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We report the petrology, whole-rock geochemistry, zircon LA-ICP-MS U–Pb chronology and zircon Hf isotopic data of 

Daxigou granitoids (western part of the Kuluketage Block, NW China) to evaluate their likely petrogenesis and tectonic 

setting. Zircons from syenogranite can be divided into two groups: 1) those that display oscillatory zoning and high 

Th/U ratios (average = 1.38), implying their magmatic origin and 2) those that exhibit weak zoning and extremely high 

U and Pb contents but low Th/U ratios (average = 0.35), resembling zircons that experienced hydrothermal alteration. 

The zircon LA-ICP-MS U–Pb dating of the two groups of zircons yielded weighted mean ages of 1830 ± 12 Ma (MSWD 

= 0.78) and 1798 ± 21 Ma (MSWD = 1.6) respectively. 

The Daxigou granitoids belong mostly to normal-K and sodium-rich metaluminous calc-alkaline type, systematically 

enriched in LREE and large ion lithophile elements (LILE, e.g., K, Ba and Rb), but significantly depleted in high field 
strength elements (HFSE, e.g., Ti, P, Nb, Ta and U). Their εHf(t) values and two-stage Hf model ages range from –7.16 
to –5.03 and 2.69 to 2.76 Ga, respectively. Taken together, it is suggested that Daxigou granitoids are of I-type affinity 
and that they were derived by partial melting of a Neoarchaean TTG (e.g., Tuoge Complex) rocks in a continental-arc 

environment. These new data, combined with previous regional geological studies, demonstrate that a series of Palaeo-

proterozoic (c. 2.0–1.8 Ga) tectono-magmatic events occurred in Kuluketage Block during the assembly of Columbia.

Keywords: Kuluketage Block, syenogranite, LA-ICP-MS zircon dating, Hf isotopes, Paleoproterozoic

Received: 7 June 2013; accepted: 16 June 2014; handling editor: M. Kohút

1. Introduction

The formation and reworking of early Precambrian con-

tinental crust are of great importance in understanding 

the early evolution of the Earth (Condie 1989, 1994; 

Rudnick 1995; Hawkesworth and Kemp 2006; Long et al. 

2010). The Tarim, as well as the North and South China 

cratons, constitute three major continental blocks in 

China and represent an important part of the early crustal 

evolutionary history of northwest China and adjacent 

areas (Hu AQ et al. 1997; Lu et al. 2008; Demoux et al. 

2009; Xiao and Kusky 2009; Lei et al. 2012). The Tarim 

Craton has a poorly dated Archaean–Paleoproterozoic 

basement which sporadically crops out along the margins 

of the Mesozoic–Cenozoic Tarim Basin (Lu et al. 2002). 

By contrast, the Kuluketage Block (also spelled as Ku-

ruqtagh or Quruqtagh) on the northeastern margin of the 

Tarim Craton (Fig. 1a–b) is predominantly composed of 

the Precambrian basement (Lu et al. 2002, 2008; Wang 

et al. 2013) and provides a good opportunity to study the 

Precambrian evolutionary history of the Tarim Craton. 

Several tectono-thermal events from Neoarchaean 

to the latest Neoproterozoic have been determined in 

this area. However, most of the previous studies have 

mainly focused on Neoproterozoic magmatism and tec-

tonic evolution related to the break-up of Rodinia (Xu 

et al. 2005; Luo et al. 2007; Sun and Huang 2007; Lu et 

al. 2008; Zhu et al. 2008; Zhang et al. 2009; Shu et al. 

2010; Cao et al. 2011), e.g., c. 800–820 Ma Qiganbulake 

mafic–ultramafic–carbonatite complex, 820 ± 10 Ma 
Xingdi granodiorite, 795 ± 10 Ma Taiyangdao granite 

(Zhang et al. 2007a), c. 755 Ma bimodal volcanic rocks 

in the Xinger area (Xu et al. 2005) and 630–650 Ma mafic 
dykes in Korla (Zhu et al. 2008). 

By contrast, little is known about pre-Neoproterozoic 

magmatism (especially for Mesoproterozoic–Paleopro-

terozoic magmatism) and the tectonic evolution of the 

Kuluketage Block. A few studies that have reported on 

the Paleoproterozoic magmatism and tectonic evolution 

in the area, mainly dealt with Nd model ages (Feng et 

al. 1995) and ages from zircons, detrital (Guo et al. 

2003; Hu and Wei 2006; Long et al. 2010; Shu et al. 
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2010) or metamorphic (Lei et al. 2012). However, no 

Paleoproterozoic ages of magmatic zircons have been 

reported yet. Moreover, detailed field observations, 

precise isotopic ages and high-quality geochemical data 

are very sparse for late Paleoproterozoic rocks, and this 

hinders a good understanding of the tectonic evolution 

of the Tarim Craton, especially the tectonic setting of 

the Paleoproterozoic magmatism and its relationship to 

the Palaeo–Mesoproterozoic Columbia Supercontinent 

(Lei et al. 2012). 

Based on detailed field and petrological studies, we 
report comprehensive geochronological, geochemical 

and zircon Hf isotope analyses of the Daxigou Com-

plex (syenogranite and granodiorite) in the Kuluketage 

Block with the aim of characterising its petrogenesis 

and tectonic setting. Together with regional geology and 

geochronological data, the Palaeo–Mesoproterozoic as-

sembly of Columbia is being investigated. 

2. Geological setting

The Kuluketage Block is composed of two units: the 

basement which includes Archaean, Paleoproterozoic, 

Mesoproterozoic and early Neoproterozoic lithologies 

and the middle Neoproterozoic to Phanerozoic sedi-

mentary cover (Gao et al. 1993; Cheng 1994; Feng et al. 

