Nº 1/2006 31

УДК 551.24:552.323.3

© Н.А.Божко, 2006

ТЕКТОНИЧЕСКИЕ ОБСТАНОВКИ ЛОКАЛИЗАЦИИ АЛМАЗОНОСНЫХ КИМБЕРЛИТОВ ЗА ПРЕДЕЛАМИ АРХЕЙСКИХ КРАТОНОВ

Н.А.Божко (Московский государственный университет)

Рассмотрена тектоническая позиция алмазоносных кимберлитов, залегающих вне архейских кратонов. Выделено несколько тектонических обстановок проявления алмазоносного кимберлитового магматизма на примерах, представляющих исключения из правила Клиффорда в его распространенной трактовке.

Практически все промышленные коренные месторождения алмазов находятся в пределах древних кратонов, что в общем подтверждает известную эмпирическую закономерность — правило Клиффорда. Согласно этому правилу, все промышленно-алмазоносные кимберлиты приурочены к стабильным кратонам, тогда как окружающие их складчатые пояса могут содержать лишь неалмазоносные кимберлиты. Вместе с тем, отмечается неоднозначность трактовок этого правила в части понятия «кратон». Т.Клиффорд [7] имел в виду алмазопродуктивные древние докибарские кратоны, т.е. области с возрастом стабилизации древнее 1850±250 млн. лет, включающие, таким образом, и раннепротерозойские. Однако в настоящее время исходной предпосылкой при оценке перспектив алмазоносности обычно считается приуроченность продуктивных кимберлитов исключительно к архейским кратонам. Согласно этим взглядам, промышленно значимые кимберлиты сосредоточены только в пределах архонов [22], т.е. областей архейской консолидации с возрастом фундамента более 2500 млн. лет. Таким образом, правило Клиффорда претерпело определенную модернизацию в части его «удревнения».

Архейские кратоны действительно остаются важнейшим тектоническим критерием алмазоносности (рис. 1), несмотря на отсутствие теории локализации алмазоносных кимберлитов внутри этих структур [1, 2]. Вместе с тем, в настоящее время известно присутствие алмазоносных кимберлитов в орогенических поясах протерозоя, в том числе и позднего, и чехлах с протерозойским фундаментом, что противоречит правилу Клиффорда даже в его первоначальном, авторском, понимании [1, 2, 3 и др.]. Изучение их позволяет выделить следующие тектонические обстановки локализации алмазоносных кимберлитов за пределами архейских кратонов.

Внешние зоны орогенических поясов на границе с архейскими кратонами. Миогеосинклинальные зоны (пассивные окраины). Пассивные окраины, формируясь на континентальной коре прилегающих кратонов, обладают в равной степени перспективами алмазоносности последних. Развитие их проходит в условиях меньшей эндогенной активности по сравнению с внутренними областями орогенов и обычно не приводит к разрушению субкратонных литосферных корней. Примерами рассматриваемой обстановки могут служить кимберлиты системы Аделаида Восточной Австралии, Кордильер Британской Колумбии Канады, Центральной Бразилии и др.

Отложения складчатой системы Аделаида Восточной Австралии неопротерозойско-кембрийского возраста (1000-500 млн. лет) залегают на древнем кристаллическом фундаменте и представляют собой звено в цепи одновозрастных пассивных окраин, опоясывающей притихоокеанскую область Земли. К востоку от нее позднее начал формироваться Тасманский складчатый пояс. Породы системы Аделаида испытали деламерийскую орогению в интервале 515-480 Ма. Крупная (17 500 км) аномалия распространения минералов-индикаторов алмазов, район россыпной алмазоносности и присутствия алмазоносных кимберлитов расположены в так называемой дуге Накара — дугообразном в плане сегменте внутри Деламерийского пояса с изгибом в простирании от меридионального на восток-северо-восточное вдоль южного края кратона (срединного массива) Курнамон и северо-западного района впадины Мюррей. Кимберлиты Еурела находятся в центре восточной части этой аномалии и содержат непромышленные алмазы (см. рис. 1). Локализация их обусловлена разломами, следующими параллельно простиранию пояса, а также тесной пространственной связью с интрузиями основных пород [5, 16, 24].

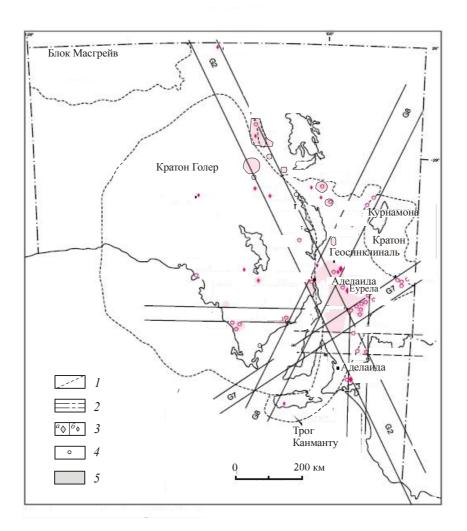


Рис. 1. Алмазоносность Южной Австралии и положение кимберлитов Еурела в неопротерозойской системе Аделаида, no [28]:

1 — тектонические границы; 2 — структурные коридоры; 3 — находки алмазов (a — >100, δ — <100); 4 — кимберлиты; 5 — поля спутников алмазов

