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Abstract Pressure–Temperature- fO2
conditions and fluid

compositions estimated for mineral parageneses from
inclusions in diamonds, diamond-bearing and diamond-
free xenoliths using a garnet–clinopyroxene–silica oxy-
gen barometer data indicate that the upper mantle is
zoned, with a relatively oxidized lithosphere and a
reduced asthenosphere. Calculations in the C–O–H
system indicate that eclogite inclusions within diamonds
and xenoliths have formed mainly in equilibrium with
water-rich fluids.
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Introduction

The oxidation state of the mantle has been a source of
recent controversy. Thermodynamic calculations based
on the olivine–orthopyroxene–spinel (O‘Neill and Wall
1987) and olivine–orthopyroxene–garnet (Luth et al.
1990) equilibria along with measurement of Fe+3/Fe+2

in basaltic glasses (Christie et al. 1986) support a rel-
atively oxidized mantle, characterized by values of
oxygen fugacity between fayalite–magnetite–quartz
oxygen (FMQ) buffer and wustite-magnetite (WM)
buffer. In contrast, the intrinsic oxygen-fugacity mea-
surement (IOF) indicates more reduced values of fO2

,
near iron-wustite (IW) buffer (Ulmer et al. 1987). It has
been suggested (Haggerty and Tompkins 1983) that the
upper mantle is zoned with the depleted lithosphere
being more reduced than the deeper, fertile portions of
the asthenosphere. Taylor and Green (1989) and Ball-
haus and Frost (1994) suggested an opposite view that
the mantle consists of a relatively oxidized lithosphere

and a reduced asthenosphere. Comparatively little
attention has been paid to the role of oxygen fugacity
in the diamond formation, which determines whether
carbon exists either in the elemental form or remains
complexed with oxygen in carbonates or in a gaseous
species. Diamonds have formed in association with
metal-silicate melts, traces of which have been noted in
natural diamonds (Bulanova and Zayakina 1991). Such
melts form at oxygen fugacities that corresponded to
the IW buffer. From previous calculations based on the
olivine–orthopyroxene–garnet equilibria, Simakov
(1998) argued that diamonds with peridotite inclusions
were formed under the reducing conditions corre-
sponded to IW buffer. On the other hand, the presence
of carbonate inclusions and solid CO2 in diamonds
would indicate a more oxidizing environment (Bula-
nova and Pavlova 1987; Schrauder and Navon 1993),
corresponding to the QFM buffer. Schrauder and
Navon (1993) suggested that the carbon for the for-
mation of the diamond might have come from a partial
reduction of CO2 itself. From the composition of
phases in spinel peridotites it follows that fO2

may vary
by five log units in the lithosphere under the ancient
cratons (Ballhaus 1993). The oxidation state of garnet
lherzolites and eclogites has not been as extensively
studied as that of spinel lherzolites.

Calibration of garnet–clinopyroxene–silica oxygen
barometer

The oxidation state of the mantle can be estimated by
redox reactions involving iron-bearing minerals. Com-
monly, the phase containing ferric iron is the spinel, but
it is possible to calibrate a garnet–clinopyroxene–silica
barometer based on the solubility of Fe+3 in garnets.
Zhang and Saxena (1991) proposed to use the reactions
of the garnet–clinopyroxene–quartz equilibrium for
skarns with coexisting andradite and hedenbergite.
Another reaction was proposed by Simakov (1993) for
mantle eclogites:
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For this reaction, the oxygen-fugacity value is ex-
pressed as:

log fO2
¼ �DGP

T =2:303RT � a6Hed=ða2Andra
4
SiO2

aFsÞ; ð1Þ

DGP
T was calculated from the thermochemical data

compiled by Kuskov and Fabrichnaya (1990) and
Moecher et al. (1988) (Table 1). Clinopyroxene-activity
models are calculated in accordance with the formulas:

aHed ¼ cHedCa
M2FeM1Si2; ð2Þ

aFs ¼ cFsFe
M2FeM1Si2; ð3Þ

where:

M1 = FeM1 þMgM1 þ Tiþ Crþ Feþ3 þAlM1;

M2 ¼ FeM2 þMgM2 þ CaþMnþNaþK;

AlM1 ¼ XAl �AlIV;

AlIV ¼ 2�XSi;

Si = XSi/2:

The scheme of element distribution from M1 and M2
position is taken from Wood and Banno (1973). The
activity coefficients of the clinopyroxene minerals was
modeled by assuming the clinopyroxene as an asym-
metrical solid-solution model. On the M1 and M2
positions, the parameters of interactions were taken
from the papers listed in Table. 2 and 3. The precision of

this clinopyroxene model was tested by comparing it
with the experimental data of omphacitic clinopyroxenes
(Simakov 2005) and hedenbergite–jadeite solutions
(Fig. 1) (Perchuk and Aranovich 1991). The andradite
activity (a {Andr) is calculated using the multi-component
solid-solution model in garnet (Simakov 1998):

log aAndr ¼ ðGe
AndrI - II

þ 3Ge
AndrI

þ 2Ge
AndrII

Þ=RT

þ log X 3
CaX

2

Fe+ 3 : ð4Þ

Non-ideal mixing on the dodecahedral sites ðGe
AndrI
Þ

is treated by an asymmetric sub-regular solution model
with the formulation given by Moecher et al. (1988).
Non-ideal mixing on the octahedral sites ðGe

