provide reasonably good fits to the expanded database. A regression for RT lnD Ba (Eq. 18a, Fig. 8a) yields a trend slightly shallower than those proposed by Blundy and Wood (1991, BW) and Bindeman et al. (1998, b2). This regression (Eq. 18a) excludes a few of the worst outliers, notably, many data from Luhr and Carmichael (1980, 11) plot systematically low, for unknown reasons. Multiple regression analysis of the $RT \ln D$ Ba data (excluding the same outliers shown on Fig. 8a) yields a slightly more precise estimate of DBa (Eq. 18b).

There are enough D Sr data to allow several potential input variables to be considered. Values of $RT \ln D$ Sr show systematic increases with increasing contents of An, of melt H₂O and SiO₂, with decreasing melt MgO, and with decreasing pressure. High-pressure data are largely from Van der Auwera et al. (2000, v), with one datum from Blundy et al. (1998, b6). If one outlier from 'v' is excluded, and low-pressure data between An contents of 40 and 70 are averaged to anchor the trend, then regressions against pressure (Eqs. 19b and c) imply that D Sr decreases by about 1.4 D for each increase of 1 GPa. In contrast, values of D Sr increase by about 1.5 D/% H₂O in the melt (Eqs. 19d and e).

If low-pressure (≤ 1.3 GPa), low-H₂O ($\leq 3\%$) data only are considered, and a few outliers are excluded, then a regression for *RT* ln*D* Sr (Eq.19a) yields a trend only slightly shallower than those proposed by

Fig. 9. (a) $RT \ln D U$, (b) $RT \ln D$ Th, and (c) $RT \ln D$ Nb plotted against plagioclase anorthite content. The regression results of Bindeman et al. (1998) are shown as a dashed line labelled 'b2.' The continuous grey lines are regression results from this paper (Eqs. 37, 38a, 32a, Table 4). The heavy black line labelled 'F,eq32b' shows how $RT \ln D$ Nb varies for the Ferrar dolerites as calculated from Eq. 32b. Note that the Ferrar trend (in c) is at a sharp angle to the trend calculated from the An-content. (d) Compares calculated values of D Nb (eq.32b) and $10 \times D$ Ta (Eq. 33) with observed values.

Blundy and Wood (1991, BW) and Bindeman et al. (1998, b2) (Fig. 8c). This regression (Eq. 19a) excludes data from Wörner et al. (1983, 18), since these may very well be from high-pressure hydrous melts. A topaz rhyolite 98,702 from Ren et al. (2003, 19) also falls off the main trend, possibly due to anomalous enrichment in halogens? Data for two granites from Nash and Crecraft (1985, 14) and a rhyolite from Nagasawa and Schnetzler (1971, 13) also fall off the main trend, for unknown reasons. The P- and H₂O-corrections (Eqs. 19b-e) can be applied to values of D Sr calculated solely from the low-pressure data (Eqs.19a, f and g). Multiple regression analysis of the $RT \ln D$ Sr data (excluding high-pressure data, and the same outliers as for the Eq. 19a regression) yield reasonably good results (Eqs. 19f and g).

2.4. High field strength cations: U, Th, Nb, Ta, P, Zr, Hf, Be

The equations of Bindeman and Davis (2000) fit the available $RT \ln D$ U data well (Fig. 9a), and the new regression (Eq. 38a) differs only slightly from theirs. Data from Michael (1983) were given a temperature appropriate to a melt with 0.2% MgO (755 °C, Eq. 5). Data for $RT \ln D$ Th is scattered (Fig. 9b) with much of the older data plotting off the main trend, so that the derived coefficients (Eq. 37) should be viewed with caution. More experimental D

Th data are needed to provide better constraints. Data for $RT \ln D$ Nb (Eq. 32a, Fig. 9c) and $RT \ln D$ Ta (not shown) are poorly correlated with An-content, but seem to yield reasonable fits for multiple regression using melt SiO₂, MgO and An-content (Eqs. 32b and 33, Fig. 9d). However, when a trend for $RT \ln D$ Nb is calculated for a specific magmatic suite (e.g. the Ferrar dolerites, 'F Eq. 32b' in Fig. 9c), the variation is at a sharp angle to the overall trend. Because of the weights given to the different input parameters by the multiple regression analysis, D Nb and D Ta both seem to go through a minimum for intermediate melt compositions. More experimental data for D Nb and D Ta are needed to clarify how Ds vary.

Data for D P are scanty (not shown). Most of the D P data from Gerke et al. (2005), Toplis and Carroll (1995) and Toplis et al. (1994) scatter with no obvious trend, and were excluded from the regression. The best behaved data are those of Bindeman et al. (1998), Bindeman and Davis (2000), and Tuff et al. (2005); and the regression obtained (Eq. 39) differs only slightly from previous estimates. Data for D Be are mostly from Bindeman et al. (1998) and Bindeman and Davis (2000), and the new regression (Eq. 22) differs only slightly from theirs. Unusually, D Be decreases as An-content drops.

Plots of $RT \ln D$ Zr against An-content show considerable scatter (Fig. 10a). Much of the data of Ewart and Griffin (1994, 7) plots above the other data, suggesting a

Fig. 10. $RT \ln D Zr$ plotted against plagioclase anorthite content (a) and melt SiO₂ content. The regression results of Bindeman et al. (1998) are shown as a dashed line labelled 'b2' (in a). The grey and dotted lines show results from this paper (Eq. 34a from An all data; 34b from An, filtered data; 35 from melt SiO₂ content). The heavy black lines labelled 'F,36' (in a and b) show how $RT \ln D Zr$ varies for the Ferrar dolerites. (c) $RT \ln D$ Hf plotted against melt SiO₂ content. The grey line shows results from this paper (Eq. 40b, Table 4), with the heavy black line labelled 'F,40c' showing how $RT \ln D$ Hf varies for the Ferrar dolerites.

potential analytical problem. An ugandite from Fujimaki et al. (1984, 9) also plots apart and was excluded. The filtered regression (Eq. 34b) fits the data much better than that calculated from all of the data (Eq. 34a). The equation of Bindeman et al. (1998, b2) underestimates D Zr for most felsic data. A regression of $RT \ln D Zr$ against melt SiO₂ content yields a much better constrained trend (Eq. 35, Fig. 10b); with only two data being excluded from this regression, the ugandite from Fujimaki et al. (1984, 9)

Fig. 11. (a) $RT \ln D$ Cr plotted against plagioclase anorthite content (Eq. 23a, Table 4). (b) $\ln D$ Zn (Eq. 31, Table 4), and (c) $\ln D$ Sc (Eq. 28) plotted against melt MgO content. The regression results of Bindeman et al. (1998) are shown as a dashed line labelled 'b2'. The continuous grey lines are results from this paper.

and a Vesuvius leucitite from Ewart and Griffin (1994, 7). Melt SiO₂ content appears to capture most of the variation in $RT \ln D$ Zr; and multiple regression (Eq. 36) shows only modest improvement.