Присутствие алмазоносных кимберлитов отмечено в Восточной Кордильере Британской Колумбии (Западная Канада). Британская Колумбия расположена на западной окраине Северной Америки в пределах внешней мегазоны фанерозойского складчатого пояса Северо-Американских Кордильер. Мегазона наложена на раннедокембрийский фундамент, общий с фундаментом Северо-Американского кратона, и отвечает его пассивной окраине, заложенной в рифее, развивавшейся в течение всего палеозоя и мезозоя и испытавшей заключительную складчатость в ларамийскую эпоху эоцена. Установлены четыре алмазоносные диатремы, внедренные в комплекс пассивной окраины: две

трубки в районе севернее Голдена и Рам и две трубки северо-западнее Элкфорда. Внедрение их происходило в ордовике — силуре, перед девоном и в пермо-триасе. Алмазы обнаружены в диатремах Джек (горы Ленс), Марк (р. Валенсинас), Рам 5 и 6. Наиболее изученная алмазоносная кимберлитовая трубка Рам 6 залегает к северу от Илкворда [30].

Особый интерес представляют алмазоносные лампроиты района Коромандел, Бразилия [35]. Вместе с кимберлитами, карбонатитами, лампрофирами они прорывают как метаосадочные породы чехла кратона, так и группы Аракса и Канастра, соответственно Уруасанского и Бразильского складчатых поясов среднего рифея и венда. Отметим, Nº 1/2006

что, как и в вышеотмеченных случая, лампроиты Коромандел прорывают существенно миогеосинклинальные толщи, формировавшиеся в энсиалических условиях, по-видимому, на коре погруженной окраины архейского кратона Сан Франсиску [4].

По-видимому, аналогичное тектоническое положение занимают возможные коренные источники россыпей алмазов в пределах краевых структур эпикратонной Верхоянской складчатой системы вдоль всей восточной окраины Сибирской платформы, где под складчатые структуры верхоянских мезозоид плавно погружаются краевые части Оленекского и других кратонов.

Аллохтонные перекрытия окраин архейских кратонов. В строении аллохтонных чешуй могут участвовать образования как внешних, так и внутренних зон орогенических поясов. Очевидно, что в данном случае свойства литосферной мантии кратонных частей, перекрытых поверхностями срывов, также остаются не изменными. Хороший пример данной обстановки — положение кимберлитов Лесото (рис. 2) на окраине кратона Каапвааль в Южной

Африке [28]. Кимберлиты с возрастом 95 млн. лет прорывают лавы Карру и подстилающие их мезопротерозойские образования провинции Наталь, тектонически надвинутые на южный край кратона, обозначенного сдвиговой зоной Лилани-Матигулу. Северный край аллохтона представлен фронтом Тугела. Кимберлиты внедрены в полосе между этими структурными линиями. Породы аллохтона представлены осадками континентальной пассивной окраины — основными вулканитами с возрастом 1,2 млрд. лет и плутоническими породами, рассматриваемыми как часть офиолитовой ассоциации, обдуцированными на южный край кратона Каапвааль. До аккреции район Лесото представлял собой пассивную окраину, обращенную в открытый океан на юге.

Близкое структурное положение занимают кимберлиты Финляндии [26]. Они находятся в зоне сочленения Карельского архейского кратона и образований реннепротерозойского свекофенского пояса, надвинутых на кратон. Пояс причленен к кратону 2,0–1,8 млрд. лет тому назад в ходе субдукции океанической пластины под Карельский конти-

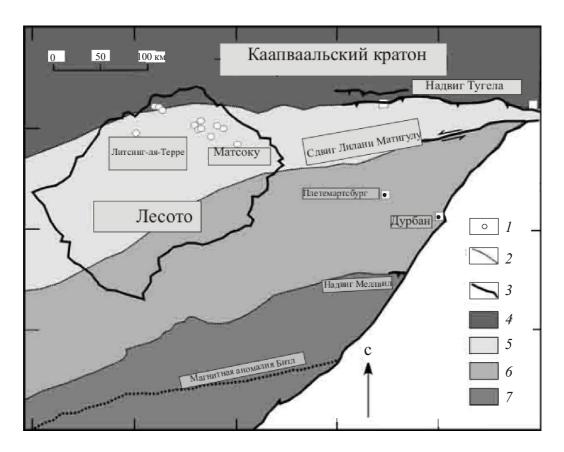


Рис. 2. Схематическая карта района Лесото, по [13]:

сдвиговая зона Лилани-Матигулу соответствует краю Каапваальского кратона; кимберлиты Лесото залегают в пределах аллохтона Тугела; I — кимберлиты; 2 — магнитный линеамент; 3 — тектонический разлом; 4 — Каапваальский кратон; террейны: 5 — Тугела; 6 — Мзумбе; 7 — Маргате

нент и последующей коллизии. Кимберлиты прорывают как породы кратона, так и образования раннепротерозойских аллохтонных пластин.

В настоящее время в Восточной Финляндии (приблизительно в 400 км на северо-запад от окончания Ладожского озера) известны 24 кимберлитовых тела, представленных небольшими трубками и дайками, образующими две группы — Каави и Куопио. Из 24 тел 12 содержат микроалмазы, а четыре — значительное их количество (более 0,1 кар./т). Аналогичное положение занимают алмазоносные кимберлиты, прорывающие кратон Сан Франсиску и образования неопротерозойского пояса Бразилиа, надвинутые на западный край этого кратона [35].