1995; Lu et al. 2008) (Fig. 1b). The Xinger and Xingdi 

faults are the main regional E–W-oriented structures 

(Fig. 1c).

Archaean rocks sporadically crop out in the Kuluket-

age area, known as the Tuoge Complex. It is mainly 

composed of granitic gneisses with minor amphibolite 

xenoliths (derived from gabbroic protoliths) (Hu AQ 

et al. 1999, 2000); it yielded a SHRIMP U–Pb zircon 

age of 2601 ± 21 Ma (Zhang et al. 2012a) and LA–

ICP–MS U–Pb upper intercept zircon age of 2659 ± 

15 Ma (Long et al. 2011a). Mostly metasedimentary 
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Paleoproterozoic rocks (Xingditage Complex) occur 

in the western part of the Kuluketage Block. Despite 

the limited precise geochronology, at the end of the 

Paleoproterozoic, an important metamorphic event was 

postulated to have affected Archaean TTG suites and 

the overlying Paleoproterozoic sedimentary rocks (e.g., 

Feng et al. 1995; Lu et al. 2002; Zhang et al. 2007b). 

Mesoproterozoic to early Neoproterozoic low-grade 

metamorphic rocks, including metamorphosed carbonate 

and clastic metasedimentary rocks, as well as granitoids, 

are widespread in the area (Feng et al. 1995; Lu et al. 

2008). Middle Neoproterozoic to Phanerozoic rocks 

consist of mafic dyke swarms, bimodal volcanics as well 
as fine sandstones, siltstones, shales, dark limestones 

and chert nodule-bearing dolomites. The mafic dykes 
with bimodal volcanics were formed at 820–744 Ma and 

650–630 Ma (Zhang et al. 2007a; Zhu et al. 2008; Xu et 

al. 2009). Late Neoproterozoic glacial deposits are also 

well exposed (Xu et al. 2009). 

The Daxigou Complex is the first low-grade, large 
iron–phosphate deposit discovered at the northern margin 

of the Tarim Craton (Xia et al. 2010). Several similar 

complexes with Fe–P mineralization are located along the 

Xingdi Fault (Xia et al. 2010) and form a strong linear 

aeromagnetic anomaly (Yuan et al. 2013). From west to 

east, the petrology of these igneous bodies is as follows: 

Duosike pyroxenite Complex, Kawuliuketage pyrox-

enite–hornblendite–syenite Complex, Ao’ertang gabbro–

pyroxenite Complex, Daxigou granodiorite–syenogranite 

Complex and Qieganbulake biotite pyroxenite–carbonate 

Complex (Xia et al. 2010).

3. Field geology and petrography

The Daxigou Complex is located south of the Xingdi 

Fault in Kuluketage Block (Fig. 1c) and is controlled 

by its subsidiary fault. The coordinates of the work-

ing area are 87°27'00"–87°31'00"E and 41°12'30"–

41°15'30"N. Rocks of this complex are distributed 

NW–SE over an area of 2.1 × 0.9 km (Fig. 2). They 

intruded into the Archaean Tuoge Complex which is 

mainly composed of amphibole-bearing tonalitic gneiss 

(Xia et al. 2010). 

The Daxigou Complex is built mainly by greyish white 

granodiorite (GD) that exhibits coarse-grained granitic 

texture and blocky structure. The main mineral compo-

nents are plagioclase (45–50 vol. %), quartz (25–30 vol. 

%), K-feldspar (14–17 vol. %), hornblende (8 vol. %), 

magnetite (1–2 vol. %) and apatite (1 vol. %). Accessory 

minerals include zircon and ilmenite. 

Syenogranites (SG) occur mainly as dykes accom-

panying the granodiorite, and account for 30 % of the 

complex. Typically they are pinkish and show massive, 

medium- to coarse-grained granitic textures. Modal 

compositions include plagioclase (An
35–50

 30–50 vol. %), 

quartz (25–35 vol. %), K-feldspar (18–22 vol. %), biotite 

(2–5 vol. %), hornblende (1–2 vol. %), and accessory 

minerals such as apatite, zircon and ilmenite.

Rocks of the Tuoge Complex are composed of pla-

gioclase (40–48 vol. %), quartz (25–30 vol. %), alkali 

feldspar (25–30 vol. %) and biotite (5–10 vol. %) with 

some accessory minerals, e.g., titanite, apatite and zircon. 

Generally, the Tuoge Complex exhibits considerable 
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weathering in the Daxigou area, rendering it not suitable 

for chemical analyses. 

4. Analytical methods

4.1. Zircon U–Pb dating

Zircon grains were separated using conventional crush-

ing, grinding and wet shaking table methods, followed 

by heavy liquid (tetrabromomethane) and magnetic 

separation. Hand-picked zircon grains were mounted 

in epoxy blocks and polished prior to LA-ICP-MS 

analysis, the surfaces of grain mounts were washed in 

dilute HNO
3
 and pure alcohol to remove any potential 

lead contamination. The selection of zircon grains for 

isotopic analyses was based upon cathodoluminescence 

(CL) images (Fig. 3). Zircon U–Th–Pb measurements 

were done at the State Key Laboratory of Geological 

Processes and Mineral Resources, China University of 

Geosciences, Wuhan (GPMR-CUGW), using a GeoLas 

2005 System. An Agilent 7700a ICP-MS instrument 

was employed, with a 193 nm ArF-excimer laser (32 

μm beam diameter). Details on instrumentation and ana-

lytical accuracy were given by Liu et al. (2008, 2010). 

Time-dependent drifts of U–Th–Pb isotopic ratios were 

corrected using a linear interpolation (with time) for ev-

ery five analyses according to the variations of external 
zircon standard 91500 (i.e., 2× 91500 – 5 samples – 2× 

91500) (Liu et al. 2010). The ages were calculated by 

in-house software ICPMSDataCal (ver 9.0) (Liu et al. 