AndrII
Þ was

treated with a symmetric regular solution model with the
interaction parameters listed in Table 4. Reciprocal so-
lid-solution effects in the garnets (Wood and Nicols
1978) were accounted for with the exchange reactions:

The Gibbs free energy values of these reactions are
listed in Table 4. This model can be applied to the
peridotite parageneses by calculating the activity of silica
in accordance with the thermodynamic model of oliv-
ine–orthopyroxene equilibrium in the upper mantle
(O’Neill and Wall 1987) by the reaction:

Table 1 Gibbs free energy, entropy, molar volume and entropy coefficients of the phases involved in the thermodynamic calculations

Mineral DG� 298 (kJ/mol) S�298 (J/mol K) V�298 (cc/mol) A B C D E

Andradite �5,413.2 316.82 131.67 470.395 46.903 63.743 �2,765.6
Ferrosilite �2,232.4 191.64 63.98 232.99 30.402 32.318 �1372.6
Hedenbergite �2,677.7 173.59 67.85 214.116 48.359 24.698 �1,262
Quartz (a) �856.6 41.46 22.69 73.448 0.782 15.376 436.1
Oxygen (O2) 0.0 205.04 20.15 28.078 2.065 �1.772 4.172

The thermochemical data were taken from: Moecher et al. (1988). The DGP
T of a-Quartz � Coesite transition is calculated in accordance

with the equation given in Kuskov and Fabrichnaya (1990)

2Ca3Fe2Si3O12 þFe2Si2O6 þ4SiO2 ) 6CaFeSi2O6 þO2

Andr Fs Qu(Cs) Hed
ðIÞ

Mg3Al2Si3O12 þCa3Fe2Si3O12 ¼ Mg3Fe2Si3O12 þCa3Al2Si3O12

Pyr Andr Gross
ðIIÞ

Ca3Fe2Si3O12 þFe3Al2Si3O12 ¼ Fe3Fe2Si3O12 þCa3Al2Si3O12

Andr Alm Ski Gross
ðIIIÞ

Mg3Al2Si3O12 þCa3Cr2Si3O12 ¼Mg3Cr2Si3O12 þCa3Al2Si3O12

Pyr Uvar Knor Gross
ðIV Þ

Ca3Cr2Si3O12 þFe3Al2Si3O12 ¼ Fe3Cr2Si3O12 þCa3Al2Si3O12

Uvar Alm Fe - Knor Gross
ðV Þ
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Mg2SiO4 þSiO2 ) 2MgSiO3

Fo Qu(Cs) Enst
ðV Þ

This model can be also applied to the garnet–ortho-
pyroxene–clinopyroxene parageneses. We can calculate
the composition of fictive olivine in accordance with the
thermodynamic model of olivine–orthopyroxene equi-
librium in the upper mantle (Seckendorff and O’Neill
1993) by the reaction:

0.5 Fe2SiO4 þMgSiO3 ¼ 0.5Mg2SiO4 þFeSiO3

Fa Enst Fo Fs

ðVIIÞ

Careful studies of eclogites by Sobolev et al. (1999a,
2000) show the presence of coesite inclusions in eclogite
diamonds from kimberlites and lamproites. This implies
that we could apply the reaction (I) to mantle eclogite
parageneses by taking the activity of SiO2 to be 1
(Nakamura and Banno 1997). This model can be also
applied to the Si-undersaturated eclogite parageneses.
We can use the fictive minal of SiO2 with activity equal
to 1. Because ferric iron is so low in garnet, the garnet–
clinopyroxene–silica–oxygen barometer requires a care-
ful measurement of Fe+3/R Fe in garnet and clinopy-
roxene. There are only two analytical methods
commonly used to determine Fe+3/R Fe directly,
Mossbauer spectroscopy, and wet chemistry. It has been
common practice to use the crystal chemistry of silicate
phases analyzed by the electron microprobe (EMP) to
calculate the Fe+3 of a mineral. Several attempts have
been made to compare and correlate the measured and
calculated Fe+3/R Fe contents in silicates from upper
mantle xenoliths. Luth et al. (1990) stated that for
peridotite minerals (garnet, olivine, clino-, and ortho-
pyroxene) the values of Fe+3/R Fe measured by the
Mossbauer technique were significantly different from
those calculated from the EMP analyses. Ballhaus et al.
(1991) have demonstrated that stoichiometric Fe+3 in
spinel agrees well with the ones measured by Mossbauer
spectroscopy. Canil and O’Neill (1996) showed that the
level of imprecision in Fe+3 determined from EMP
analyses is related to the total Fe content, and increases
in the order: spinel < garnet < clinopyroxene.
McCammon et al. (1998) and Sobolev et al. (1999b)
used the Mossbauer milliprobe to determine Fe+3/R Fe
in eclogite garnet and clinopyroxene from George Creek
diamonds and Udachnaya kimberlite. Woodland and
Peltonen (1999), Woodland and Koch (2003), and
McCammon and Kopylova (2004) used the Mossbauer
milliprobe to determine Fe+3/R Fe in peridotite garnet