Участки орогенических поясов, расположенные над ответвлениями корней литосферной мантии кратонов. Алмазоносные кимберлиты Летлхакейн интрудированы в протерозойский пояс Магонди на территории Ботсваны. Тектоническое положение этих кимберлитов является аномальным, учитывая общепринятую корреляцию алмазоносных кимберлитов с архейскими кратонами [17, 32]. Изучение мантийных ксенолитов в кимберлитах Восточной Ботсваны однозначно показало, что кимберлиты Летлхакейн подстилаются древней холодной и очень мощной литосферой, возможно, связанной с продолжением литосферных корней кратона Зимбабве. Восточная оконечность протеро-

зойского пояса Магонди, в которую внедрены кимберлиты, интерпретируется как поверхностная надвиговая структура, не имеющая корней в мантии, надвинутая на ответвление кратонного «киля».

Кратонные «кили», благоприятные для образования и сохранения алмазов, продолжаются в мантию до значительных глубин и характеризуются разветвленной структурой, более сложной, чем изображается на идеализированных рисунках. Этим объясняется наблюдающееся иногда отсутствие алмазов в кимберлитах, расположенных в непосредственной близости от кратонов, и локализация крупных месторождений алмазов на значительном расстоянии от видимых окраин кратонов, над ответвлениями их литосферных корней. Кратоны и в данном случае контролируют размещение кимберлитов, однако в поверхностной структуре этот контроль не просматривается.

Гранулитовые пояса. Рассмотрим гранулитовые пояса, сформированные в результате континентальной гиперколлизии гималайского типа. Рост алмазов в рассматриваемом типе коллизионных структур шел на фоне переутолщения коры и ее погружения ниже глубин графит-алмазной изограды. Типичным примером является пояс Лимпопо Южной Африки, вмещающий ряд месторождений алмазов, связанных с кимберлитами, — Венеция, Ривер-Рэнг, Марнитц и Орапа (рис. 3). Крупнейшее

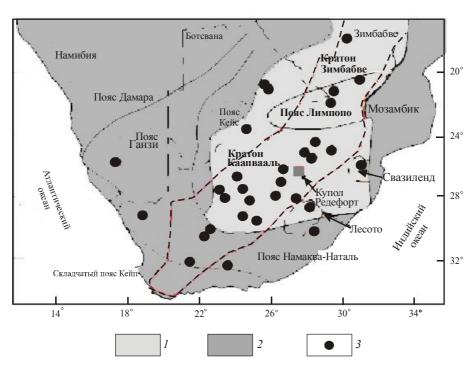


Рис. 3. Схематическая геологическая карта Южной Африки и расположение главных кимберлитов, по [31]:

I — кора архейских кратонов Каапвааль, Зимбабве и архейско-палеопротерозойского пояса Лимпопо; 2 — протерозойские пояса; 3 — кимберлиты

Nº 1/2006 35

из них — Орапа — располагается в Северо-Восточной Ботсване в пределах Северной зоны на пересечении пояса Лимпопо с рифейским интракратонным Дамарским поясом, где присутствуют две ослабленные зоны, тогда как Венеция и другие месторождения локализованы в Центральной зоне близ Мессины (ЮАР) [34]. Этот пояс представляет собой коллизионную структуру, возникшую в результате конвергенции кратонов Каапваальского и Зимбабве в конце архея с последующим подъемом переутолщенной коры (см. рис. 3) между 2,66 и 2,57 млрд. лет. В строении пояса Лимпопо значительное участие принимают породы, метаморфизованные в гранулитовой фации. В раннем протерозое пояс испытал тектонотермальную переработку — образование деформационных зон и внедрение гранитов (комплекс Махалапи) с возрастом 2023 млн. лет. По тектонической природе пояс Лимпопо относится к гранулитовым поясам.

Литосферная мантия пояса Лимпопо имеет мощность от 120–180 км и крайне деплетирована [29]. При этом алмазы в поле низкоскоростной мантии отличаются по составу, содержат преимущественно эклогитовые включения. Высокий процент из них, согласно Re-Os определениям, имеют протерозойский возраст. Рост алмазов в рассматриваемом типе коллизионных структур происходил на фоне переутолщения коры и ее погружения ниже глубин графит-алмазной изограды.

С учетом алмазоносности рассматриваемых структур расширяются теоретические предпосылки возможного открытия алмазоносных кимберлитов в других аналогичных раннедокембрийских гранулитовых поясах, не претерпевших рифейской переработки, таких как Беломорский, Становой и др. При этом повышается общая алмазоперспективность Сибирской платформы, дорифейский фундамент которой формировался в результате аккреции архейских террейнов в раннем протерозое с соответствующим развитием коллизионных гранулитовых поясов [29]. То же можно сказать применительно к значительной части фундамента Восточно-Европейской платформы. Не исключена перспективность в этом отношении и более молодых структур аналогичной природы, таких как Гренвильский пояс Северной Америки, Мозамбикский пояс Восточной Африки и др., содержащих в своем составе переработанные фрагменты архейской коры. В этой связи следует отметить, что Гренвильский пояс обладает исключительно мощной протерозойской литосферой — более 200 км. Кимберлиты Кентукки и Пенсильвании расположены на гренвильском фундаменте.