Fig. 12. (a) $RT \ln D$ La, (b) $RT \ln D$ Nd, and (c) and $RT \ln D$ Yb plotted against plagioclase anorthite content. The regression results of Bindeman et al. (1998) are shown as a dashed line labelled 'b2'. The continuous grey lines are regression results (from An) from this paper (Eqs. 41a, 44a, 52a). The black dashed lines labelled 'Eq. 64' shows results of the lattice strain model parameterization calculated from the feldspar An-content (Table 5). The heavy black lines labelled 'F,41c' and 'F,52c' show how $RT \ln D$ La and Yb vary for the Ferrar dolerites as calculated from the multiple regressions (Eqs. 41c and 52c). The heavy black lines labelled 'F,67' are the lattice strain model fits to these regressions. In (b) the regression for RTln D Nd (Eq. 44c) is indistinguishable from 'F,67.'

Fig. 13. (a) $RT \ln D$ La plotted against melt SiO₂. The continuous grey line is the regression from this paper (Eq. 41b, Table 4). The dashed line labelled 'eqs66' shows the value calculated using the Lattice Strain Model, using the $RT \ln D$ parameterization for melt SiO₂ (Eq. 66, Table 5). The heavy black lines labelled 'F,41c' shows how $RT \ln D$ La varies for the Ferrar dolerites as calculated from the multiple regression (Eq. 41c, Table 4). The heavy black lines labelled 'F,67' is the lattice strain model fit to the individual rare earth multiple regressions. (b) RT lnD Eu plotted against $\log f_{\mathrm{O}_2}$. Values of $\log f_{\mathrm{O}_2}$ from 'b5' and 'b6' were extrapolated from published values of the buffer curves at higher pressure. The filled grey curve is a polynomial regression (Eq. 46d, Table 4), with the dashed grey curves showing 95% confidence limits. The thick black bars show the difference between the measured values (boxes) and the results of the multiple regression of $RT \ln D$ Eu calculated from melt MgO, melt SiO₂, and $\log f_{O_2}$ (Eq. 46c), which appears to be more precise than the polynomial fit to $\log f_{O_2}$ only. The heavy black line labelled 'F,46c' shows how $RT \ln D$ Eu varies for the Ferrar dolerites as calculated from the multiple regression (Eq. 46c, Table 4). In (c) ln D La-Sm-Y-Yb data for low-pressure, low-H2O systems only are shown (Eqs. 54-59, Table 4). The data for D Ce and D Nd are not shown. The data show minimal dependence on temperature, with very poor correlations (Table 4).

Data for $RT \ln D$ Hf show a scattered trend of increase as An decreases (Eq. 40a, not shown, calculated excluding: the ugandite from Fujimaki et al. (1984, 9), three data from (Francalanci, 1989, 8), two data from Wörner et al. (1983) and one from Dodge et al. (1982)). A regression of $RT \ln D$ Hf against melt SiO₂ content (excluding the same outliers as above) yields a simple linear trend (Eq. 40b, Fig. 10c). The SiO₂ contents of the Bishop Tuff samples from Michael (1983, 12) were assumed to be 75%. Melt SiO₂ content appears to capture most of the variation in $RT \ln D$ Hf; and multiple regression using melt SiO₂ and MgO contents (Eq. 40c) shows only modest improvement.

2.5. Metals: Ga, Cr, Ni, Zn, Co, Cu, V, Sc, Ge

Data for $RT \ln D$ Cr are scattered, and the new regression against An-content (Eq. 23, Fig. 11a) differs only

slightly from that of Bindeman et al. (1998). For this regression, outliers from (3,4,8,s4) were excluded. Data for evolved melt compositions are scanty, and this part of the compositional spectrum is poorly constrained. RT ln D Ni increases as An-content decreases, with a single datum from (b2) being excluded from the regression (Eq. 24). $RT \ln D$ Ga shows a diffuse trend of increase as $\ln MgO$ decreases (Eq. 25a), SiO₂ increases, and as H₂O increases. Trends against An-content are poorly defined (not shown). Multiple regression analysis yields significantly better results for D Ga (Eq. 25b). A single high-pressure determination (b6) is lower than other determinations at a given An-content, suggesting the possibility that D Ga decreases as pressure increases. Sparse D Ge data (Malvin and Drake, 1987) yield a correlation with melt MgO (Eq. 26) strictly only valid between MgO 11 and 16 wt%. Data for D V are sparse, with 4 out of 5 aligning when plotted

Fig. 14. Values of *D* REE (rare earth elements) and *D* Y obtained from the (a and b) regressions of $RT \ln D$ against An-content of plagioclase (dry, Eqs. 3a, 3b, 41a to 53a); (d and e) from regressions of $RT \ln D$ against melt SiO₂ (Eqs. 41b–53b); and (c–f) from the multiple regression analysis (Eqs. 41c–53c). *D* values are plotted against ionic radius (Shannon, 1976). The curves show results of the Lattice Strain Model Eq. (B) fit to these regressions by varying *E*, D_0 and r_0 . Temperature was linked to An-content and/or melt composition using Eqs. 3a, 3b, 5a (a and b); 5b (d and e); or from the PELE simulation results (c and f, see text for details). Values of D_0 , *E* and r_0 derived by visual fits to the *RT* ln *D* REE-Y regressions were then fit to obtain the parameterization constants of Table 5.

against An-content (Eq. 27, not shown). Data for $RT \ln D$ Sc show a diffuse anticorrelation with melt MgO content (Eq. 28, Fig. 11c), if outliers from Francalanci (1989, 8) and Dodge et al. (1982, 4) are excluded. The anticorrelation of $RT \ln D$ Sc against An is even poorer (not shown), with a trend shallower than that suggested by Bindeman et al. (1998). Two outlying data from (b2) and one from (18) were excluded from the $RT \ln D$ Co regression against An (Eq. 29). RT ln D Cu increases as MgO and An decrease and SiO₂ increases (not shown), with no obvious trend against changing H₂O. The best results were obtained from a multiple regression analysis (Eq. 30). However, variations of D Cu are all from a single source (7), and are anchored by a single mafic composition; and should be viewed with caution, especially for mafic melts. $RT \ln D$ Zn increases as MgO (Eq. 31, Fig. 11b) and An decrease and SiO₂ increases, with no obvious trend against changing H₂O. A single datum from (18) was excluded from the $RT \ln D$ Zn regression against MgO. Trends of D Zn against Ancontent are poorly defined (not shown).

2.6. Rare-earth elements and yttrium

 $RT \ln D$ REE-Y data were regressed against the An-content of plagioclase (Eqs. 41a to 52a, Fig. 12). A datum from Gromet and Silver (1983, 10), data S2-2 and S2-3 from Bindeman et al. (1998, b2), datum 144 from Francalanci (1989, 8) and the ugandite from Fujimaki et al. (1984, 9)

were excluded from most regressions because they plotted anomalously. Data for many REE (e.g. D La, Ce, Nd, Sm, Yb, Lu) show moderately good correlations against An-content (Fig. 12). Data for D Eu and Y are also abundant, but are more scattered (not shown). Data for D Gd, Tb, Dy, Tm and Er are sparse, and the high-An end of the spectrum is typically poorly represented (not shown). In some cases the new regressions differ considerably from those of Bindeman et al. (1998) and Bindeman and Davis (2000), showing steeper rates of increase.