2008), and Concordia diagrams were plotted by Isoplot/

Ex ver. 3.0 (Ludwig 2003). 

4.2. Whole-rock geochemistry

Rock samples for the major- and trace-element analy-

ses were carefully selected to be representative of 

geographical distribution of the two different rock 

types (Fig. 2): four syenogranites and three grano-

diorites. Whole-rock samples were crushed to 0.5 cm 

chips in a steel-faced jaw crusher and powdered with 

an agate mill.

Major elements were analysed with a PAN analytical 

Axios X-ray fluorescence spectrometer (XRF) at ALS 
Chemex (Guangzhou) Ltd. A calcined or ignited sample 

(0.9 g) was added to 9.0 g of lithium borate flux (1 : 1 
Li

2
B

4
O

7
–LiBO

2
), mixed well and fused in an auto fluxer 

between 1050–1100 °C. A flat molten glass disc was 
prepared and analysed by XRF with a precision better 

than 5 %. 

Trace-element concentrations were determined with an 

Elan 9000 ICP-MS at the same lab. To the sample powder 

(0.2 g) was added lithium metaborate flux (0.9 g), mixed 
well and fused in a furnace at 1000 °C. The resulting 

melt was then cooled and dissolved in 100 ml of 4 % 

HNO
3
/2 % HCl solution and analyzed by ICP-MS with 

a precision better than 10 % for all elements.

4.3. In situ zircon Hf isotope analysis

In situ zircon Hf isotopic analyses were conducted us-

ing a Neptune Plus MC-ICP-MS, in combination with a 

Geolas 2005 excimer ArF laser-ablation system, at the 

GPMR-CUGW. During the analysis, a laser repetition 

rate of 20 Hz at 200 mJ was used with the spot diam-

eter of 44 μm. Details of the analytical technique were 
described in (Hu ZC et al. 2012). During the analysis, 

the 176Hf/177Hf ratios of the standard zircon (GJ-1) 

were 0.282013 ± 0.000022 (2σ,  
n = 276), agreeing with the rec-

ommended values (Woodhead 

and Hergt 2005; Wu FY et al. 

2006; Sláma et al. 2008; Li et 

al. 2010) within 2σ error. Off-
line selection and integration of 

analytical signals, and isobaric 

interference and mass fraction-

ation correction of Lu–Hf isoto-

pic ratios were also performed 

by the ICPMS-DataCal.

GO 3-GO 1- GO 4-

GO 5-

GO 6-

GO 7- GO 8- GO 9- GO 10- GO 11-

GT 1- GT 2- GT 3-
GT 4- GT 5- GT 6- GT 7- GT 8-

100 mμ

GO 2-

-5.14

- .6 69
- .6 14

- .6 58

- .5 82

- .6 04

- .6 57

- .6 61
- .5 97

- .5 03 - .6 18

- .6 92 - .6 77
- .5 96

- .6 93
- .7 10 - .6 51

- .6 58 - .7 16

1849 ± 18 Ma 1834 ± 18 Ma

1774 ± 17 Ma
1792 ± 19 Ma

1829 ± 26 Ma 1821 ± 24 Ma

1799 ± 20 Ma

1834 ± 21 Ma

1869 ± 22 Ma

1813 ± 22 Ma

1770 ± 21 Ma
1776 ± 22 Ma

1830 ± 22 Ma

1824 ± 20 Ma

1820 ± 22 Ma
1835 ± 16 Ma

1796 ± 19 Ma 1828 ± 17 Ma

1827 ± 19 Ma

Fig. 3 Cathodoluminescence (CL) im-

ages of zircons from the syenogranite 

SG-2. LA-ICP-MS U–Pb (red circles) 

and in situ Hf determination spots (big-

ger circles) with 207Pb/235U ages and 

εHf(t) values are indicated.
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Tab. 1 Laser-ablation ICP-MS U–Pb isotopic data for zircon from the dated syenogranite

Sample 

spot

Concentrations (ppm) U–Th–Pb isotopic ratios Ages (Ma)

Pb Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
GO-1 152.0 553 262 2.11 0.1088 0.0022 5.1793 0.1067 0.3411 0.0030 1789 36 1849 18 1892 14