Fig. 1 A comparison of the experimental data of Hed–Jd solution
(Perchuk and Aranovich 1991) (1) with calculated ones (2) by our
Cpx model

Table 2 Data of interaction parameters on M2 clinopyroxene position (in J/mole, T� K, P—kbar)

(M2) Ca–Mg Mg–Ca Ca–Fe Fe–Ca Mg–Fe Ca–Na Na–Ca Mg(Fe)–Na

a 31,216�6.1 P 25,484+8.12 P
b 20,697�2.35 P 16,940+5.9 P
c �2,172 31,120 16,707
d �24,000

The data were taken from:
a Lindsley (1981)
b Lindsley et al. (1981)
c Mukhopadhyay (1991)
d Simakov (2005)

Table 3 The gata of interaction parameters on M1 clinopyroxene position (in J/mole, T� K, P—kbar)

(M1) Mg–Fe Fe–Mg Mg(Fe)–Cr Al–Cr Mg(Fe)–Al Al–Mg(Fe)

c 3,978
d 42,000�10.63 T �1,000
e 18,481 20,000

e Girnis and Grutter (2003), another reference the same as in Table 2
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from Southern Africa, Finnish and Canadian kimber-
lites. Sobolev et al. (1999b) stated that the accuracy of
the ferric iron estimate depends on the accuracy of the
silica determination. A comparison of the Fe+3/R Fe
values calculated by Schumacher’s (1991) model with
those determined by Mossbauer techniques for mantle
garnets shows the correlation between the error in garnet
Fe+3/R Fe determination and Si and Si+Ti contents
(Fig. 2). The lowest error lies in the range of
3.03±0.02 f.u. (Si+Ti)Grt (Fig. 2).

Uncertainties of the calculated oxygen fugacity result
from uncertainties in the activity model of the minerals
involved and the calculated pressure and temperature.
At temperatures more than 1,100�C, oxygen fugacity on
70% and more depends upon the mineral activities and
only on 30% or less upon the P–T parameters. Other-
wise, at low temperatures the f{O2 on 70% depends upon
P–T parameters and only on 30% or less upon the
mineral activities. The andradite minal is the 45–55%
part of the total mineral activity, the hedenbergite one is
30–35%, the ferrosilite one is 10–15% and the silica one
is only 1–3% (for peridotite parageneses). The andradite
activity coefficient is 10–15% part of the total mineral
activity, the hedenbergite one is 5–7% and ferrosilite and
silica ones are by 1–3%. The 4 kJ/mole error in the free
energy of formation of andradite yields an uncertainty
of about ±0.1 log fO2

: The reciprocal terms in the fO2

calculation are typically in the order of 0.3 log units
while the uncertainty in Fe+3 content of garnet leads to
0.5 log units in fO2

uncertainty. The uncertainty in Fe+3

content of clinopyroxene leads to 0.5 log units in fO2

uncertainty too. Assuming a normal distribution of
these errors implies a total uncertainty of ±0.8 log units

Table 4 The data of the garnet-interaction parameters on the octahedral site (Ge
{Andr{II) and between dodecahedral and octahedral sites

expressed in the Gibbs free energy of the exchange reactions (in J/mole, T� K, P—kbar)

Ge
AndrII

Ge
AndrI - II

WAl–Cr WAl–Fe WCr–Fe II III IV V
2,508 3,700 1,267 25,080 40,200�7 P 122,181�49.7 T 106,903�43.45 T

The data were taken from: Aranovich (1991), Luth et al. (1990), Woodland and O’Neill (1993)

 

Fig. 2 The relationship
between Si and Si+Ti contents
and differences between EMP
and Mossbauer Fe+3/R Fe for
the upper mantle garnet (1,
peridotite garnets; 2, eclogite
garnets). Analyses for the
calculation were taken from:
Canil and O’Neil (1996), Luth
et al. (1990), McCammon and
Kopylova (2004), McCammon
et al. (1998), Sobolev et al.
(1999), Woodland and Koch
(2003)

 

Fig. 3 The difference between the fO2
values calculated by the

equilibrium (I) and measured for synthesized nearly CCO buffer
eclogites [1, Yaxley (1999)] and carbonatized peridotites
[2, Ryabchikov et al. (1993)]
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in fO2
for our sensor. The accuracy of garnet–clinopy-

roxene–silica oxygen barometer was tested on the
experimental data of garnet–clinopyroxene assemblages
synthesized in the carbonate-bearing eclogite system at
30–35 kb and 700–900�C and on the garnet–two-
pyroxene–olivine assemblages synthesized in the peri-
dotite system at 50 kbars and 1,400–1,550�C with the
oxygen fugacity controlled by the CCO buffer (Ryab-
chikov et al. 1993; Yaxley 1999) (Fig. 3). Fe3+ were
calculated for the garnets with (Si+Ti)Grt of
3.0±0.02 f.u. from the EMP analyses. As can be seen
from Fig. 3, oxygen fugacities calculated from equilib-
rium (I) are in fair agreement with oxygen fugacities
measured with the CCO sensor. The only data which lie
outside the quoted uncertainties could be from those
experiments in which garnet and clinopyroxene were not
in exchange equilibrium. Accuracy of the barometer also
was tested on the garnet–spinel lherzolites by comparing
the oxygen fugacity calculated from the garnet–clino-
pyroxene–silica equilibrium with those from the olivine–
orthopyroxene–spinel equilibrium. These calculations