Regressions of $RT \ln D$ REE-Y against melt SiO₂ (Eqs. 41b to 53b, Table 4, Fig. 13a) and MgO (not shown) contents were also performed, to allow modeling in cases where An-contents cannot be determined. The data show clear trends of increase as melt SiO₂ increases and MgO decreases. Where data exists, D REE appear to show trends of increase (as for D Ti) as H₂O content increases (e.g. Eqs. 44e and 50e). The sole high-pressure determination (Blundy et al., 1998, b6) suggests that D REE decrease as pressure increases. More high-pressure data is needed to verify this.

Multiple regressions including combinations of plagioclase An-content and melt SiO₂, and f_{O_2} for *D* Eu, yield the most precise *D* REE determinations in most cases (Eqs. 41c–53c). Inclusion of melt MgO actually worsens many fits. It is known that *D* Eu varies with changing f_{O_2} conditions (Drake and Weill, 1975; Wilke and Behrens, 1999). Plots of *RT* ln *D* Eu against log f_{O_2} were fit with a

Fig. 15. (a) Ln D_0 , (b) E, (c) melt MgO and (d) temperature variations plotted against plagioclase An-contents; corresponding to the regressions of RT ln D REE-Y against plagioclase An-contents, for wet and dry systems (Eqs. 64 and 65, respectively, Table 5). Values of E and ln D_0 were derived from fits like those of Fig. 14. Covariations of An-content with melt MgO and temperature for the regressions against An-content are from Eqs. 3a, 3b and 5a (dry system) or 3c and 5a (wet system). The other lines show the trends for the Ferrar (Eq. 64), High-Al arc basalt (Eq. 65) and MORB (Eq. 69) suites calculated in the same way on the basis of PELE simulations (see text).

polynomial function, yielding reasonable fits ($R^2 = 0.5607$, Eq. 46d, Fig. 13b). A multiple linear regression seems to yield a better result, however (Eq. 46c, Fig. 13b). Plots of ln *D* REE against temperature show no systematic trend (Fig. 13c), with extremely low R^2 (Table 4, Eqs. 54–59), implying that there is little or no temperature effect on REE partitioning.

2.7. Other elements

Data for D Sb, Mo, Ru, Rh, Ru, Pd and As are too scattered and sparse to be regressed, and simple averages were computed (Table 4). Data for D B, D F, and D Cl are principally from Bindeman et al. (1998) and Bindeman and Davis (2000), and were not regressed anew. Values of regression constants from these papers for these elements are given in Table 4 for convenience.

3. Calculation of plagioclase/melt D REE-Y profiles and comparison with results of the lattice strain model (LSM)

Values of D REE-Y were calculated from the regressions of $RT \ln D$ REE-Y against An (Table 4), and were plotted against ionic radius (e.g. Fig. 14). Melt MgO

and temperature were linked to An-content using Eqs. 3a, 3b and 5a, which are appropriate for dry low-pressure systems. These calculations produce generalized, 'average' magmatic values of D that may be useful when detailed information on melt composition and intensive parameters are lacking. Fig. 14a and b compare values of D REE-Y calculated from the individual dry system regressions of $RT \ln D$ REE-Y against An (Fig. 12), to results of the lattice strain model (LSM) of Blundy and Wood (1991, 1994), also known as the Brice (1975) equation. The LSM posits a parabolic distribution of D values around the ionic radius of the host site r_0 , which gives the position of the curve apex on the 'x' (ionic radius) axis. The Blundy and Wood (1994) expression is

$$D_{\rm i} = D_0 \exp(-4 \ \pi \ E \ N_A ((r_0/2) \cdot (r_{\rm i} - r_0)^2 + \frac{1}{3} (r_{\rm i} - r_0)^3) / RT),$$
(B)

where D_0 is the strain compensated partition coefficient, and gives the *D* value of the curve's apex; r_i is the ionic radius of the cation of interest (Shannon, 1976); *E* is Young's Modulus of the REE-hosting site, variations of which affects the kurtosis of the model curve; N_A is Avoga-

Table 5

Parameterization for E and D_0 vs. MgO or lnMgO (respectively), which feed into the Brice (1975) equation Eq. (B), allowing calculation of D REE and D Y

Applicable range	Parameter	Calculated from	Intercept Y	Slope X	Eq. #
$RT \ln D$ REE regressions fr	om An (e.g. $\ln D_0 = X A$	(n + Y) linked to MgO (melt)	by Eqs. 3a and 3b, dry sy	ystem, and T° C by Eq.5a	a
An0.1–1	$\ln D_0$	An	-0.69478	-1.9698	64a
An0.1–1	E	An	57.767	112.15	64b
An0.1-1	r_0	An	1.17519	0.024815	64c
$RT \ln D$ REE regressions from the second se	om An, linked to MgO	(melt) by Eq. 3c, wet system,	and T (°C) by Eq.5a		
An<0.36288	$\ln D_0$	An	-3.3574	-0.41784	65a
An0.36288-0.71581	$\ln D_0$	An	-1.3552	1.1444	65b
An0.71581-0.81764	$\ln D_0$	An	-0.1278	-2.0230	65c
An>0.81764	$\ln D_0$	An	-0.5345	-1.6905	65d
An<0.63045	E	An	163.60	24.494	65a
An>0.63045	E	An	57.767	112.149	65b
	r_0				Use Eq. 64c
$RT \ln D$ REE regressions fr	om melt SiO ₂ , linked to	T (°C) by Eq.5b			
SiO ₂ 40–45.81	$\ln D_0$	SiO ₂	-4.2516	0.03229	66a
SiO ₂ 45.81–66.54	$\ln D_0$	SiO ₂	-5.1220	0.05130	66b
SiO ₂ 66.54–78	$\ln D_0$	SiO ₂	-7.0283	0.07992	66c
SiO ₂ 40–78	E	SiO ₂	-285.0	-2.5	66d
SiO ₂ 40-78	r_0	SiO_2	1.2221	-0.000526	66e
$RT \ln D$ REE regressions fo	or ferrar dolerite evolution	on, PELE Model, multiple reg	ression using plagioclase	An-conten and melt SiO ₂	
An0.786–0.692	$\ln D_0$	An	-1.1147	-1.8677	67a
An0.786-0.692	E	An	39.023	102.49	67b
	r_0				Use Eq. 64c
$RT \ln D$ REE regressions fo	or high-Al arc basalt, PE	LE model, multiple regression	using plagioclase An-cor	nten and melt SiO ₂	
An0.88–0.80	$\ln D_0$	An	-3.31	0.46581	68a
An0.88-0.80	E	An	-169.53	351.95	68d
	r_0				use Eq. 64c
$RT \ln D$ REE regressions fo	or MORB, multiple regre	ession using plagioclase An-co	nten and melt SiO ₂		
An0.831–0.659	$\ln D_0$	An	-2.0363	-0.82105	69a
An0.831-0.659	E	An	104.64	23.3096	69b
	<i>r</i> ₀				Use Eq. 64c

dro's number; R is the gas constant (0.008314), and T is temperature (Kelvin). Values of D_0 , E and r_0 are commonly determined by fitting model curves to the experimental data (Fig. 14, see also Wood and Blundy, 1997). To this end, values of r_0 , E and D_0 were varied by trial and error to achieve a visual close fit to the D REE regressions at a given value of plagioclase An-content (e.g. Fig. 14a and b). In view of the extensive scatter of the REE partitioning data (e.g. Fig. 12), more elaborate curve fitting methods would not improve accuracy and were not applied. It has been suggested (Bindeman and Davis, 2000) that the size of the M-site into which REE partition increases slightly as the An content decreases, and the fits appeared better if r_0 changed in this sense from 1.12 Å at An₁₀₀ to 1.178 Å at An₁₁. Values of E, and $\ln D_0$ derived in this manner were plotted against An and fit with simple functions after some trial and error optimisation (e.g. Fig. 15, Table 5). These regression constants (Table 5, Eqs. 64, cf. Fig. 12) allow values of D_0 and E to be calculated for any input value of An; allowing a complete D REE-Y profile to be calculated with Eq. (B).