Возможно, в близкой тектонической обстановке формировались алмазоносные кимберлиты

района Мбужи Майи (Демократическая Республика Конго) с возрастом внедрения 71 млн. лет. Данные трубки прорывают гранулитовые гнейсы и метаморфизованные в той же фации габбро-нориты щита Касаи. В ксенолитах отмечены эклогиты и основные кианитсодержащие гранулиты, сформированные при метаморфизме 920°С и давлении 20–21 кбар. Все ксенолиты подверглись метасоматическим процессам. Изотопные данные свидетельствуют о слегка деплетированном мантийном источнике. Возраст гранулитового метаморфизма определен в 2400 млн. лет [15].

Возможная перспективность гранулитовых поясов, по-видимому, определяется рядом факторов. Большое значение имеет тип коллизии, ее продолжительность. В указанных примерах имела место гиперколлизия гималайского типа, сопровождающаяся высокобарическим гранулитовым метаморфизмом. Алмазоносный кимберлитовый магматизм не характерен для поясов низкобарических гранулитов. Так, метаморфический комплекс Намаква, обрамляющий Каапваальский кратон и развивавшийся в режиме горизонтальной континентальной аккреции с кратковременным периодом низкобарического гранулитового метаморфизма и утолщения коры в интервале 1060-1030 млн. лет (эпизод Намаква), содержит относительно многочисленные, но не алмазоносные кимберлиты (см. рис. 3).

Коллизионные и аккреционно-коллизионные пояса. Коллизионные орогенические пояса образуются в результате континентальной коллизии без предшествующей аккреции террейнов, тогда как такая аккреция имеет место при образовании аккреционно-коллизионных орогенических поясов. Установлено, что алмазы могут продуцироваться в процессе континентальной коллизии при быстром наращивании мощности литосферы на ее глубоких уровнях. Примером размещения алмазоносных кимберлитов в пределах аккреционно-коллизионного пояса является кимберлитовый пояс Форт а ля Корн [19] в Центральном Саскачеване, Канада (рис. 4), протягивающийся на 50 км в северо-западном направлении в пределах Трансгудзонского пояса (1,8 млрд. лет). Он содержит 73 кимберлитовых тела мелового возраста диаметром в основном менее 200 м, но иногда достигающих 2 км. В наибольшем кимберлите содержание алмазов на 1 т руды четко увеличивается с глубиной и приближением к жерловой структуре более молодой фазы внедрения в центре трубки.

Кимберлиты внедрены в осадочные кембро-ордовикские и меловые отложения мощностью 600 м, залегающие на кристаллическом фундаменте протерозойского возраста [18, 25]. Эти породы формируют часть домена Гленни внутренней зоны Рейн-

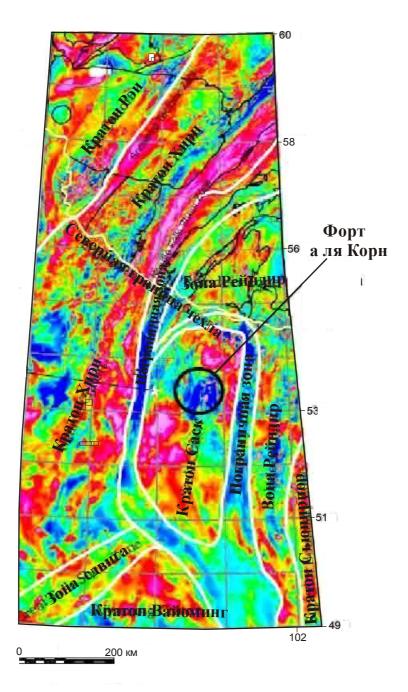


Рис. 4. Аэромагнитная карта Трансгудзонского палеопротерозойского пояса и прилегающих структур в районе кимберлитового поля Форт а ля Корн, *no* [25]:

дир Трансгудзонского орогена, сложенного островодужными вулканитами, разделенными переработанными архейскими гнейсами, слагающими микроконтинент — кратон Саск. Ранняя аккреционноколлизионная тектоника в поясе началась в интервале 1880–1870 млн. лет. В процессе замыкания океана имела место амальгамация композитных

террейнов. В интервале 1850—1840 млн. лет произошло формирование окраинного бассейна Киссинью, а 1840 млн. лет назад — столкновение развивающегося орогена с кратоном Саск. Косая коллизия с кратоном Сьюпириор произошла в интервале 1810—1800 млн. лет со сдвигом и надвиганием кратона Сьюпириор на зону Рейндир. Наличие ким-

Nº 1/2006 37

берлитов Форт а ля Корн предполагает, что мантийные корни кратона Саск остались неповрежденными в процессе коллизионных событий гудзонской орогении.

Другим примером локализации алмазоносных кимберлитов в пределах раннепротерозойского орогенного пояса является провинция Юго-Восточная Черчилл (Канада) с возрастом 1800 млн. лет. В ее строении выделяются складчатые зоны Нью Квебек и Торнгат, разделенные архейским срединным массивом Кор. Алмазоносные кимберлиты гор Торнгат обнажаются в полосе длиной 73 км и шириной 2,3 м. Обнаружено 18 даек и четыре трубки. С 1999 г. добыто около 3 тыс. алмазов. Кимберлиты приурочены к сдвиговой зоне, расположенной вдоль границы срединного массива и края складчатой зоны Торнгат и относящейся в геодинамическом плане к аккреционной призме. Таким образом, в данном случае просматривается аналогия с тектонической позицией кимберлитов Саскачевана — у края срединного массива [36].