are correct when the minerals of the paragenesis are in
mutual equilibrium. Yakutian kimberlitic garnet–orth-
opyroxene–clinopyroxene–olivine–spinel lherzolite was
chosen for the oxygen-fugacity calculations. The differ-
ence between garnet–orthopyroxene, spinel–olivine,
clinopyroxene–orthopyroxene, two-pyroxene and gar-
net–olivine thermometers did not exceed 50�C (Table 5).
Accuracy of the barometer was also tested on the garnet
lherzolites with Mossbauer garnet and clinopyroxene
data by the comparing the oxygen fugacity calculated
from the equilibrium (I) with those from the olivine–
orthopyroxene–garnet sensor of Gudmudson and Wood
(1995) with an accuracy of ±0.6 log fO2

units. The
parageneses were chosen for oxygen- fugacity calcula-
tions by the procedure described above. The difference
between garnet–orthopyroxene, clinopyroxene–ortho-
pyroxene, two-pyroxene and garnet–olivine thermome-
ters did not exceed 155�C. Calculated fO2

values for
South African, Canadian, and Yakutian parageneses
coincide with the calculations for the same analyses done
with using the Gudmundson and Wood (1995)

Table 5 Garnet–spinel–orthopyroxene–clinopyroxene–olivine paragenesis separated for P–T-f{O2 calculations

Sample NG85 H84 NW79 B91 Ai93 T98 DðfO2
Þ1 DlogðfO2

Þ2

Yakutian xenolith
Uv-624 42.68 847 856 824 874 847 �2.7 �2.1

NG85, Grt–Opx barometer of Nickel and Green (1985) (in kbar); H84, Grt–Opx thermometer of Harley (1984); NW79, Grt–Ol ther-
mometer of O’Neill and Wood (1979); Ai93, Grt–Cpx thermometer of Ai (1993); T98, Cpx–Opx thermometer of Taylor (1998) (in �C).
DlogðfO2

Þ1; calculated values by garnet–clinopyroxene–silica barometer; DlogðfO2
Þ2; values obtained by spinel–orthopyroxene–olivine

barometer of Ballhaus et al. (1991) with Taylor and Grenn’s (1991) correction for high-chromium spinels at the same pressures and
temperatures relative to the QFM buffer of Frost (1991). For fO2

calculations P–T parameters obtained from garnet–orthopyroxene,
thermobarometers of Harley (1984) and Nickel and Green (1985) were used. Analyses for the calculations were taken from Pokhilenko
et al. (1991)

A B

Fig. 4 A comparison of the oxygen fugacities calculated using our
sensor (1, Johnston and Essene 1982; Spear and Markussen 1997)
with those, obtained by Lamb and Valley (1984) using the Mgt–Ilm
sensor (solid curve between QFM and IW) for Andirondack
complex (a), results of oxygen-fugacity calculations for Voltri
Massif [2, Messiga and Scambelluri (1991)], Saulpian [3, Mottana

et al. (1968)] eclogites and Southern Karnataka (Indian) metamor-
phites [4, Hansen et al. (1984a); Janardan et al. (1982)] (b). For
temperature estimation, the thermometer of Ai (1993) was used at
P=7 kbar (upper dashed line—CCO buffer, lower dashed line—-
H2O–CH4—fence)
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equilibrium (see Appendix 1). I conclude, therefore, that
equilibrium (I), with free energy and the activity terms
discussed above should, in general, yield the oxygen
fugacity values to within ±0.8 log units.

The oxygen barometer can also be applied to crustal
eclogites using the model of Fe and Mg distribution on
the M1 and M2 sites of clinopyroxene in accordance
with the formulation of Dal Negro et al. (1982). The
sensor was applied to crustal eclogitic and granulitic
rocks from different metamorphic complexes. Andiron-
dack complex in northern United States is one of the
well-studied metamorphic complexes in the world
(Johnston and Essene 1982; Spear and Markussen 1997).
It was applied to olivine-bearing metagabbros and
granulites from the Adirondack and the obtained fO2

values were compared with those calculated for the same
rocks by the magnetite–ilmenite oxybarometer (Lamb
and Valley 1984) (Fig. 4a). From another side, the
results were compared to the compositions of fluid
inclusions that were measured in the rocks. For the

Voltrian Group eclogites, the calculated fO2
values cor-

respond to or are above the QFM buffer (Fig. 4b), for
Southern Karnataka (India) granulites and charnokites,
the calculated fO2

values correspond to the QFM and
WM buffers (Fig. 4b), in agreement with the water and
water–carbon dioxide compositions of fluid inclusions in
these rocks (Mottana et al. 1968; Messiga and Scam-
belluri 1991; Hansen et al. 1984b).