A similar procedure was applied to the $RT \ln D$ REE regressions against plagioclase An-content for wet systems (Eqs. 65, Table 5) and against melt SiO₂ (Eqs. 66, Table 5, Fig. 14d and e, cf. Fig. 13a). The regressions based on changes in melt MgO produced spiky patterns that precluded accurate fits.

In order to use the multiple regression results (Eqs. 41– 53c), an equation linking the pertinent input variables (e.g. An-content, and melt MgO and $SiO_2 \pm melt H_2O$ content, \pm pressure and $\pm \log f_{\rm O_2}$ must be defined for the liquid line of descent being investigated. Given this information, the equations of Table 4 allow a series of D REE-Y profiles to be defined, and fit as discussed above (e.g. Fig. 14c and f), to generate values of r_0 , D_0 and E. Three suites were modeled (50-75% fractional crystallization) using PELE (Boudreau, 1999) to encompass variations of D values for representative natural suites. The Ferrar Dolerite/Kirkpatrick Basalts of Antarctica illustrate a siliceous tholeiitic flood basalt trend. The fractionation model was based on sample 82-15-1 of Elliot et al. (1995), which is the most magnesian (7.542% MgO) non-porphyritic sample analyzed, with a calculated liquidus temperature of 1185 °C. An f_{O2} at the QFM buffer (quartz-fayalite-magnetite) was assumed. Layered Ferrar sills (e.g. Bédard et al., 2005) contain minor biotite and hornblende, and ferrogabbroic pegmatites, suggesting that the magmas contained minor amounts of water. An initial value of 0.2 wt% H₂O was assumed. Analysis 1 from Table 7 in Natland (1989), a glass from the Indian Ocean (8.97%) MgO), was used as a typical primitive MORB-like melt. This yields a dry liquidus T of 1209 °C. An f_{O_2} of QFM was assumed. A Tongan high-Al basalt (Table 2 in Myers and Johnson, 1996) was chosen to illustrate variations in an arc basalt. Here, a higher initial water content (2 wt)and f_{O_2} (QFM + 2) were used. Values for temperature, f_{O_2} , melt composition and feldspar An-content produced by PELE for these three compositions were recorded and used to calculate the *D* values using (Eqs. 41c–53c Table 4). These were then fit with the Brice equation (e.g. Figs. 14c and f) to derive values of *E* and D_0 (Eqs. 67–69, Table 5, Fig. 15). The value of r_0 was assumed to vary as in the generalized An regression (Eq. 64c). Values of *D* calculated for the Ferrar suite are shown in many figures as a heavy black line (F: Figs. 3, 5, 7–10, 12, 13, 15) and typically plot in the main data cluster very close to the LSM trend for An or SiO₂.

Fig. 16. Comparison of ^{plagioclase/melt}*D* profiles calculated from the different regression constants given in Tables 2–5, with *D* results for experiment 94-4 from Blundy (1997). The grey boxes associated with the diamonds (i.e. the experimental data) show one sigma error limits; as do the error bars on the calculated values of *D*. The values for Mr1 are the preferred multiple regression results. Those labelled Mr2 are alternative formulations corresponding to Eqs. 19g, 44d and 46d. Lattice strain models (LSM) for An and SiO₂ use Eqs. 64 and 66 (respectively), while the LSM derived from the Mr1 regressions use values of *E*, *D*₀ and *r*₀ of 140, 0.068 and 1.195, respectively. The dashed line is the same for both a and b, and links the preferred *D* values corresponding to Eqs. 16 (Cs), 15h (K), 17 (Rb), 18b (Ba), 37 (Th), 38a (U), 32b (Nb), 33 (Ta), LSM-Mr1 Eqs. 41c-42c (La–Ce), 20 (Pb), 19f (Sr), 39 (P), LSM-Mr1 Eqs. 44c-45c (Nd-Sm), 35 (Zr), 40c (Hf), 6 (Ti), 46c (Eu), LSM-Mr1 Eqs. 47c–53c (Gd–Lu), 23 (Cr), 31 (Zn), 29 (Co), 24 (Ni), 25b (Ga), 27 (V), 30 (Cu), and 28 (Sc).

4. Comparisons with partitioning data for individual experiments/samples

Values of *D* REE-Y calculated using the LSM parameterization (Table 5) are combined with *D* values calculated from the regressions of Tables 2–4, to produce multi-element *D* plots for different values of plagioclase An, melt MgO, melt SiO₂, melt H₂O, f_{O_2} , pressure and temperature (Fig. 16). The 1- σ error bars of the model profiles are attached to the best available regressions (see caption for Fig. 16). Note the generally small differences between results using the different regressions, and the fact that most of the experimental partitioning data are fit within error by the parameterization. Note also that the LSM fits to An, SiO₂ and Mr1 (multiple regression 1, see caption to Fig. 16) all yield very similar results.

Fig. 17 compares the model D profile to a series of individual experiments or observations, as a further test of the method. Each model was calculated using the MgO, SiO₂, An-content, pressure, temperature, f_{O_2} and water content appropriate to each experiment or study. Overall, the experimental and natural data are very similar to the parameterization results (Fig. 17), suggesting that the methodology advocated in this paper has some

merit. Note the prominent positive D Pb, Sr, Eu and Ga anomalies in the models and data. Because of the interrelations of the parameters feeding into the multiple regression equations for D Nb and D Ta, large negative D Nb–Ta anomalies are generated for intermediate systems. More experimental data for these elements are needed to verify if this is a real effect. The positive D Eu peak of the granite (Fig. 17d) is not reproduced by the parameterization, suggesting that the granite crystallized at values of f_{O_2} different from that assumed. Values for D Zn, Ni, Ga and Co are high, with Ni and Ga becoming compatible elements in very evolved melts (Fig. 17d).

To give some feeling for the constraints gained by this parameterization, Fig. 18 shows the results of trace element inversion models (Bédard, 1994) that calculate the trace element contents of melts in equilibrium with three Bushveld anorthosites from the Merensky Reef, as compared to two putative parental melts (B1 and B2). Values of D were calculated for different assumed melt SiO₂ contents (Fig. 18b), but yield similar results except for Ta. Low assumed trapped melt fractions yield reasonable HREE matches with B2, while higher assumed trapped melt fractions better match the HREE of the more

Fig. 17. Comparison of plagioclase/melt *D* profiles calculated from the different regression constants given in Tables 2–5, with the same equations as in the caption of Fig. 16. Model results are generally consistent with the data, with a few exceptions. Where no error bars are shown it is because they are smaller than the symbol size. (a) Francalanci (1989) model calculated assuming P = 0.1 GPa, temperatures assume a wet system (Eq. 3c), and f_{O_2} was assumed to correspond to values of the quartz–fayalite–magnetite (QFM) buffer + 2. (b) The f_{O_2} conditions in the experiments in Bindeman and Davis (2000) are not given, and were assumed to be at QFM. (c) The water content was assumed to be 2.2%, similar to other rocks in this study. (d) f_{O_2} was assumed to be at QFM, with P = 0.1 GPa.