Кимберлитовое поле Мерлин [23] находится на восточном крыле трога Баттен, в 6 км к востоку от ограничивающего его разлома Эму. Трог (авлакоген) Баттен расположен на юге мезопротерозойской впадины Мак Артур, в 725 км юго-восточнее Дарвина. Ее фундаментом являются палеопротерозойские вулканиты. Трог Баттен перекрыт кембрийскими песчаниками и траппами и представляет собой грабен, выполненный нижнерифейскими осадками впадины Мак Артур мощностью 10 км. Кимберлиты Мерлин — самые молодые вулканиты района. Их возраст 370-380 млн. лет (средний девон). Поле включает 15 кимберлитовых трубок, составляющих пять кустов на площади 10×5 км. До 2003 г. на руднике Мерлин добыто 0,5 млн. кар. высококачественных алмазов.

Ярким примером внекратонной алмазоносности в пределах коллизионных раннепротерозойских поясов, но связанной с лампроитами и поэтому здесь не рассматривающейся, является известное месторождение Аргайл в Западной Австралии. Оно расположено в протерозойской складчатой системе Холлс Крик и обеспечивает одну треть объема мировой продукции алмазов.

Краевые аккреционные орогенические пояса. Аккреционные пояса формируются в результате латеральной аккреции террейнов — процесса причленения к краям континентов аллохтонных блоков различной природы (островных дуг плато микроконтинентов и др.). Ниже приведены известные примеры раннепротерозойских структур данного типа, содержащих алмазоносные кимберлиты.

Бирримский пояс Западной Африки сложен слабометаморфизованными базальтами, андезитами, фельзитами, пелагическими кремнистыми породами, черными сланцами и кластическими отложениями раннего протерозоя. Почти половину области слагают известково-щелочные и редкие калиевые гранитоиды. В настоящее время рядом исследователей для формирования пояса предложена геодинамическая модель краевой аккреции океанических плато и островных дуг, причлененных к краю кратона Мен в интервале 2,2–2,0 млрд. лет [8, 21]. Алмазоносные кимберлиты в пределах Бирримского пояса известны в Мали, Кот ди Вуар и Гвинее.

Кимберлиты Киньеба расположены в Западном Мали в пределах раннепротерозойского пояса между Регибатским и Леоно-Либерийским кратонами, у западного края впадины Таудени. Они содержат низкокачественные алмазы и датированы 1100 млн. лет. Севернее, в Мавритании, по данным магниторазведки установлены 103 аномалии, из них 53 цилиндрических тела, соответствующих трубкам. Ширина их варьирует от 222 до 970 м, в среднем 477 м. Эти крупные аномалии на архейском кратоне Таудени в основном концентрируются вдоль границы с впадиной Таудени, как и кимберлиты Мали, т. е. занимают внекратонное положение, в пределах раннепротерозойского Бирримского пояса.

Кимберлитовая провинция Северной Альберты (Канада) расположена в платформенных условиях [33]. Район перекрыт преимущественно меловыми и третичными отложениями общей мощностью 2700 м. Согласно данным исследований по проекту «Литопроба», структура фундамента территории Северной Альберты представляется в виде серии террейнов, причлененных к краю архейского кратона Хирн в процессе горизонтальной континентальной аккреции, имевшей место в интервале 2,1-2,3 млрд. лет [27]. В центральной части расположен коллаж архейских террейнов (микроконтинентов) Буффало Хед и Чинчага, коллизия между которыми имела место между 2325 и 2045 млн. лет. Полное закрытие океанических бассейнов, магматизм континентальной окраины андийского типа и зон коллизии произошли в интервале 1998-1900 млн. лет. Заключительные стадии аккреции выразились в формированнии зон сдвигов и постколлизионном магматизме.

Кимберлитовая провинция Северной Альберты включает три поля: Маунтейн Лейк (2 трубки), Буффало Хед Хиллс (48 трубок) и Бирч Маунтейн 98 трубок). Возраст внедрения кимберлитов — поздний мел. Главное поле позднемеловых алмазоносных кимберлитов находится в блоке Буффало Хед. В нем содержится 48 кимберлитовых трубок, из которых 26 алмазоносны. Три кимберлита содержат более 11 кар. на 100 т, а одна проба — 55 кар. на 100 т.

Алмазоносная провинция Колорадо-Вайоминг расположена на границе аккреционного раннепротерозойского орогенического пояса Центральных равнин (Явапайская зона) и кратона Вайоминг. Сложена породами островодужного типа с возрастом 1,7–1,8 млрд. лет. К ней принадлежит крупный алмазоносный район Стейт Лайн в США (рис. 5).

Кимберлитовое поле, характеризующееся сложной разломной тектоникой, приурочено к зоне коллизии (1,7 млрд. лет) островной дуги и кратона Вайоминг [20]

Архейский кратон Вайоминг с юга обрамляется гнейсами и сланцами островодужной природы провинции Колорадо с возрастом 1,9–1,7 млрд. лет и