GO-2 145.4 363 282 1.29 0.1056 0.0022 5.0890 0.1078 0.3452 0.0031 1726 39 1834 18 1912 15

GO-3 49.7 130 99 1.31 0.1068 0.0034 5.0600 0.1560 0.3404 0.0039 1746 57 1829 26 1889 19

GO-4 256.0 622 513 1.21 0.1036 0.0029 5.0081 0.1391 0.3454 0.0034 1700 52 1821 24 1912 16

GO-5 169.1 457 325 1.41 0.1057 0.0027 5.0851 0.1275 0.3442 0.0035 1728 46 1834 21 1907 17

GO-6 66.9 181 129 1.40 0.1063 0.0027 5.0659 0.1318 0.3407 0.0036 1737 47 1830 22 1890 17

GO-7 151.8 455 286 1.59 0.1071 0.0025 4.8826 0.1138 0.3255 0.0028 1752 44 1799 20 1816 14

GO-8 105.7 246 218 1.13 0.1107 0.0029 4.9628 0.1263 0.3207 0.0031 1811 48 1813 22 1793 15

GO-9 131.8 340 260 1.31 0.1092 0.0026 5.0250 0.1183 0.3287 0.0029 1787 43 1824 20 1832 14

GO-10 55.6 123 113 1.09 0.1129 0.0030 5.3033 0.1385 0.3373 0.0036 1847 48 1869 22 1873 17

GO-11 128.5 333 257 1.30 0.1113 0.0025 5.0454 0.1138 0.3257 0.0030 1820 36 1827 19 1818 15

Average 128.4  345.7 249.5 1.38            

GT-1 820.0 293 2248 0.13 0.1041 0.0021 4.7391 0.0965 0.3257 0.0029 1698 69 1774 17 1817 14

GT-2 488.0 598 1216 0.49 0.1056 0.0023 4.8428 0.1084 0.3280 0.0031 1726 41 1792 19 1828 15

GT-3 356.3 392 841 0.47 0.1038 0.0028 5.0067 0.1323 0.3444 0.0034 1692 49 1820 22 1908 16

GT-4 952.0 546 2411 0.23 0.1056 0.0024 4.8638 0.1094 0.3288 0.0030 1724 41 1796 19 1833 14

GT-5 1146.1 493 3024 0.16 0.1052 0.0027 4.7483 0.1224 0.3217 0.0034 1718 47 1776 22 1798 17

GT-6 242.2 302 569 0.53 0.1091 0.0024 5.0494 0.1114 0.3308 0.0030 1785 40 1828 19 1842 15

GT-7 203.8 290 466 0.62 0.1087 0.0027 5.0934 0.1284 0.3349 0.0034 1789 51 1835 21 1862 16

GT-8 936.0 471 2354 0.20 0.1089 0.0028 4.7151 0.1199 0.3100 0.0033 1781 14 1770 21 1741 16

Average 643.1  423.1 1641.1 0.35            

GO = group one; GT = group two
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and orange in colour under the optical microscope; their 

length/width ratios are c. 1.2. In CL images (Fig. 3, the 

bottom row), they are much darker than magmatic rims 

and exhibit no zoning. This suggests that they may have 

undergone hydrothermal alteration, similar to the zircons 

in alkali syenites (Corfu et al. 2003).

The group two zircons show much higher U (466–

3024 ppm), Pb (204–1146 ppm) and total REE contents, 

but lower Th/U ratios (0.13–

0.62) than those of group one 

(Tab. 1). However, they show 
176Lu/177Hf and 176Hf/177Hf(t) 

ratios identical to the GO zir-

cons (see Tab. 3). These char-

acteristics are similar to those 

of zircons formed by alteration 

with an aqueous fluid or a hy-

drous melt (e.g., Gerdes and 

Zeh 2009). Eight analyses of 

eight irregular grains with bad 

oscillatory zoning yielded a 

weighted mean 207Pb/235U age of 

1798 ± 21 Ma (MSWD = 1.6, 

2σ) (Fig. 4b), i.e. postdating 
by nearly 30 Ma the intrusion 

(GO). Thus we interpreted this 

datum as the age of post-mag-

matic alteration. 

5.2. Major elements

The representative whole-rock 

major- and trace-element com-

positions are given in Tab. 2, 

including those for the Tuoge 

Complex. In addition, these 

samples may have undergone 

some degree of alteration, such 

as chloritization, even though 

their LOI values are moderate 

(2.09–3.63 wt. %), except the 

sample SG-3 (6.58 wt. %). 

The syenogranites are char-

acterised by variable SiO
2
 

(60.44–73.28 wt. %), K
2
O 

(1.05–6.23 wt. %), high Na
2
O 

(3.17–5.62 wt. %), and low 

P
2
O

5
 (0.014–0.113 wt. %), TiO

2
 

(0.03–0.43 wt. %) with MgO 

(0.24–1.66 wt. %). After re-

jection of the K-rich sample 

(SG-1), the Na
2
O/K

2
O ratios 

range from 1.19 to 5.35, i.e. are 

characteristic of I-type granites 

Data-point error ellipses are 2σ
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Fig. 4 U–Pb Concordia plots and recal-
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Tab. 2 Major- (wt. %) and trace-element data (ppm, including REE) from the Daxigou granitoids (this work) and Tuoge Complex (Long et al. (2010)