Fig. 18. N-MORB normalized (Sun and McDonough, 1989) extended trace element plots showing model melts calculated from three Bushveld anorthosites (data from Maier and Barnes, 1998; and W. Maier personal communication 2004) with the equilibrium distribution method of Bédard (1994) using the preferred D values as per the caption of Fig. 17; compared to putative parental melts B1 and B2 (Harmer and Sharpe, 1985; W. Maier personal communication 2004). Values of SiO₂ in the melt were assumed to be either similar to those of melt B1 (55%) or B2 (51%); An-contents were calculated from a CIPW norm; MgO contents were calculated from Eq. 3a; and temperatures were estimated using Eq. 5a. Values of f_{0_2} similar to those of Ferrar dolerite melts (QFM) were assumed. Model liquids calculated for these differing SiO₂ contents are directly compared in (b), and yield very similar results, except for Ta. D REE are calculated from the regressions of $RT \ln D$ against An (Table 5, Eqs. 65, but with errors corresponding to Eqs. 67). Values of the trapped melt content are varied in (a and c), to force HREE fits with B1 and B2.

depleted siliceous B1 melt. The model melts have LILE contents that are more similar to B1 than B2, suggesting that B1 may be a better candidate for the melt responsible for Merensky Reef anorthosites. Trapped melt fractions between 7% and 18% imply a relatively low residual porosity for these rocks. Anorthosites 2019 and 1996.95 yield model melts with positive Eu anomalies, while 2019 shows a positive Sr anomaly, suggesting that

the melts may have been supersaturated in plagioclase due to prior feldspar assimilation.

5. Conclusions

With a few exceptions, values of ^{plagioclase/melt}D increase as the anorthite-content of plagioclase decreases, as melt MgO decreases, and as melt SiO₂ increases. Values of ^{plagioclase/melt}D_{Ti} increase markedly as the melt H₂O content increases, and as pressure drops, and the same may be true for ^{plagioclase/melt}D_{REE}. Values of ^{plagioclase/melt}D_K and ^{plagioclase/melt}D_{Sr} are sensitive to pressure. Variations of D₀ (the strain compensated partition coefficient), r_0 (the size of the REE-hosting site), and E (Young's modulus) were parameterized against variations of melt MgO, SiO₂, and the An-content of plagioclase, allowing ^{plagioclase/melt}D_{REE-Y} to be calculated from combinations of these input parameters. These parameterizations yield results comparable to experimental or natural partitioning data, and provide improved solutions to trace element models applied to plagioclase-bearing systems.

Acknowledgments

Datasets were provided by: Gaëlle Prouteau, Jasper Berndt, Jurgen Koepke, A. Patino-Douce, M. Pertermann, François Holtz, A. Garcia-Casco, Bruno Scaillet, Gerhardt Wörner, Peter Michael, Carrie Brugger, Dana Johnston, S. Couch, Wolfgang Maier and Tom Sisson; and their generosity is gratefully acknowledged. Jon Blundy helped with the lattice strain calculations. Several anonymous reviews and comments by Louise Corriveau and Gerhard Wörner helped refine the paper. This is Geological Survey of Canada contribution # 20060048.

Associate editor: Clive R. Neal

References

- Albarède, F., Bottinga, Y., 1972. Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. *Geochim. Cosmochim. Acta* 36, 141–156.
- Arth, J.G., Barker, F., 1976. Rare-earth partitioning between hornblende and dacite liquid and implications for the origin of trondhjemitic– tonalitic magmas. *Geology* 4, 534–536.
- Bacon, C.R., Druitt, T.H., 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. *Contrib. Mineral. Petrol.* 98, 224–256.
- Baker, D.R., Eggler, D.H., 1987. Compositions of anhydrous melts coexisting with plagioclase, augite and olivine or low-Ca pyroxene from 1 atm to 8 kbar: aapplication to the Aleutian volcanic center of Atka. Am. Mineral. 72, 12–28.
- Bartels, K.S., Kinzler, R.J., Grove, T.L., 1991. High pressure phase relations of primitive high-alumina basalts from Medicine Lake Volcano, northern California. *Contrib. Mineral. Petrol.* 108, 253–270.
- Beard, J.S., Abitz, R.J., Lofgren, G.E., 1993. Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas. *Contrib. Mineral. Petrol.* 115, 88–102.

- Beattie, P., Ford, C., Russell, D., 1991. Partition coefficients for olivinemelt and orthopyroxene-melt systems. *Contrib. Mineral. Petrol.* 109, 212–224.
- Beckett, J.R., Grossman, L., 1988. The origin of type C inclusions from carbonaceous chondrites. *Earth Planet. Sci. Lett.* 89, 1–14.
- Bédard, J.H., 1994. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. *Chem. Geol.* **118**, 143–153.
- Bédard, J.H., 2001. Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. *Contrib. Mineral. Petrol.* 141, 747–771.
- Bédard, J.H., Fleming, T., Hersum, T., Marsh, B., Mathez, E., Mukasa, S.B., Naslund, H.R., Simon, A. 2005. Evidence for Channelized Transfer of Residual Melts and Fluids in the Basement Sill, Ferrar Province, Antarctica. EOS Trans. Am. Geophys. Union, San Francisco, V14C-05.
- Berndt, J. 2002. Differentiation of MOR Basalt at 200 MPa: Experimental Techniques and Influence of H₂O and f_{O2} on Phase Relations and Liquid Line of Descent. PhD Dissertaition, Universität Hannover, Germany, p. 118.
- Berndt, J., Holtz, F., Koepke, J., 2001. Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. *Contrib. Mineral. Petrol.* 140, 469–486.
- Bindeman, I.N., Davis, A.M., 2000. Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. *Geochim. Cosmochim. Acta* 64, 2863–2878.
- Bindeman, I.N., Davis, A.M., Drake, M.J., 1998. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. *Geochim. Cosmochim. Acta* 62, 1175–1193.
- Blatter, D.L., Carmichael, I.S.E., 2001. Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? *Geochim. Cosmochim. Acta* 65, 4043–4065.
- Blundy, J., 1997. Experimental study of a Kiglapait marginal rock and implications for trace element partitioning in layered intrusions. *Chem. Geol.* 141, 73–92.
- Blundy, J.D., Robinson, J.A.C., Wood, B.J., 1998. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. *Earth Planet. Sci. Lett.* 160, 493–504.
- Blundy, J.D., Wood, B.J., 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. *Geochim. Cosmochim. Acta* 55, 193–209.
- Blundy, J.D., Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. *Nature* 372, 452–454.
- Blundy, J.D., Wood, B.J., 2003. Partitioning of trace elements between crystals and melts. *Earth Planet. Sci. Lett.* **210**, 383–397.
- Blundy, J.D., Wood, B.J., Davies, A., 1996. Thermodynamics of rare earth element partitioning between clinopyroxene and melt in the system CaO–MgO–Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* 60, 359–364.
- Boudreau, A.E., 1999. PELE—a version of the MELTS software program for the PC platform. *Comp. Geosci.* 25, 201–203.
- Bowen, N.L., 1928. *The Evolution of the Igneous Rocks*. Princeton University Press, Princeton, NJ, p. 334.
- Brice, J.C., 1975. Some thermodynamic aspects of the growth of strained crystals. J. Crystal Growth 28, 249–253.
- Brugger, C.R., Johnston, A.D., Cashman, K.V., 2003. Phase relations in silicic systems at one-atmosphere pressure. *Contrib. Mineral. Petrol.* 146, 356–369.
- Capobianco, C.J., Drake, M.J., Rogers, P.S.Z., 1991. Crystal/melt partitioning of Ru, Rh and Pd for silicate and oxide phases. *Lunar Planet. Sci.* 22, 179–180.
- Carroll, M.R., Wyllie, P.J., 1989. Experimental phase relations in the system tonalite-peridotite-H₂O at 15: implications for assimilation and differentiation processes near the crust-mantle boundary. J. Petrol. 30, 1351–1382.
- Couch, S., Harford, C.L., Sparks, R.S.J., Carroll, M.R., 2003. Experimental constraints on the conditions of formation of highly calcic