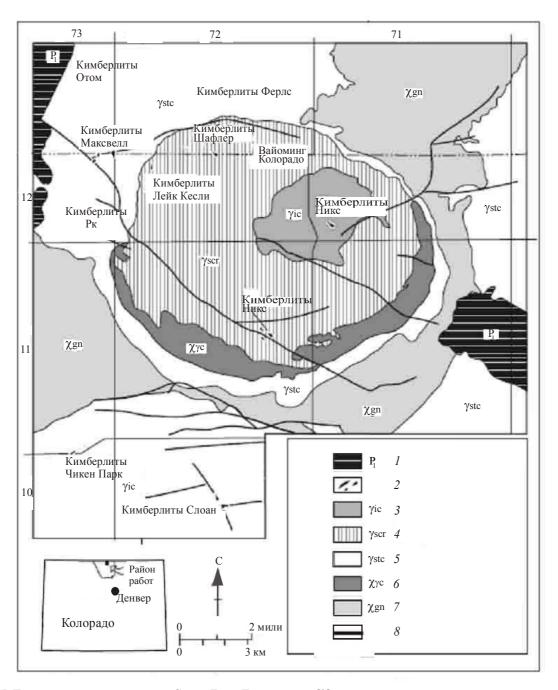


Рис. 5. Геологическая карта района Стейт Лайн Дистрикт, по [9]:

фанерозойские породы: 1 — пенсильваний ф. Фаутейн, 2 — девонские кимберлиты; протерозойские породы: 3 — граниты Лог Кабин; граниты Шерман: 4 — монцониты, 5 — граниты Тролл Крик, 6 — диориты, 7 — гнейсы; 8 — разломы

№ 1/2006

прорванными гранитами с возрастом 1,5 млрд. лет. Коллизия островной дуги с кратоном Вайоминг произошла 1,7 млрд. лет назад. Граница коллизии представляет главную сутурную зону, известную под названием пояс Чейни. В пределах этой протерозойской области (провинции) находятся два крупнейших кимберлитовых поля США: район Колорадо-Вайоминг Стейт Лайн (пограничный район штатов Вайоминг и Колорадо) [10] и район Железорудных гор. Кимберлиты алмазоносны только в первом поле, при этом алмазоносным является каждый кимберлит. Кимберлиты внедрены в граниты Шерман (1,4 млрд. лет), прорывающие протерозойский фундамент провинции Колорадо (см. рис. 5). В основном присутствуют гипабиссальные и диатремовые фации, реже кратерные. В районе Стейт Лайн известно около 40 кимберлитов с возрастом 377 млн. лет (девон). Из этого района добыто 130 тыс. ювелирных и промышленных алмазов, включая ювелирные массой более 28 кар. Содержание от 0,005 до 0,461 кар. на 1 т, и в некоторых пробах 1,35 кар. на 1 т. Рудник Келси Лейк имеет запасы 16,9 млн. т руды.

Анорогенные вулканоплутонические пояса и ареалы. В пределах Амазонского кратона Южной Америки обнаружены алмазоносные кимберлиты на площадях развития характерных вулканоплутонических ассоциаций, представленных наземными преимущественно кислыми вуланитами известково-щелочного и щелочного рядов и плутонами гранитов и анортозитов-рапакиви. Вулканиты и граниты ассоциируют с мощными пачками осадочных пород преимущественно кварцевого состава. Данная обстановка локализации алмазоносных кимберлитов, отличающаяся своеобразным магматизмом, заслуживает специального рассмотрения, поскольку подобные вулканоплутонические ассоциации встречаются на всех континентах либо в виде поясов (Акитканский пояс Сибири), либо в виде площадных ареалов (Гвианский щит). Этот магматизм широко проявился на Земле, охватывая период 1,9-1 млрд. лет, переходный от раннего к среднему протерозою, местами продолжаясь до 1,4 млрд. лет. Тектоническая природа этих образований трактуется в каждом конкретном случае неоднозначно от анорогенной до субдукционной.

Провинция алмазоносных кимберлитов Гуаниамо [6, 12] находится в пределах района Кучиверо Гвианского щита. Ее территория сложена среднепротерозойскими преимущественно кислыми вулканитами и гранитами (1,9–1,7 млрд. лет), частично перекрытыми отложениями среднепротерозойской формации Рорайма. На рубеже 1,6 млрд. лет область претерпела рифтогенез, а в интервале 1,55–1,42 млрд. лет — анорогенный магматизм и

активизацию эпизода Паргуаза. Внедрение кимберлитов произошло 712 млн. лет назад. Провинция характеризуется максимальным развитием эклогитовых кимберлитов. Ее кора подстилается деплетированной литосферной мантией, испытавшей андерплейтинг за счет менее деплетированной океанической литосферы в процессе субдукции (1,5-1,6 млрд. лет), явившейся источником эклогитовых кимберлитов. Смешанная архейско-раннепротерозойская мантия оставалась при этом в области стабильности алмаза, имея мощность 135-150 км. В данной интерпретации большое значение придается процессам субдукции [6, 12]. Вместе с тем, группа Кучиверо традиционно коррелируется с анорогенными магматитами групп Уатума или Суруму южной части Амазонского кратона.