Sample No. SG-1 SG-2 SG-3 SG-4 GD-1 GD-2 GD-3 TC-1 TC-2 TC-3 TC-4

Lithology Syenogranite Granodiorite Tuoge Complex

SiO
2

69.83 73.28 60.44 68.86 69.25 72.05 61.85 69.30 68.90 71.00 66.30

Al
2
O

3
14.22 12.23 14.46 12.75 12.61 12.43 14.98 13.50 13.60 13.10 14.40

Fe
2
O

3(T)
0.52 3.38 4.38 1.60 5.08 2.70 6.90 4.06 4.50 3.69 4.94

CaO 2.17 0.96 4.58 4.23 1.46 2.07 3.59 2.57 2.50 0.98 2.74

MgO 0.24 1.40 1.66 0.39 1.79 0.91 2.30 0.97 1.36 1.26 1.71

Na
2
O 3.17 3.87 5.62 4.05 4.45 5.16 4.21 3.72 3.63 4.54 3.30

K
2
O 6.23 2.59 1.05 3.40 1.49 1.43 1.02 3.00 2.68 3.34 3.43

TiO
2

0.03 0.08 0.43 0.03 0.22 0.26 0.94 0.81 0.86 0.56 0.89

MnO <0.01 0.05 0.07 0.02 0.07 0.04 0.06 0.08 0.08 0.09 0.07

P
2
O

5
0.01 0.03 0.11 0.02 0.09 0.09 0.35 0.25 0.25 0.19 0.31

SrO 0.02 0.02 0.04 0.03 0.02 0.03 0.07 – – – –

BaO 0.13 0.07 0.08 0.09 0.10 0.05 0.10 – – – –

LOI 2.46 2.09 6.58 3.63 2.57 2.44 2.80 1.23 1.10 0.83 1.32

∑ 99.02 100.05 99.50 99.10 99.19 99.65 99.17 99.50 99.50 99.60 99.40

Na
2
O/K

2
O 0.51 1.49 5.35 1.19 2.99 3.61 4.13 1.24 1.35 1.36 0.96

Na
2
O+K

2
O 9.40 6.46 6.67 7.45 5.94 6.59 5.23 6.72 6.31 7.88 6.73

A/NK 1.19 1.33 1.39 1.23 1.41 1.24 1.87 1.44 1.53 1.18 1.58

A/CNK 0.89 1.12 0.77 0.71 1.09 0.90 1.03 0.96 1.01 1.02 1.02

δ 3.29 1.38 2.55 2.15 1.34 1.49 1.45 1.72 1.54 2.22 1.94

Co 82.50 78.20 33.70 64.40 22.60 46.70 41.90 4.38 6.58 6.34 6.67

Ni 10.00 9.00 17.00 8.00 10.00 10.00 26.00 5.67 3.82 6.65 7.39

Rb 126.5 52.9 23.2 67.8 30.5 30.2 13.4 48.6 61.7 39.9 69.5

Ba 1205 699 739 828 957 554 887 2206 2044 1974 2586

Th 0.58 4.14 4.77 3.42 8.4 4.62 0.47 7.81 7.80 11.07 14.96

U 0.25 0.59 0.69 1.01 0.51 0.47 0.44 0.52 0.52 0.44 0.50

K 51715.9 21499.9 8716.2 28223.7 12368.6 11870.6 8467.1 24911.3 22254.1 27734.6 28481.9

La 3.6 9.2 38.8 6.8 28.0 21.8 35.3 108.0 116.0 110.0 153.0

Ce 6.6 15.5 70.7 13.1 53.8 41.7 78.1 236.0 250.0 232.0 304.0

Pb 18.00 10.00 6.00 13.00 5.00 9.00 25.00 17.58 10.97 9.93 13.23

Pr 0.65 1.62 7.33 1.52 5.80 4.36 9.77 28.00 29.70 28.00 32.30

Sr 223 206 370 283 207 241 682 346 265 140 436

P 61.50 140.57 496.40 96.64 421.72 395.36 1550.69 1091.34 1091.34 829.42 1353.26

Nd 2.30 6.00 26.60 5.90 20.70 16.20 41.00 102.00 106.00 98.70 109.00

Ta 0.40 0.30 0.50 0.50 0.30 0.30 0.30 1.14 0.77 0.53 0.65

Zr 41 45 209 46 145 143 281 408 253 300 310

Hf 1.70 1.30 5.40 1.70 4.20 4.60 6.60 10.25 6.23 7.57 7.70

Sm 0.45 1.04 4.26 1.42 3.81 3.27 7.34 17.20 16.40 15.00 13.20

Eu 0.50 0.51 1.16 0.75 1.09 0.81 2.06 3.53 3.37 2.63 2.70

Ti 143.65 383.06 2058.96 143.65 1053.42 1244.95 4500.98 4856.25 5156.01 3357.40 5335.88

Gd 0.36 1.05 3.64 1.60 3.15 4.01 6.09 14.10 13.00 10.50 10.00

Tb 0.05 0.18 0.46 0.26 0.48 0.64 0.72 2.14 1.79 1.49 1.05

Dy 0.25 1.03 2.54 1.56 3.06 3.66 3.56 12.00 9.65 7.92 4.98

Y 1.6 5.9 14.2 10.6 16.8 19.5 16.2 59.5 46.9 38.1 22.7

Nb 1.0 1.4 9.8 4.3 4.1 5.9 5.4 18.5 18.1 11.6 10.1

Ho 0.05 0.21 0.47 0.33 0.60 0.69 0.60 2.38 1.81 1.47 0.89

Er 0.14 0.64 1.34 1.07 1.65 2.03 1.62 6.42 4.63 3.68 2.21

Tm 0.03 0.09 0.20 0.16 0.28 0.29 0.20 0.92 0.62 0.47 0.30

Yb 0.15 0.69 1.32 1.13 1.60 1.93 1.16 5.88 3.80 2.71 1.77

Lu 0.03 0.10 0.20 0.19 0.24 0.28 0.16 0.86 0.53 0.35 0.26

ΣREE 15.16 37.86 159.02 35.79 124.26 101.67 187.68 539.43 557.30 514.92 635.66

LREE 14.10 33.87 148.85 29.49 113.20 88.14 173.57 494.73 521.47 486.33 614.20

HREE 1.06 3.99 10.17 6.30 11.06 13.53 14.11 44.70 35.83 28.59 21.46

LREE/HREE 13.30 8.49 14.64 4.68 10.24 6.51 12.30 11.07 14.55 17.01 28.62

La
N
/Yb

N
17.22 9.56 21.08 4.32 12.55 8.10 21.83 13.17 21.90 29.12 62.00

δEu 3.80 1.49 0.90 1.52 0.96 0.68 0.94 0.69 0.71 0.64 0.72

Note: data of Tuoge Complex are from Long et al (2010).

A/NK = molar ratio of Al
2
O

3
/(Na

2
O + K

2
O); A/CNK = molar ratio of Al

2
O

3
/(CaO + Na

2
O + K

2
O) (Shand 1943); 

δ = [w(K
2
O + Na

2
O)2]/[w(SiO

2 
– 43)] (Rittmann 1953); δEu = Eu/Eu* = Eu

N
/√Sm

N
 + Gd

N
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(Chappell and White 1974). Silica alkalic indexes (δ) 
[wt. % (K

2
O + Na

2
O)2] / [wt. % (SiO

2
 – 43)] (Rittmann 

1953) range from 1.37 to 3.29, which suggests calc-

alkaline characteristics. In addition, most of the data 

fall in the medium-K, calc-alkaline field on the SiO
2
 

versus K
2
O diagram of Peccerillo and Taylor (1976) 

(Fig. 5a). The rocks are metaluminous, with the A/CNK 

[molar Al
2
O

3 
/(CaO + K

2
O + Na

2
O)] varying from 0.71 

to 0.93, except sample SG-2 (A/CNK = 1.12) (Fig. 5b, 

Shand 1943). 