plagioclase microlites at the Soufrière Hills Volcano, Montserrat. J. Petrol. 44, 1455–1475.

- Costa, F., Scaillet, B., Pichavant, M., 2004. Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcan San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J. Petrol. 45, 855–881.
- Dodge, F.C.W., Millard, H.T., Elsheimer, H.N., 1982. Compositional Variations and Abundances of Selected Elements in Granitoid Rocks and Constituent Minerals, Central Sierra Nevada batholith, California. US geol. Surv. Prof. Paper 1248, p. 24.
- Dostal, J., Capedri, S., 1975. Partition coefficients of uranium for some rock-forming minerals. *Chem. Geol.* 15, 285–294.
- Dostal, J., Dupuy, C., Carron, J.P., LeGuen de Kerneizon, M., Maury, R.C., 1983. Partition coefficients of trace elements: application to volcanic rocks of St.Vincent, West Indies. *Geochim. Cosmochim. Acta* 47, 525–533.
- Douce, A.E.P., 2005. Vapor-absent melting of tonalite at 15–32 kbar. J. Petrol. 46, 275–290.
- Douce, A.E.P., Beard, J.S., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrol. 36, 707–738.
- Douce, A.E.P., Beard, J.S., 1996. Effects of P, f_{O_2} and Mg/Fe ratio on dehydration melting of model metagreywackes. J. Petrol. 37, 999–1024.
- Douce, A.E.P., Harris, N., 1998. Experimental constraints on Himalayan anatexis. J. Petrol. 39, 689–710.
- Drake, M.J., Weill, D., 1975. Partition of Sr, Ba, Ca, Y, Eu²⁺, Eu³⁺, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. *Geochim. Cosmochim. Acta* **39**, 689–712.
- Dudas, M.J., Schmitt, R.A., Harward, M.E., 1971. Trace element partitioning between volcanic plagioclase and dacitic pyroclastic matrix. *Earth Planet. Sci. Lett.* 11, 440–446.
- Duncan, R.A., Green, D.H., 1987. The genesis of refractory melts in the formation of oceanic crust. *Contrib. Mineral. Petrol.* 96, 326–342.
- Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. *Geochim. Cosmochim. Acta* 58, 717–733.
- Elliot, D.H., Fleming, T.H., Haban, M.A., Siders, M.A., 1995. Petrology and mineralogy of the Kirkpatrick Basalt and Ferrar dolerite, Mesa Range region, north Victoria Land, Antarctica. In: Elliott, G.L., Blaisdell G.L. (eds), *Contributions to Antarctic Research IV* Am. Geophys. Union Antarctic Research Series, Washington, DC, pp. 103–141.
- Ewart, A., Griffin, W.L., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. *Chem. Geol.* 117, 251–284.
- Falloon, T.J., Green, D.H., Jacques, A.L., Hawkins, J.W., 1999. Refractory magmas in back-arc basin settings—experimental constraints on the petrogenesis of a Lau Basin example. J. Petrol. 40, 255–277.
- Francalanci, L., 1989. Trace element partitioning coefficients for minerals in shoshonitic and calc-alkaline rocks from Stromboli Island (Aeolian Arc). *Neues Jahrbuch Miner. Abh.* **160**, 229–247.
- Fram, M.S., Longhi, J., 1992. Phase equilibria of dikes associated with Proterozoic anorthosite complexes. Am. Mineral. 77, 605–616.
- Freise, M., Holtz, F., Koepke, J., Scoates, J., Leyrit, H., 2003. Experimental constraints on the storage conditions of phonolites from the Kerguelen Archipelago. *Contrib. Mineral. Petrol.* **145**, 659–672.
- Fujimaki, H., Tatsumoto, M., Aoki, K. 1984. Partition coefficients of Hf, Zr and REE between phenocrysts and groundmass. Proc. 14th Lunar Planet. Sci. Conf. Part 2, J. Geophys. Res. vol. 89, Suppl. B662–672.
- Gaetani, G.A., 2004. The influence of melt structure on trace element partitioning near the peridotite solidus. *Contrib. Mineral. Petrol.* 147, 511–527.
- García-Casco, A., Haissen, F., Castro, A., El-Hmidi, H., Torres-Roldán, R.L., Millán, G., 2003. Synthesis of staurolite in melting experiments of a natural metapelite: consequences for the phase relations in lowtemperature pelitic migmatites. J. Petrol. 44, 1727–1757.