Results and discussion

Pressure–Temperature fO2
parameters were calculated

for inclusions within diamonds, diamond-bearing and
diamond-free xenoliths from Australia, South Africa,
and Yakutia using EMP and Mossbauer Fe+3 analyses
for garnet and clinopyroxene. For the calculations
based on EMP analyses, only the garnet with (Si+-
Ti)Grt of 3.03±0.02 f.u. was used (see Appendices 1, 2).
For the eclogite garnet–clinopyroxene parageneses, the

 
A B

Fig. 5 The results of oxygen-
fugacity calculations for South
African and Yakutian
peridotite garnet–two-
pyroxene–olivine parageneses
(see Appendix 1) with using
Mossbauer data (1) (a) and for
Yakutian (2, diamond bearing;
3, diamond-free); Namibian
and Lesotho (4) peridotites with
using EMP data (b) with using
the garnet–clinopyroxene–silica
oxygen barometer at 45 kbar

A B

C D

Fig. 6 The results of oxygen-
fugacity calculations for
Roberts Victor (a), Koidu and
diamond-bearing Finnish (b),
Mir (c), and Udachnaya (d)
eclogites at 45 kbar (see
Appendix 2). (1, diamond
inclusion; 2, diamond-bearing
eclogites; 3, xenoliths, and 4,
diamond-bearing xenoliths of
Udachnaya pipe, calculated
with using Mossbauer data). [
solid lines: QFM quarts–
fayalite–magnetite, WM
wustite–magnetite, IW iron–
wustite (Frost 1991), dashed
lines: CCO buffer—correspond
to upper limit of diamond
stability in C–H–O system, max
H2O—correspond to the
reaction X, H2O–
CH4—correspond to the lower
boundary of water-rich
ðXH2O > 0:5Þ fluids] (see
Simakov 1998)
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temperature was estimated using the garnet–clinopy-
roxene thermometer of Ellis and Green (1979). The
peridotite garnet–two-pyroxene–olivine parageneses
were chosen during the procedure described above.

Fluid compositions for eclogite and peridotite par-
ageneses were estimated as a function of P, T and fO2

with the assumption that they were free carbon-satu-
rated. The fluid composition in equilibrium with dia-
mond was calculated in accordance with the scheme
described in Simakov (1998). In the C–H–O system, the
upper limit of carbon stability in terms of oxygen
fugacity corresponds to the reactions of the CCO buffer:

CO2 ! CþO2; ðVIIIÞ
CO! Cþ 0.5O2: ðIX Þ

In the mantle, however,the CCO buffer is only of
theoretical importance. In C–O–H system, diamond
does not impose a lower fO2

limit. One may be included
to place a common lower limit near an fO2

defined by the
equilibrium:

CH4 þO2 ! Cþ 2H2O; ðX Þ

below, which the partial pressures of CH4 and H2 exceed
the partial pressures of CO2 and CO and main part of
the free carbon transfers to the methane.

Most of the peridotitic diamond-bearing and dia-
mond-free xenoliths lie at oxygen fugacities below those
of the CCO buffer (Fig. 5). Most of the eclogitic inclu-
sions within diamonds also equilibrated at conditions
below those of the CCO buffer, near WM (Figs. 6, 7).
The results show that at these oxygen fugacities, the
average calculated eclogite fluid compositions are water-
rich [real apparent error of the Grt–Cpx–Qu(Cs) sensor
(±0.8 log units in fO2

) could not have great effect on the
average results] and close to the average composition of
the gaseous inclusions in natural diamonds (see Fig. 8).

Calculated P–T- fO2
results obtained for peridotite

parageneses show that oxygen fugacity in the upper
mantle mainly decreases with the depth (Fig. 9). It
confirmed the conclusion of Taylor and Green (1989)
that the upper mantle under the ancient cratons is zoned
and consists of relatively oxidized lithosphere and
reduced asthenosphere. Reduction and the fluid H2O/
CO2 ratio increase with increasing depth (Fig. 5), which

agrees with the experimental data in the carbonated
peridotite-fluid system (Wyllie 1977) and with the ther-
mochemical computation of oxidation state of the
mantle (Saxena 1989).

  A B

Fig. 7 The results of oxygen-
fugacity calculations for
eclogite diamond inclusions
from Premier (1) (a) George
Creek (2, Mossbauer data),
Argyle (3), Guinea (4) and
Venezuela (5) (b) at 50 kbar (see
Appendix 2). For Premier and
Finsh diamonds, the data of
nitrogen content of Deines’s
et al. (1989) in ppm is plotted

Fig. 8 Average compositions of the calculated fluids for African
parageneses: 1, eclogite inclusions from diamonds (average of 40
analyses); 2, eclogite xenoliths (average of 66 analyses); 3,
peridotite xenoliths (average of 32 analyses) ; 4, fluid extracted
from South African, Brazilian, and USA diamonds (average of 36
crystals) (Giardini and Melton 1975). Analyses for calculations
were taken from Appendices 1 and 2