The Daxigou granodiorites contain 61.85–72.05 wt. % 

SiO
2
, 12.61–14.98 wt. % Al

2
O

3
, 1.46 %–3.59 wt. % 

CaO, 0.91–2.3 wt. % MgO and 1.02–1.49 wt. % K
2
O, 

with Na
2
O/K

2
O ratios of 2.99–4.13 and low silica alka-

lic indexes (δ = 1.34–1.49). All granodiorites belong to 
the calc-alkaline series (Fig. 5a) and are subaluminous  

(A/CNK = 0.90–1.09) (Fig. 5b). 

The Tab. 2 and Harker plots (Fig. 6) show that the av-

erage compositions of syenogranite and granodiorite are 

similar, with small differences in Fe
2
O

3(t) 
content. More-

over, compared with the Tuoge Complex, the Daxigou 

granitoids contain rocks with a slightly higher Na
2
O and a 

lower FeOt contents; SiO
2
, Al

2
O

3
, CaO and MgO contents 

are comparable. In the Harker diagrams, the three rock 

types show consistent negative correlations between SiO
2
 

and Al
2
O

3
, Fe

2
O

3
t, CaO, MgO and P

2
O

5
. Laboratory stud-

ies have shown the different behaviour of apatite in I-type 

(Wolf and London 1994) and S-type granites, and this 

has been successfully used to distinguish granite types 

(Chappell 1999). Most of our data show that Daxigou 

granitoids are metaluminous, and the content of P
2
O

5
 is 

low and negatively correlated with SiO
2
 (Fig. 6), which 

corresponds to the evolutionary trend of I-type granites 

(Chappell and White 1992). Therefore, we suggest that 

Daxigou granitoids are of I-type affinity and may have a 
genetic relationship with the Tuoge Complex.

5.3. Trace elements

The trace-element concentrations of the Daxigou granit-

oids are highly variable. However, most show mutually 

comparable patterns in primitive mantle-normalized spi-

der diagram (Fig. 7a). Most of the trace-element contents 

of granodiorites are higher than those of syenogranites 

but lower than those of the Tuoge Complex. Generally, 

all the samples are enriched in large ion lithophile ele-

ments (LILE, e.g., K, Ba and Rb) but depleted in high 

field strength elements (HFSE, e.g., Ti, P, Nb, Ta and U) 
(Fig. 7a), and thus show distribution patterns resembling 

volcanic-arc rocks. We suggest that Ba was elevated by 

either K-feldspar or biotite accumulation or, along with 

Rb and K, during hydrothermal alteration.

The chondrite-normalised REE patterns (Fig. 7b) for 

the granodiorites and the Tuoge Complex have weak to 

moderate negative Eu anomalies (Eu/Eu* = 0.64–0.96, 
calculation method in Tab. 2), whereas the syenogranites 

show weak negative to moderately positive Eu anomalies 

(Eu/Eu* = 0.90–3.80). Nevertheless, most samples share 
similar chondrite-normalised REE patterns enriched in 

LREE over HREE (Fig. 7b).

5.4. In situ zircon Hf isotopic compositions

The zircons of both groups were analysed for their Lu–Hf 

isotopic compositions on the dated domains (Fig. 3), and 

the data are presented in Tab. 3 and graphically illustrated 

in Fig. 8. Table 3 shows that the 176Lu/177Hf ratios of all 

zircons are less than 0.002, which indicates that they ac-

cumulated little radiogenic Hf since they formed.

Eleven analyses obtained from the GO zircons yielded 

rather variable εHf(t) values of –6.69 to –5.03 (Tab. 3), 
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2
 for granitoids of the Daxigou and 

Tuoge complexes (Peccerillo et al. 1976). b – Diagram of A/NK– 

A/CNK for the same rocks (Shand 1943).
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Fig. 6 Harker diagrams for granitoids of the Daxigou and Tuoge complexes.

Tab. 3 Zircon Lu–Hf isotopic compositions for the syenogranite from Daxigou granitoids

Spot Age (Ma) 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ εHf(0) f
Lu/Hf