На Амазонском кратоне кимберлиты залегают в анорогенном вулканоплутоническом поясе Риу Негро Джуруена и Рондония. Перспективным считается кимберлитовое поле Джуина на Амазонском кратоне. Исследование включений в алмазах из этого поля показало, что магма формировалась на глубине 200 км. Кимберлитовая провинция Рондония расположена в одноименном штате Северо-Западной Бразилии. Разведанный район Пимента Буено включает 32 кимберлитовые трубки, из которых 15 алмазоносны, а 11 — имеют промышленное значение. В строении фундамента провинции Рондония участвуют комплексы пород, датированные от 1,9 до 1,0 млрд. лет. Общепринятой тектонической модели рассматриваемой области не имеется. В большинстве работ эволюция этой части Амазонского кратона после трансамазонского орогенеза (1,8±2 млрд. лет) трактуется в ключе своеобразного платформенного режима с образованием анорогенных вулканоплутонических ассоциаций и осадочных пород на более древнем фундаменте [10, 11]. При этом выделяются три эпохи такого плутонизма в течение интервала 1,8-1,0 млрд. лет: Уатума, Паргуаза и Рондония. В тектоническом плане комплексы провинции Рондония по своей природе относятся к энсиалическим. Провинция Рондония известна развитием гранитов, в том числе и типа рапакиви с возрастом 1270-1180 млн. лет, возникших за счет анатексиса более древней коры и вмещающих оловянное и танталовое оруденение.

Вместе с тем, в последние годы популярны другие геодинамические модели провинции Рондония. Смысл их заключается в продолжении на запад континентальной аккреции, начавшейся формированием орогена Риу Негро Джурена и причленением его к краю Центрально-Амазонского кратона. Согласно этой точке зрения, территория Матто Гроссо и Рондония сформировалась в результате аккреции трех

островных дуг: Рио Аллегре Санта, Хелена и Качеринга [12]. В этом случае тектоническая природа субстрата будет отвечать аккреционному поясу. Как бы то ни было кимберлитовая провинция Рондония с ее высококачественными алмазами является прекрасным примером локализации продуктивного кимберлитового магматизма, не подчиняющейся классическому правилу Клиффорда.

Итак, данные об алмазоносном кимберлитовом магматизме, отмеченном в различных структурах за пределами архейских, противоречат распространенному подходу в определении тектонических критериев алмазоносности, направленному исключительно на архейские кратоны.

Это обстоятельство, с одной стороны, оправдывает первоначальное более широкое понятие правила Клиффорда. С другой стороны, сведения об алмазоносных кимберлитах внутри рифейских и фанерозойских складчатых поясов, а также областей мезозойско-неопротерозойского анорогенного магматизма позволяют еще более расширить тектонические факторы алмазоносности, выводя их за рамки классических схем.

При конкретной оценке алмазоносности регионов, придавая первостепенное значение архейским кратонам, по-видимому, следует учитывать более широкий спектр тектонических обстановок в их пространственном взаимоотношении с кимберлитовыми коридорами [37] или алмазоносными зонами [2] определенного простирания (см. рис 1), содержащими алмазоносные кимберлиты.

Вместе с тем, закономерности размещения алмазоносносных кимберлитов за пределами архейских кратонов изучены недостаточно. Определенно можно констатировать их присутствие в разнообразных тектонических обстановках и в различных по масштабу проявлениях — от крупных месторождений до слабоалмазоносных кимберлитовых тел.

СПИСОК ЛИТЕРАТУРЫ

- 1. Божско Н.А. Геотектонические факторы локализации алмазоносных кимберлитов в свете современных данных // Проблемы прогнозирования поисков и изучения месторождений полезных ископаемых на пороге XXI века. 2003. С. 360–365.
- Ваганов В.И. Алмазные месторождения России и мира. – М.: Геоинформмарк, 2000.
- Киселев А.И. Кратоны, интракратонные и окраинные мобильные пояса и их алмазоносность // Руды и металлы. 1998. № 6. С. 15–24.
- Bizzi Luiz Augusto. Mesozoic alkaline volcanism and mantle evolution of the southwestern Sao Francisco craton, Brazil // Thesis presented for the degree of doctor of philosophy in the Department of Geological Sciences – University of Cape Town June, 1993.

- 5. Black L.P., Ferguson J. and Gray P.T. A Jurassic U-Pb age for a South Australian kimberlitic rock // South Australia. Geological Survey. Quarterly geological Notes. 1993. Vol. 125. P. 2–5.
- Channer DMDeR, Egorov A. and Kaminsky F.V. Geological and tectonic setting of the guaniamo kimberlite sheets, south-west Venezuela // 8-th. International Kimberlite Conference (8IKC).
- Clifford T.N. Tectono-magmatic-units, metallogenic provinces of Africa // Earth Planet. Sci. Let. 1966. № 1. P. 421–434.
- Crustal growth in West Africa at 2.1 Ga / M.Boher, W.Abouchami, A.Michard et al. // Journal of Geophysical Research. 1992. Vol. 97. № B1. P. 345–369.
- Colorado Geological Survey, ROCKTALK. 1993. Vol. 2. № 3.
- Delgado I.M., Pedreira A.I., Thorman C.H. Geology and mineral resources of Brazil: a review // International Geology Review. 1994. Vol. 36. P. 503–544.
- 11. Dexheimer Jayme Alfredo and Saes Gerson Souza. Geology of the Southern Amazon craton in southwestern Mato Grosso, Brazil // Revista Brasileira de Geociencias. 2000. Vol. 30. P. 91–94.
- Diamonds from the Guaniamo area, Venezuela / F.V.Kaminsky, D.D.Zakharchenko, W.L.Griffin et al. // Can. Mineralogist. 2000. Vol. 38. P. 1347–1370.
- 13. Diamonds in South Australia // Earth Resources Information Sheet. Office of Minerals and Energy Resources South Australia. 2001. M11. P. 4.
- 14. Eccles D.R., Heaman L.M., Luth R.W. and Creaser R.A. Petrogenic considerations for the Late Cretaceous Northern Alberta kimberlite Province // 8-th. International Kimberlite Conference. Long Abstracts. 2003. P. 1–5.
- 15. Elfadili S. and Demaiffe D. Petrology of eclogite and granulite nodules from the Mbuji Mayi kimberlites (Kasai, Congo): the significance of kyanite-omphacite intergrowths // Proceedings of the 7-th International Kimberlite Conference. (Cape Town). 1999. Vol. 1. P. 205–213.
- Ferguson R.J. Kimberlite and kimberlitic intrusives of southeastern Australia // Mineralogical Magazine. 1980. Vol. 43. P. 727–731.
- 17. *Geochemical* and geophysical perspectives on diamond formation beneath southern Africa / S.B.Shirey, J.W.Harris, D.James et al. // Slave-Kaapvaal workshop. 2001. September 5–9. Merrickville. Ontario. Canada. P. 160–162.
- 18. *Grant N.* Processing, interpretation and databasing of magnetotelluric data from the Trans-Hudson orogen: Rapid 2D inversion of the THOT92 regional datasets // Lithoprobe Publication. 1997. № 62. P. 16–61.
- Harvey S. Synthesis of Diamond Recoveries from the Forta la Corne Kimberlite Field, East-central Saskatchewan // Summary of Investigations. 2004. Vol. 2.
- Hausel W. Dan. Diamonds and mantle source rocks in the Wyoming craton with a discussion of other U.S. occurrences // Wyoming State Geological Survey Report of Investigations 53. 1998.
- Hirdes W. and Davis D.W. U-Pb geochronology of paleoproterozoic rocks in the southern part of the kedougou-Kenieba inlier, Senegal, West Africa: evidence for diachronous accretionary development of the Eburnean province. 2002.