Fig. 9 Log ðfO2
Þ calc�log(QFM) dependencies for peridotites on

the pressure (symbols—the same as on Fig. 5)
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Calculated P–T- fO2
results obtained for eclogite

parageneses with using Grt–Cpx barometer of Simakov
and Taylor (2000) show different trends for oxygen
fugacity in the upper mantle at real apparent errors of
the Grt–Cpx–Qu(Cs) sensors in ±0.8 log units of fO2

and in 5 kbars of pressure. P–T- fO2
results obtained

for eclogite inclusions within diamonds for Premier
and Udachnaya pipes show a distinct kink in the
oxygen-fugacity trajectory (Fig. 10 limbs I and II). At
depths lower than 150 km, the oxygen fugacity
decreases with depth (limb I). Between the level of
100–150 km, there is a tendency for oxygen fugacity to
rise with increasing depth (limb II). At both the
localities, maximum of oxygen fugacity corresponds to
a depth of 140–160 km. From these data, we can infer
that there are two main levels of diamond formation in
the upper mantle: (1) crystallization of initial
asthenosphere diamonds under very low- fO2

condi-
tions at depths of 160–180 km; (2) diamond crystalli-

zation and growth in equilibrium with water- and
carbon dioxide-rich fluids in the lithosphere at the
depths of 130–160 km. In other words, we can con-
clude that the asthenospheric diamonds form at high
pressures, low-oxygen fugacities, and CH4-rich fluids,
whereas the lithospheric diamonds form at lower
pressures, higher oxygen fugacities, and in H2O–CO2-
rich fluids. The oxygen fugacity mainly decreases from
the oxidized lithosphere to the reduced asthenosphere.

Mantle model

The observed oxygen-fugacity trajectory can be
explained by the hot plume uplifting under the central
parts of cratons (Fig. 11). The plume could be
intruded from the deep levels of the asthenosphere to
the lithosphere–asthenosphere boundary or the lower
parts of the lithosphere, which contained subducted

Fig. 10
DlogðfO2

Þ ¼ logðfO2
Þcalc-

log(QFM) dependencies for
Premier (a) and Udachnaya (b)
eclogites on the pressure
(symbols—the same as on
Figs. 6, 7). I and II are the
limbs of the crystallization. The
pressure was calculated on the
basis of CaTs barometer
(Simakov and Taylor 2000)

Fig. 11 Hypothetical cross-
section of an Archean craton
and adjacent cratonized mobile
belt in accordance with
Haggerty (1986) and Mitchell
(1991) models, showing the
variation of the oxygen-
reduction conditions in the
upper mantle
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rocks with carbonates. The plume melts could contain
ancient harzburgite diamonds formed in reduced con-
ditions in the asthenosphere from metal-silicate melts.
The plumes could contact with lithosphere subducted
rocks (Taylor and Green 1989). Under the process of
heating, the reaction Dol+Coes=liq+CO2 would be
crossed, releasing CO2. This is supported by the iso-
topic data, which shows that light crustal carbon
participated in the formation of eclogite diamonds
(Deines et al. 1987). From this model, it follows that
the part of the eclogitic diamonds could be formed as
a result of the interactions between CO2 released
during heating and the reduced upper mantle fluid
components. As a result, the initial garnet peridotites
could be melted forming carbon–silicate melts and
water–carbon dioxide fluids. Diamonds could be
formed from these melts (Pal’yanov et al. 1999), the
traces of which were founded in natural diamonds
(Schrauder and Navon 1993). The Mitchell (1991)
reconstruction of the lithosphere and asthenosphere
profile indicates that eclogites can form during the
contact of the plume magmas with the garnet lherzolite
part of lithosphere or with the remnants of ancient
subducted rocks (Mitchell 1991) (see Fig. 11). Crys-
tallization of the diamonds with lherzolite and eclogite
parageneses in equilibrium with H2O–CO2-rich fluids
could take place from carbon–silicate melts as a result
of these processes.

At the levels of 130–160 km, there was a peak of the
CO2 releasing and as a result, there is a maximum of
the eclogite parageneses oxidation, which is two to
three log units higher than the peridotite trend at the

same depths (see Figs. 9, 10). Deines et al. (1989) noted
the tendency for the nitrogen content of eclogitic Pre-
mier diamonds to decrease with temperature of for-
mation. It follows that the nitrogen content decreases
with temperature and with increasing oxygen fugacity
(Figs. 7, 10a—limbs I and II). Sobolev et al. (1966)
proposed that nitrogen was included into the diamond
structure at a deep-seated stage of degassing of the
mantle by the reaction, which decreases the decompo-
sition of NH3 to H� and N+3 .

NH3 ! Nþ 3þ 3H�: ðXIÞ

The problem of nitrogen presence in the upper mantle
was discussed in the previous paper (Simakov 1998).
From the calculations and mineralogical data, it follows
that nitrogen could be present in the upper mantle in the
forms of N2 and NH3 gases. The calculations in
C–H–O–N system shows that ammonia concentration
must be inversely proportional to CO2 (Fig. 12). This
agrees with the tendency for nitrogen content of the
Premier diamonds to decrease with increasing oxygen
fugacity or temperature.

Conclusions

The calculations above show that fO2
in the litho-

spheric upper mantle under the Archean cratons varies
over a range of five to six log units, which agrees with
the previously obtained results for spinel and garnet
peridotite xenoliths (Ballhaus 1993; Simakov 1998;
Woodland and Koch 2003). These results indicate that
the upper mantle is zoned and the degree of its
reduction increases with depth from lithosphere to
asthenosphere.