- Gass, I.G., Lippard, S.J., Shelton, A.W., 1984. Ophiolites and Oceanic Lithosphere: Geol. Soc. London Spec. Publ. 13, p. 413.
- Gerke, T.L., Kilinc, A.I., Sack, R.O., 2005. Ti-content of high-Ca pyroxenes as a petrogenetic indicator: an experimental study of mafic alkaline rocks from the Mt. Erebus volcanic region, Antarctica. *Contrib. Mineral. Petrol.* 148, 735–745.
- Green, T.H., Pearson, N.J., 1985. Rare earth element partitioning between clinopyroxene and silicate liquid at moderate to high pressure. *Contrib. Mineral. Petrol.* 91, 24–36.
- Gromet, L.P., Silver, L.T., 1983. Rare-earth element distributions among minerals in a granodiorite and their petrogenetic implications. *Geochim. Cosmochim. Acta* 47, 925–939.
- Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., Müntener, O., Gaetani, G.A., 2003. Fractional crystallization and mantlemelting controls on calc-alkaline differentiation trends. *Contrib. Mineral. Petrol.* **145**, 515–533.
- Grove, T.L., Gerlach, D.C., Sando, T.W., 1982. Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing. *Contrib. Mineral. Petrol.* 80, 160–182.
- Grove, T.L., Juster, T.C., 1989. Experimental investigations of low-Ca pyroxene stability and olivine–pyroxene–liquid equilibria at 1-atm in natural basaltic and andesitic liquids. *Contrib. Mineral. Petrol.* 103, 287–305.
- Harmer, R.E., Sharpe, M.R., 1985. Field relations and strontium isotope systematics of the eastern Bushveld complex. 80, 813–837.
- Holtz, F., Sato, H., Lewis, J., Behrens, H., Nakada, S., 2005. Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part I: phase relations, phase composition and pre-eruptive conditions. J. Petrol. 46, 319–337.
- Housh, T.B., Luhr, J.F., 1991. Plagioclase-melt equilibria in hydrous systems. Am. Mineral. 76, 477–492.
- Johnston, A.D., 1986. Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands. Contrib. Mineral. Petrol. 92, 368–382.
- Kinzler, R.J., Grove, T.L., 1992. Primary magmas of mid-ocean ridge basalts .1. Experiments and methods. J. Geophys. Res. 97, 6885–6906.
- Koepke, J., Berndt, J., Bussy, F., 2003. An experimental study on the shallow-level migmatization of ferrogabbros from the Fuerteventura Basal Complex, Canary Islands. *Lithos* 69, 105–125.
- Langmuir, C.H., 1989. Geochemical consequences of in situ crystallization. Nature 340, 199–205.
- Larsen, J.F., 2005. Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacitic melt. Am. Mineral. 90, 417–427.
- Longhi, J., Van der Auwera, J., Fram, M.S., Duchesne, J.C., 1999. Some phase equilibrium constraints on the origin of Proterozoic (Massif) anorthosites and related rocks. J. Petrol. 40, 339–362.
- López, S., Castro, A., 2001. Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4-14 kbar. Am. Mineral. 86, 1396–1403.
- López, S., Castro, A., Garcia-Casco, A., 2005. Production of granodiorite melt by interaction between hydrous mafic magma and tonalitic crust. Experimental constraints and implications for the generation of Archaean TTG complexes. *Lithos* **79**, 229–250.
- Loucks, R.R., 1996. Restoration of the elemental and stable-isotopic compositions of diffusionally altered minerals in slowly cooled rocks. *Contrib. Mineral. Petrol.* 124, 346–358.
- Luhr, J.F., Carmichael, I.S.E., 1980. The Colima volcanic complex, Mexico, I. Post-caldera andesites from Volcan Colima. *Contrib. Mineral. Petrol.* 71, 343–372.
- Lutz, T.M., 1991. Trace element and isotopic zoning in minerals—models of compositional fractionation by mineral separation procedures. *Lithos* **27**, 1–11.
- Maier, W.D., Barnes, S.J., 1998. Concentrations of rare earth elements in silicate rocks of the Lower, Critical and Main Zones of the Bushveld Complex. *Chem. Geol.* 150, 85–103.
- Malvin, D.J., Drake, M.J., 1987. Experimental determination of crystal/ melt partitioning of Ga and Ge in the system forsterite–anorthite– diopside. *Geochim. Cosmochim. Acta* 51, 2117–2128.

- Markl, G., Frost, B.R., 1999. The origin of anorthosites and related rocks from the Lofoten Islands, northern Norway: II. Calculation of parental liquid compositions for anorthosites. J. Petrol. 40, 61–77.
- Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.L., Traineau, H., 1999. Effects of f_{O_2} and H₂O on andesite phase relations between 2 and 4 kbar. *J. Geophys. Res.* **104**, 29453–29470.
- Métrich, N., Rutherford, M.J., 1998. Low pressure crystallization paths of H₂O-saturated basaltic-hawaiitic melts from Mt Etna: implications for open-system degassing of basaltic volcanoes. *Geochim. Cosmochim. Acta* 62, 1195–1205.
- McDonough, W.F., Stosch, H.G., Ware, N.G., 1992. Distribution of titanium and the rare earth elements between peridotitic minerals. *Contrib. Mineral. Petrol.* 110, 321–328.
- McKay, G.A., Weill, D.F., 1977. KREEP petrogenesis revisited. Proc. Eighth Lunar Sci. Conf., 2339–2355.
- McKay, G.A., Weill, D.F., 1976. The petrogenesis of KREEP. Proc. Seventh Lunar Sci. Conf., 2427–2447.
- Médard, E., Schmidt, M.W., Schiano, P., 2004. Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources. *Contrib. Mineral. Petrol.* 148, 201–215.
- Michael, P.J., 1983. Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. *Geology* 11, 31–34.
- Michael, P.J., 1988. Partition coefficients for rare earth elements in mafic minerals of high silica rhyolites: the importance of accessory mineral inclusions. *Geochim. Cosmochim. Acta* 52, 275–282.
- Montel, J.M., Vielzeuf, D., 1997. Partial melting of metagreywackes. 2. Compositions of minerals and melts. *Contrib. Mineral. Petrol.* 128, 176– 196.
- Moore, G.M., Carmichael, I.S.E., 1998. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. *Contrib. Mineral. Petrol.* **130**, 304–319.
- Müntener, O., Kelemen, P.B., Grove, T.L., 2001. The role of H₂O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. *Contrib. Mineral. Petrol.* 141, 643–658.
- Myers, J.D., Johnson, A.D., 1996. Phase equilibria constraints on models of subduction zone magmatism. In: Bebout, G.E., Scholl, D.W., Kirby, S.H., Platt, J.P., (eds.), *Subduction, Top to Bottom* American Geophys. Union Monograph vol. 96, Washington, DC, pp. 229–249.
- Mysen, B.O., Virgo, D., 1980. Trace element partitioning and melt structure: an experimental study at 1 atm pressure. *Geochim. Cosmochim. Acta* 44, 1917–1930.
- Nagasawa, H., Schnetzler, C.C., 1971. Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magma. *Geochim. Cosmochim. Acta* 35, 953–968.
- Nair, R., Chacko, T., 2002. Fluid-absent melting of high-grade semipelites: *P*-*T* constraints on orthopyroxene formation and implications for granulite genesis. *J. Petrol.* **43**, 2121–2141.
- Nash, W.P., Crecraft, H.R., 1985. Partition coefficients for trace elements in silicic magmas. *Geochim. Cosmochim. Acta* 49, 2309–2322.
- Natland, J.H., 1989. Partial melting of lithologically heterogeneous mantle: inferences from crystallization histories of magnesian abyssal tholeiites from the Siqueiros Fracture Zone. In: Saunders, A.D., Norry, M.J. (Eds.), *Magmatism in the Ocean Basins, Geol. Soc. London Spec. Publ.*, 42. Blackwell Publ., pp. 41–70.
- Nekvasil, H., Dondolini, A., Horn, J., Filiberto, J., Long, H., Lindsley, D.H., 2004. The origin and evolution of silica-saturated alkalic suites: an experimental study. J. Petrol. 45, 693–721.
- Nielsen, R.L., 1985. A method for the elimination of the compositional dependence of trace element distribution coefficients. *Geochim. Cosmochim. Acta* 49, 1775–1779.
- O'Hara, M.J., 1995. Trace element geochemical effects of integrated melt extraction and 'shaped' melting regimes. *J. Petrol.* **36**, 1111–1132.
- Panjasawatwong, Y., Danyushevsky, L.V., Crawford, A.J., Harris, K.L., 1995. An experimental study of the effects of melt composition on plagioclase—melt equilibria at 5 and 10 kbar: implications for the

origin of magmatic high-An plagioclase. Contrib. Mineral. Petrol. 118, 420–432.