εHf(t) T
DM1

T
DM2

GO-01 1849 0.281492 0.000014 0.000886 0.000011 0.030306 0.000169 –45.25 –0.97 –5.14 2.45 2.69

GO-02 1834 0.281442 0.000011 0.000418 0.000002 0.013939 0.000137 –47.04 –0.99 –6.69 2.49 2.76

GO-03 1829 0.281481 0.000012 0.001018 0.000001 0.032573 0.000105 –45.65 –0.97 –6.14 2.48 2.73

GO-04 1821 0.281455 0.000013 0.000475 0.000002 0.015776 0.000033 –46.58 –0.99 –6.58 2.48 2.75

GO-05 1834 0.281488 0.000012 0.001045 0.000001 0.034317 0.000117 –45.40 –0.97 –5.82 2.47 2.72

GO-06 1830 0.281471 0.000013 0.000655 0.000001 0.022488 0.000080 –46.02 –0.98 –6.04 2.47 2.73

GO-07 1799 0.281465 0.000011 0.000366 0.000004 0.012501 0.000192 –46.21 –0.99 –6.57 2.46 2.73

GO-08 1813 0.281475 0.000010 0.000917 0.000004 0.031709 0.000227 –45.88 –0.97 –6.61 2.48 2.74

GO-09 1824 0.281474 0.000011 0.000571 0.000001 0.019712 0.000086 –45.92 –0.98 –5.97 2.46 2.72

GO-10 1869 0.281478 0.000014 0.000751 0.000003 0.027590 0.000050 –45.76 –0.98 –5.03 2.46 2.70

GO-11 1827 0.281466 0.000012 0.000581 0.000001 0.020215 0.000065 –46.19 –0.98 –6.18 2.47 2.73

GT-01 1774 0.281503 0.000013 0.001312 0.000002 0.041417 0.000174 –44.87 –0.96 –6.92 2.47 2.73

GT-02 1792 0.281486 0.000011 0.001004 0.000004 0.033979 0.000182 –45.48 –0.97 –6.77 2.47 2.74

GT-03 1820 0.281487 0.000013 0.000882 0.000001 0.030499 0.000060 –45.44 –0.97 –5.96 2.46 2.71

GT-04 1796 0.281465 0.000012 0.000601 0.000004 0.020357 0.000114 –46.21 –0.98 –6.93 2.47 2.75

GT-05 1776 0.281509 0.000011 0.001669 0.000002 0.055547 0.000179 –44.66 –0.95 –7.10 2.48 2.74

GT-06 1828 0.281456 0.000010 0.000591 0.000001 0.020237 0.000052 –46.52 –0.98 –6.51 2.48 2.75

GT-07 1835 0.281455 0.000010 0.000739 0.000001 0.025285 0.000078 –46.56 –0.98 –6.58 2.49 2.76

GT-08 1770 0.281514 0.000011 0.001752 0.000003 0.059155 0.000161 –44.50 –0.95 –7.16 2.48 2.74

GO = group one; GT = group two. ε
Hf

(t) = {[(176Hf/177Hf)
s
 − (176Lu/177Hf)

s
 × (eλt − 1)]/[(176Hf/177Hf)

CHUR,0
 − (176Lu/177Hf)

CHUR
 × (eλt − 1)] − 1} × 10000; 

s = sample, (176Hf/177Hf)
CHUR,0

 = 0.282772, (176Lu/177Hf)
CHUR

 = 0.0332, (176Hf/177Hf)
DM

 = 0.28325, (176Lu/177Hf)
DM

 = 0.0384 (according to Blichert-Toft 

and Albarède 1997; Griffin et al. 2000), t = the crystallization age of zircon, λ = 1.867 × 10–11 a–1 (Söderlund et al. 2004), (176Lu/177Hf)
C
 = 0.015,  

S and DM are the upper continental crust, the sample and the depleted mantle, respectively.
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nearly constant one-stage model ages of 2.45–2.49 Ga 

and two-stage model ages of 2.69–2.76 Ga. Eight spot 

analyses for the GT zircons gave εHf(t) values of –7.16 
to –5.96, similar one-stage model ages (2.46–2.49 Ga) 

and two-stage model ages (2.71–2.76 Ga). 

Taken together, the studied zircons show a single 

distribution in εHf(t) values (Fig. 8) with an average of 
–6.35 (Tab. 3). The Archaean Hf model ages indicate that 

the studied rocks may have originated from the melting 

of the Archaean rocks (e.g., TTG) (Fig. 9). 

6. Discussion

6.1. Geochemical character, age and likely 
petrogenesis

As stated above, most samples from the Daxigou 

granitoids exhibit the mineralogical and geochemical 

characteristics of I-type granites. Most samples belong 

to the calc-alkaline series, are fairly rich in SiO
2
, Na

2
O 

(Na
2
O/K

2
O > 1 by weight) and have a metaluminous to 

subaluminous composition. The MgO (0.24–1.66 wt. %) 

concentrations are obviously lower than those in the aver-

age upper crust (2.48 wt. %; Rudnick and Gao 2003), and 

this precludes their derivation directly from the mantle. 

Furthermore, the relatively high alkalis suggest the pres-

ence of feldspars and/or biotite in the source (Jiang et 

al. 2005; Zhao XF et al. 2008). The high LREE/HREE 

ratios, high Sr contents and Sr/Y ratios, low Yb and Y 

contents and HFSE (Nb, Ta, P and Ti) depletion indicate 

that the Daxigou granitoids were likely generated at great 

depths, with garnet ± apatite, zircon, ilmenite or rutile 

as the main residual phases. In addition, their low initial 

εHf(t) values (−7.16 to −5.03, Tab. 3) reveal a continental 
crustal source. Older Paleoproterozoic rocks (e.g., the 

Xingditage Complex) can be ruled out as a source on 

the basis of geochemistry (low SiO
2
) and isotopic char-

acteristics (positive εHf(t): Long et al. 2010). A plausible 
source would represent Archaean rocks, exposed to the 

west of the Kuluketage Block, e.g., in the Tuoge Complex 

(2.65–2.75 Ga, Long et al. 2011a). Indeed, the T
DM2

 Hf 

model ages of the Daxigou granitoids and those for the 

Tuoge Complex are comparable.

In the Nb–Y diagram (Fig. 10a), all of the Daxigou 

granitoids fall in the field of the volcanic-arc or syn-col-
lisional granites. However, in the Rb–(Yb + Nb) diagram 

(Fig. 10b), almost all of the data plot in the volcanic-arc 

field. As further evidence, all samples are depleted in 
Nb, which is typical of granitoids with arc affinity (e.g., 
Pearce et al. 1984) (Fig. 7b). In all, the combination of 

field investigations, whole-rock geochemical data, U–Pb 
ages and zircon Hf isotope data imply that the Daxigou 

granitoids represent the continental-arc I-type granites, 

which may have originated by remelting of the TTG 

(Tuoge Complex) materials. 