From the calculations it follows that mantle eclogite
xenoliths are more oxidized than the peridotite ones
(Fig. 8). It agrees with the experimental data of Pok-
hilenko and Tomilenko (2001). It is known that the
peridotite diamond inclusions are more ancient than
eclogitic ones (Richardson et al. 1993), which is why
eclogitic diamonds are enriched by light crustal carbon
relative to the peridotitic ones (Galimov 1984; Deines
et al. 1987).

Diamond preservation in the mantle depends upon
the oxygen fugacity. The optimum conditions for
diamond growth and preservation in C–H–O system
correspond to those where a water-rich fluid would be
stable (if the upper mantle is be fluid-saturated), which
agrees with the previously obtained results for peridotite
xenoliths (Ballhaus 1993; Simakov 1998).
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Fig. 12 The result of calculation of O–H–N–C system up to SiC–C
boundary [by the data of Woerman and Rosenhauer (1985)] at
P=45 kbar and T=1,000�C and PN2

¼ 1 bar. (Calculations of ci of
the gases were performed by the methods of Belonoshko and
Saxena (1992), who fit their expressions to experimental data for
molar volume of these components up to 6,090� K and 80 GPa)
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Appendix 1

Appendix 2

Table 6 Garnet–orthopyroxene–clinopyroxene–olivine parageneses chosen for P–T- fO2
calculations

Sample NG85 H84 NW79 Ai93 T98 DlogðfO2
Þ1 DlogðfO2

Þ2

South African xenoliths
FRB1350a 33 880 857 725 746 �3.6 �3.0
89–719a 47 1,130 1,225 1,120 1,121 �4.2 �4.6
VBD1140a 40 937 910 964 897 �3.6 �3.1
BD1150a 41 944 958 1,024 1,024 �2.8 �2.7
FRB909a 52 1,274 1,348 1,380 1,343 �3.7 �3.6
FRB921a 38 1,000 1,009 1,050 1,000 �3.8 �3.4
Canadian slave xenoliths
10–12aa 36 788 726 749 771 �2.9 �2.7
22–5a 48 970 842 976 909 �1.9 �3.3
25–9a 40 875 837 880 813 �3.3 �4.1
14–107a 46 958 968 1,010 995 �2.5 �2.4
40–11a 48 99 1,018 1,060 1,052 �3.1 �3.8
21–6a 51 1,024 1,025 1,075 1,110 �4.8 �4.3
21–4a 46 965 967 1,043 1,021 �3.3 �3.5
21–3a 48 999 970 1,045 1,022 �4.6 �4.0
22–7a 53 1,030 1,040 1,170 1,120 �3.4 �3.6
41–1a 50 967 960 1,100 1,053 �3.2 �2.7
23–5a 45 1,045 1,074 1,180 1,190 �2.6 �2.7
9–10a 47 988 1,013 1,143 1,129 �2.5 �3.0
41–3a 47 1,101 1,112 1,245 1,190 �2.5 �2.8
Lesotho xenoliths
133 45 1,052 1,064 1,044 1,016 0.6
A 50 1,155 1,202 1,315 1,217 �2.4
B 43 1,009 1,050 1,138 990 �2.5
BD1354a 46 1,066 1,114 1,213 160 �3.0 �3.4
Namibian xenoliths
1 47 11.5 1,071 1,156 1,092 �2.4
20 42 996 1,006 990 1,000 �3.9
34 38 1,001 1,021 1,010 960 �1.7
1 37 946 881 1,000 935 �1.9
6 46 1,082 1,090 1,208 1,204 �3.6
Yakutian Xenoliths
Uv-624 43 847 856 874 847 �2.7
BD-2125 45 1,037 1,120 995 1,054 �1.9
UV417/89a 50 974 955 963 850 �4.8 �4.4
UV61/91a 51 1,031 1,045 1,117 1,168 �3.8 �3.4

NG85, Grt–Opx barometer of Nickel and Green (1985) (in kbar); H84, Grt–Opx thermometer of Harley (1984); NW79, Grt–Ol ther-
mometer of O’Neill and Wood (1979); Ai93, Grt–Cpx thermometer of Ai (1993); T98, Cpx–OPx thermometer of Taylor (1998) (in �C).
DlogðfO2

Þ1; calculated values by garnet–clinopyroxene–silica barometer relative to the QFM buffer of Frost (1991); DlogðfO2
Þ2; calculated

values by garnet–orthopyroxene–olivine barometer of Gudmundson and Wood (1995) relative to the QFM buffer. For fO2
calculations

P–T parameters obtained from garnet–orthopyroxene, thermobarometers of Harley (1984) and Nickel and Green (1985) were used.
Analyses for the calculations were taken from: Carswell et al. (1979), Mitchell (1984), Pokhilenko et al. (1991), Sobolev et al. (1984)
a specimens with garnet Fe+3/R Fe measured by the Mossbauer technique from Canil and O’Neil (1996) and McCammon and Kopylova
(2004).