- Pertermann, M., Hirschmann, M.M., Hametner, K., Gunther, D., Schmidt, M.W., 2004. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. art. # Q05A01, Geochem. Geophys. Geosyst. vol. 5.
- Perugini, D., Poli, G., Mazzuoli, R., 2003. Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J. Volcanol. Geotherm. Res. 124, 255–279.
- Phinney, W.C., Morrison, D.A., 1990. Partition coefficients for calcic plagioclase: implications for Archean anorthosites. *Geochim. Cosmochim. Acta* 54, 1639–1654.
- Prouteau, G., Scaillet, B., 2003. Experimental constraints on the origin of the 1991 Pinatubo dacite. J. Petrol. 44, 2203–2241.
- Ren, M.H., Parker, D.F., White, J.C., 2003. Partitioning of Sr, Ba, Rb, Y, and LREE between plagioclase and peraluminous silicic magma. *Am. Mineral.* 88, 1091–1103.
- Righter, K., Capobianco, C.J., Drake, M.J., 1995. Experimental constraints on the partitioning of Re between augite, olivine, melilite and silicate liquid at high oxygen fugacities (>NNO). EOS Trans. AGU 76, F698.
- Scaillet, B., Evans, B.W., 1999. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption $P-T-f_{O_2}-f_{H_2O}$ conditions of the dacite magma. J. Petrol. **40**, 381–411.
- Schnetzler, C.C., Philpotts, J.A., 1968. Partition coefficients of rare-earth elements and Barium between igneous matrix material and rockforming mineral phenocrysts n I. *Geochim. Cosmochim. Acta* 32, 929–938.
- Schmidt, M.W., Thompson, A.B., 1996. Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. *Am. Mineral.* 81, 462–474.
- Shannon, R.D., 1976. Revised effective ionic raii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr.* A32, 751–767.
- Shaw, D.M., 2000. Continuous (Dynamic) melting theory revisited. *Can. Mineral.* 38, 1041–1063.
- Shimizu, N., 1974. An experimental study of the partitioning of K, Rb, Cs, Sr, and Ba between clinopyroxene and liquid at high pressures. *Geochim. Cosmochim. Acta* 38, 1789–1798.
- Simon, S.B., Kuehner, S.M., Davis, A.M., Grossman, L., Johnson, M.L., Burnett, D.S., 1994. Experimental studies of trace element partitioning in Ca, Al-rich compositions: anorthite and perovskite. *Geochim. Cosmochim. Acta* 58, 1507–1523.
- Singh, J., Johannes, W., 1996. Dehydration melting of tonalites. 2. Composition of melts and solids. *Contrib. Mineral. Petrol.* 125, 26–44.
- Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous granitic magmas from common basaltic sources. *Contrib. Mineral. Petrol.* 148, 635–661.
- Skjerlie, K.P., Johnston, A.D., 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol. 37, 661–691.

Smith, J.V. Brown, W.L., 1988. Feldspar Minerals, vol I, Springer-Verlag.

- Springer, W., Seck, H.A., 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. *Contrib. Mineral. Petrol.* 127, 30–45.
- Spulber, S.D., Rutherford, M.J., 1983. The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J. Petrol. 24, 1–25.
- Sugawara, T., 2000. Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J. Geophys. Res. 105, 8457–8472.
- Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes.

In: Saunders, A.D., Norry, M.J. (Eds.), *Magmatism in the Ocean Basins, Geol. Soc. Lond. Spec. Publ.*, 42. Blackwell Publ, pp. 313–345.

- Takagi, D., Sato, H., Nakagawa, M., 2005. Experimental study of a lowalkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. *Contrib. Mineral. Petrol.* 149, 527–540.
- Tepley, F.J., Davidson, J.P., Tilling, R.I., Arth, J.G., 2000. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico. J. Petrol. 41, 1397–1411.
- Thompson, R.N., Morrison, M.A., Dickin, A.P., Hendry, G.L., 1983. Continental flood basalts ... Arachnids rule OK? In: Hawkesworth, C.J., Norry, M.J. (Eds.), *Continental Basalts and Mantle Xenoliths*. Shiva Publishing Ltd, Cheshire, U.K., pp. 158–185.
- Thy, P., 1995. Experimental constraints on the evolution of transitional and mildly alkalic basalts: Crystallization of spinel. *Lithos* **36**, 103–114.
- Toplis, M.J., Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J. Petrol. 36, 1137–1170.
- Toplis, M.J., Libourel, G., Carroll, M.R., 1994. The role of phosphorus in crystallisation processes of basalt: an experimental study. *Geochim. Cosmochim. Acta* 58, 797–810.
- Tormey, D.R., Grove, T.L., Bryan, W.B., 1987. Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25°N, mid-Atlantic ridge. *Contrib. Mineral. Petrol.* 82, 121–139.
- Treuil, M., Varet, J., 1973. Critères volcanologiques, pétrologiques et géochimiques de la genèse et de la différenciation des magmas basaltiques: exemple de l'Afar. *Bull. soc. géol. France* 7, 506–540.
- Tuff, J., Takahashi, E., Gibson, S.A., 2005. Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. J. Petrol. 46, 2023–2058.
- Van der Auwera, J., Longhi, J., Duchesne, J.C., 2000. The effect of pressure on ^{plag/melt}D_{Sr} and ^{opx/melt}D_{Cr} : implications for anorthosite petrogenesis. *Earth Planet. Sci. Lett.* **178**, 303–314.
- Vernières, J., Joron, J.L., Treuil, M., Coulon, C., Dupuy, C., 1977. Coéfficient de partage de quelques éléments en trace entre plagioclase et verre dans les ignimbrites—implications pétrogénétiques. *Chem. Geol.* 19, 309–325.
- Villemant, B., Joron, J.L., Jaffrezic, H., Treuil, M., Maury, R.C., Brousse, R., 1980. Cristallisation fractionnée d'un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, France). III: Géochimie. *Bull. Mineral.* 103, 267–286.
- Villiger, S., Ulmer, P., Müntener, O., Thompson, A.B., 2004. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1.0 GPa. J. Petrol. 45, 2369–2388.
- Wilke, M., Behrens, H., 1999. The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. *Contrib. Mineral. Petrol.* 137, 102–114.
- Wood, B.J., Blundy, J.D., 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. *Contrib. Mineral. Petrol.* **129**, 166–181.
- Wood, B.J., Blundy, J.D., 2002. The effect of H₂O on crystal-melt partitioning of trace elements. *Geochim. Cosmochim. Acta* 66, 3647– 3656.
- Wörner, G., Beusen, J.-M., Duchateau, N., Gijbels, R., Schmincke, H.-U., 1983. Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See Volcano (Germany). *Contrib. Mineral. Petrol.* 84, 152–173.
- Yang, H.J., Kinzler, R.J., Grove, T.L., 1996. Experiments and models of anhydrous, basaltic olivine–plagioclase–augite saturated melts from 0.001 to 10 kbar. *Contrib. Mineral. Petrol.* **124**, 1–18.