6.2. Tectonic implications

The age and petrogenesis of the host granitoids have 

been one of main problems since the discovery of the 

Daxigou iron–phosphate deposit in the Kuluketage Block. 

We interpret the newly obtained age of 1830 ± 12 Ma in 

terms of Paleoproterozoic crystallization of the Daxigou 
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granitoids. The zoning and chemistry of the dated zircons 

indicate their magmatic origin. 

A series of high-precision ages of Tarim Craton base-

ment rocks show that they have mainly experienced two 

major geological events: about 0.8–1.0 Ga (Zhu et al. 

2008; Zhang et al. 2011; Cao et al. 2012) and 2.3–2.8 

Ga (Zhang et al. 2012b; Zhang et al. 2013). However, 

our study indicates that the 1.8–2.0 Ga plutonism may 

have been important. In addition, the Mesoproterozoic 

Yangjibulake Group in Kuluketage, which shows effects 

of greenschist-facies metamorphism, unconformably 

overlies the Xinditage Group (Zhang et al. 2012a). There-

fore, deducing an important tectonic event at the end of 

the Paleoproterozoic seems reasonable. 

Some 1.9–1.8 Ga ages were recently documented 

at the margins of the Tarim Craton. However, most of 

these were ascribed to a metamorphic event (Zhang et 

al. 2012b). For instance, Wu HL et al. (2012) identi-

fied the existence of a 1.85 Ga metamorphic age peak 
from four metasedimentary rocks in Korla; Zhang et al. 

(2007b) described a c. 1.9 Ga metamorphic record from 

the Archaean gneiss and K-feldspar granite in southwest-

ern Tarim and Zhang et al. documented c. 1.85–1.80 Ga 

metamorphic ages from Archaean TTG rocks and the 
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Paleoproterozoic metamorphic belt around Kuluketage 

(Zhang et al. 2012a).

Moreover, we have noticed that some tectono-magmatic 

events occurred there at 1.9–1.8 Ga, related to the assem-

bly of Columbia Supercontinent. For instance, Zhang et al. 

(2007a) identified a 1987 ± 20 Ma inherited component in 
zircon grains from granodiorite north of Xingdi. Deng et 

al. (2008) obtained an age of 1916 ± 36 Ma by LA-ICP-

MS zircon U–Pb dating of several inherited zircons from 

a gabbro in the Xingdi Valley of Kuluketage and Cao et 

al. (2010) an age of 1886 ± 61 Ma by LA-ICP-MS zir-

con U–Pb dating of several inherited zircon grains from 

Neoproterozoic K-feldspar granite of Dapingliang plutons. 

Recently, two igneous crystallization ages of 1934 ± 13 

and 1944 ± 19 Ma from quartz diorite and granodiorite 

were obtained west of Kuluketage (Lei et al. 2012). How-

ever, the same authors stated that these zircons may have 

undergone high-temperature metamorphism, considering 

the nearly identical ages of the cores and metamorphic 

rims as well as their similar εHf(t) values. We can also see 
from the above ages that almost all of the zircons are either 

documented as metamorphic or inherited. In the current 

study, the 1830 ± 12 Ma age for the Daxigou syenogranite 

is thus the first reliable crystallization age of the Paleopro-

terozoic intrusive rocks in the Kuluketage Block.

Based on the above information, we infer an occurrence 

of an important Paleoproterozoic (c. 2.0–1.8 Ga) tectono-

metamorphic and magmatic event in the Tarim Block. Late 

Paleoproterozoic collisional orogenic events have been 

increasingly recognised in Precambrian cratons worldwide 

and may have ultimately resulted in the formation of the 

Columbia Supercontinent (e.g., Rogers and Santosh 2002; 

Zhao GC et al. 2002, 2004; Santosh et al. 2007; Zhao GC 

et al. 2009; Chen and Xing 2013). Therefore, the Paleo-

proterozoic (c. 1.8–1.9 Ga) tectono-magmatic events docu-

mented in this study indicate that the Tarim Craton may 

have taken part in the assembly of the Columbia Super-

continent as well. Voluminous I-type granitic plutons have 

been traditionally considered to form at active continental 

margins related to oceanic crust subduction (Wilson 1989). 

Because our zircon dating yielded late Paleoproterozoic 

crystallization ages, a continental arc-type setting is sug-

gested for the northern Tarim at c. 1830 Ma. However, 

obtaining detailed information about the subduction zone, 

e.g., its polarity and location of the ocean is currently a 

challenge because of scarce information on the Kuluketage 

Block. Much more work is required to reconstruct the plate 

tectonic history in the Tarim Craton.

7. Conclusions

We can draw the following conclusions from our new 

field, zircon U–Pb ages and geochemical data: 
1. LA–ICP-MS U–Pb zircon dating indicates that the 

emplacement and alteration of the Daxigou syeno-

granite occurred at 1830 ± 12 Ma and 1798 ± 21 Ma, 

respectively. This is the first record of a late Paleopro-

terozoic to early Mesoproterozoic magmatic event in 

the Kuluketage area. 

2. Based on a combination of field investigations and 
petrographic, geochronological and geochemical evi-

dence, we suggest that Daxigou granitoids belong to 

Paleoproterozoic continental-arc I-type granites, which 

may have originated by melting of Neoarchaean TTG 

(Tuoge Complex) materials.
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3. The available data, together with previous studies, de-

monstrate that a Paleoproterozoic (c. 2.0–1.8 Ga) tecto-

no-magmatic event occurred in the Kuluketage Block. 

We suggest a continental arc-type tectonic setting in 

the Kuluketage Block at late Paleoproterozoic times (c. 

1830 Ma). The Tarim Craton may have participated in 

the assembly of the Columbia Supercontinent.
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