№ 1/2006

22. *Jance A.J.A.*, *Sheahan P.A.* Catalogue of world wide diamond kimberlite occurences: a selective, annotative approach // Diwnond Exploration: Into the 21st Century. J. Geochem. Explor. 1995. P. 73–111.

- Merlin diamondiferous kimberlite pipes / D.C.Lee, T.H.Reddicliffe, B.H.Scott Smith et al. // Geology of Australian & Papua New Guinean Mineral Deposits. The AusIMM, Melbourne Mono.1998. 22. P. 461–464.
- 24. Morris B.J. and Townsend I.J. Eurelia kimberlite province — a diamondiferous dyke swarm // MESA Journal. 2003. 15. P. 18–19.
- 25. Robertshaw P. Report on the Diamonds Exploration Potential of Five Properties in the Fort a la Corne area, Saskatchewan, on behalf of Fort a la Corne Diamond Fields Inc. // Robertshaw Geohysics. October. 28, 2002
- 26. Rocks from Finland // Proceedings of the 7-th International Kimberlite Conference, University of Cape Town, South Africa, April 11–17, 1998. Vol. 2: University of Cape Town, P. 625–636.
- 27. Ross G.M and Eaton D.W. Proterozoic tectonic accretion and growth of western Laurentia: results from Lithoprobe studies in northern Alberta Can. // J. Earth Sci./Rev. Can. Sci. Terre 39(3). 2002. P. 313–329.
- 28. Schmitz M.D., Bowring S.A. The significance of U-Pb zircon ages from lower crustal xenoliths of the southwestern margin, Kaapvaal Craton, southern Africa // Chemical Geology. 1999.
- The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian craton / W.L.Griffin, C.G.Ryan, F.V.Kaminsky et al. // Tectonophysics. 1999. Vol. 310. P. 1–35.

- Simandl G.J. Diamond Potential in British Columbia, Canada // 8-th International Kimberlite Conference, Victoria, BC, Canada, June 22–27, 2003. Extended abstracts, CD ROM, 6 pages.
- Southern African Kimberlites and their xenoliths / J.J.Gurney, R.O.Moore, M.L.Otter et al. // Magmatism in extensional Structural Settings — The Phanerozoic African Plate. Berlin, 1991. P. 495–535.
- 32. Stiefenhofer J., Viljoen K.S., Marsh J.S. Petrology and geochemistry of peridotite xenoliths from the Letlhakane kimberlites, Botswana // Contributions to Mineralogy and Petrology. 1997. Vol. 127. № 1–2. P. 147–158.
- The diamond potential of Alberta / M.B.Dufresne, D.R.Eccles, B.McKinstry et al. // Alberta Geological Survey. Bulletin 063. 1996.
- 34. *The geology* of the area surrounding the Venetia kimberlite pipes, Limpopo Belt, South Africa: A complex interplay of nappe tectonics and granitoid magmatism / J.M.Barton, Jr.W.P.Barnett, E.S.Barton et al. // South African Journal of Geology. September 2003. Vol. 106. №. 2–3. P. 109–128.
- Tompkins L.A., Gonzaga G.M. Diamonds in Brasil and a proposed model for the origin and distribution of diamonds in the Coromandel region, Minas Gerais, Brasil // Economic Geologi. 1989. Vol. 84. P. 591–602.
- 36. Wardle R.J., James B., Scott D.J. and Hall J. The Southeastern Churchill Province: synthesis of a Paleoproterozoic transpressional orogen // Canadian Journal of Earth Sciences. 2002. Vol. 39. P. 39–663.
- White S.N., Boorder H., Smith C.B. Structural controls of kimberlite and lamproite emplacement // Journal Geochemical Exploration.1995. Vol. 53. P. 245–264.