Table 7 Eclogite garnet–clinopyroxene parageneses chosen for fO2
calculations

Sample EG79 P(kbar) (Si+Ti)Grt %Fe+3 %Andr DlogðfO2
Þ

Yakutian inclusions in diamonds
M-734 1,267 45.0 3.02 4.85 2.35 �5.4
M-742 1,285 45.0 3.03 5.97 3.33 �4.0
M-636 1,085 45.0 3.04 5.03 3.18 �4.7
M-748 1,229 45.0 3.03 1.56 0.88 �5.8
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Table 7 Eclogite garnet–clinopyroxene parageneses chosen for fO2
calculations

Sample EG79 P(kbar) (Si+Ti)Grt %Fe+3 %Andr DlogðfO2
Þ

M-422 1,085 45.0 3.05 4.56 2.60 �3.6
M-423 1,305 45.0 3.03 7.26 4.13 �2.4
M-46D 986 45.0 3.02 2.52 1.67 �3.0
U-41/3 1,140 45.0 3.02 7.47 5.04 �2.6
U-66/3 1,192 45.0 3.01 7.02 3.95 �3.2
Ud-4/90-1 1,132 45.0 3.03 4.72 2.87 �2.9
Ud-4/90-12-4 1,200 45.0 3.04 3.44 2.02 �4.1
Ud-4/90-13-6 1,138 45.0 3.03 3.68 2.22 �3.7
Ud-10/90-23 996 45.0 3.04 1.03 0.72 �6.0
South African and Guinea inclusions in diamonds
P-3 1,310 50.0 3.04 3.98 1.61 �4.9
P-5 1,252 50.0 3.02 4.18 2.64 �4.5
P-18 1,336 50.0 3.02 9.18 4.14 �3.7
P-35 1,323 50.0 3.02 11.28 5.11 �1.3
P-38 1,266 50.0 3.01 0.96 0.40 �8.1
P-44 1,267 50.0 3.01 6.53 3.49 �4.8
P-45 1,364 50.0 3.02 6.22 3.36 �3.0
P-46 1,299 50.0 3.01 11.99 5.46 �1.2
P-47 1,305 50.0 3.03 1.91 0.97 �5.0
P-65 1,255 50.0 3.04 4.17 2.56 �4.0
P-66 1,208 50.0 3.01 4.65 2.70 �3.7
P-103 1,298 50.0 3.01 6.54 3.97 �3.7
P-104 1,289 50.0 3.01 11.36 5.22 �1.1
P-109 1,200 50.0 3.05 0.65 0.40 �7.9
P-113 1,332 50.0 3.04 5.42 2.48 �2.7
P-115 1,315 50.0 3.02 11.62 5.33 �1.7
RV-69 1,277 50.0 3.02 0.61 0.40 �8.1
KK-96 1,258 50.0 3.01 6.95 3.33 �3.5
7a 1,180 50.0 3.33 2.06 �4.2
20a 1,113 50.0 3.14 1.96 �2.5
41a 1,138 50.0 5.03 3.04 �3.0
Australian inclusions in diamonds
A29 1,267 50.0 3.05 3.41 2.04 �3.3
A33 1,236 50.0 3.03 3.17 1.83 �3.8
A31 1,278 50.0 3.03 6.52 2.71 �1.4
Venezuela inclusions in diamonds
Gm-54 1,103 50.0 3.03 2.61 1.48 �3.9
037c-a 1,188 50.0 3.03 3.12 1.62 �3.6
v-19 1,171 50.0 3.02 5.00 2.83 �3.1
Yakutian diamond-bearing xenoliths
M-45 1,058 45.0 3.02 5.26 2.51 �4.7
M-46X 1,034 45.0 3.04 2.15 1.28 �4.0
M-52 1,020 45.0 3.03 6.54 3.82 �4.1
M-50 1,004 45.0 3.04 9.76 6.54 �7.1
M-49 1,015 45.0 3.03 1.43 0.76 �4.8
A-811 989 45.0 3.04 3.55 2.06 �2.2
M-54-R1 1,040 45.0 3.03 0.54 0.24 �5.6
BM-432 1,040 45.0 3.02 10.12 4.60 �0.6
U-464/86 994 45.0 3.01 5.51 4.08 �3.3
U-58/2 1,195 45.0 3.01 8.91 4.23 �2.5
U-55/2 1,074 45.0 3.01 10.30 4.21 �0.8
U-8/1 1,271 45.0 3.01 10.70 4.53 �2.9
Ud-76/2 1,236 45.0 3.04 4.70 2.08 �4.4
Ud-92/2 1,235 45.0 3.05 2.07 0.83 �5.1
Ud-59/2 1,198 45.0 3.02 4.59 1.47 �1.5
Ud-28 1,192 45.0 3.02 3.67 2.56 �2.8
M-85 1,077 45.0 3.03 1.71 1.03 �4.5
M-2110 1,090 45.0 3.04 2.01 1.28 �4.8
M-63 974 45.0 3.02 0.77 0.38 �5.7
236a 1,007 45.0 10.65 3.71 �2.3
281/2a 1,098 45.0 19.94 7.40 �2.7
African diamond-bearing xenoliths
6 1,136 45.0 3.02 3.84 1.09 �1.9
17 1,700 45.0 3.02 6.10 2.12 �1.5
18 1.191 45.0 3.02 6.10 2.12 �0.6
19 1,297 45.0 3.02 4.55 1.68 1.1
XM26 1,178 45.0 3.01 6.16 3.03 �2.4
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