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b Institut de Géologie, Université de Neuchâtel, Rue Emile Argand 11, CH-2007 Neuchâtel, Switzerland

c Institute of Isotopes, Hungarian Academy of Sciences, Konkoly Thege Miklós út 29–33, H-1121 Budapest, Hungary

Received 18 November 2005; accepted in revised form 11 July 2006
Abstract

Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks from the island of Syros (Greece) were studied, using
secondary ion mass spectrometry, inductively coupled plasma optical emission spectrometry and prompt gamma neutron activation
analysis. Partitioning between coexisting mineral phases was found to be rather constant and independent of element concentrations.
For several mineral pairs, apparent partition coefficients vary in a narrow range, while concentrations vary by more than an order of
magnitude. Hence, it was possible to establish sets of inter-mineral partition coefficients for Li, Be and B among 15 different high-pres-
sure minerals. This data set provides important information on the behaviour of the light elements in different lithologies within subduct-
ing slabs from the onset of metamorphism to the eclogite stage. It is essential for modelling trace-element and isotope fractionation
during subduction and dehydration of oceanic crust.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

The light elements Li, Be and B are important tracers for
mass transfer in subduction zones. They are readily mobi-
lised by fluids and melts and display strong isotope frac-
tionation (Li and B) in nature. Concentrations of the
three elements in the mantle and in fresh oceanic basalts
are very low, whereas they are high in sediments, altered
oceanic crust and continental crust. Therefore, any input
of fluid or melt from the subducting slab into the overlying
mantle has a strong impact on the light element budget and
isotopic composition of the mantle wedge, and on the mag-
mas generated there. Island arc volcanic rocks consequent-
ly display strong enrichments of Li, Be and B with respect
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to MORB (Ryan and Langmuir, 1987, 1988, 1993; Smith
et al., 1997; Sano et al., 2001; Ryan, 2002) and specific
Be and B isotopic signatures (Ishikawa and Nakamura,
1994; Ishikawa and Tera, 1997; Clift et al., 2001; Morris
et al., 2002; Palmer and Swihart, 2002; Straub and Layne,
2002). Detailed knowledge on budget and partitioning of
light elements within different materials of the subducting
slab are essential for the modelling of Li, Be and B transfer
and isotopic evolution in subduction zones. To fully under-
stand the light element signatures of arc volcanic rocks, it is
necessary to constrain quantitatively the behaviour of these
elements during subduction-related progressive metamor-
phism of slab materials.

Recent work has been carried out on the bulk-rock Li,
Be and B budgets of metasediments and metabasalts from
subduction complexes and it was argued that substantial
amounts of B and Li are liberated from the rocks during
prograde metamorphism, while Be concentration does
not vary significantly with metamorphic grade (Moran
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et al., 1992; Bebout et al., 1993, 1999; You et al., 1994;
Peacock and Hervig, 1999; Zack et al., 2003). Studies on
the partitioning behaviour of Li, Be and B between coexis-
ting metamorphic minerals are scarce. Domanik et al.
(1993) studied the fractionation of Be and B between
minerals of metabasic and metasedimentary lithologies
from the Catalina schists (California) and emphasised the
importance of white mica stability on the Be and B budgets
of subducting rocks. Woodland et al. (2002) studied the
partitioning of Li between clinopyroxene and garnet in a
large variety of eclogites and found that Li is preferentially
incorporated in clinopyroxene. Zack et al. (2002) studied
eclogites from Trescolmen (Central Swiss Alps) and found
that Li and Be budgets are governed by clinopyroxene,
while white mica and clinopyroxene control the B budget.
Scambelluri et al. (2004) investigated B and Li concentra-
tions in fluid inclusions and different minerals of
serpentinites and olivine–orthopyroxene–chlorite rocks,
and inferred a rather limited mobility of B and Li during
the breakdown of serpentinites during subduction.

In this paper, abundances and corresponding partition-
ing data for Li, Be and B in various minerals of high-pres-
sure metamorphic rocks from the Greek island of Syros
(Cyclades) are reported. The major hosts of the light
elements are identified, and the calculated whole-rock
budgets are compared to the measured whole-rock
abundances. A set of inter-mineral partition coefficients
for the light elements Li, Be and B for 15 different HP-
metamorphic minerals is presented. This dataset provides
information on the behaviour of the light elements in
different lithologies within subducting slabs. We demon-
strate that a combination of the inter-mineral partition
coefficients with clinopyroxene/fluid partition coefficients
from experimental work Brenan et al. (1998b) can be used
for the modelling of trace-element fractionation during
subduction and dehydration of oceanic crust.

2. Analytical methods

Compositions of mineral phases were determined using
a Cameca SX 51 electron microprobe equipped with five
wavelength-dispersive spectrometers (Mineralogisches
Institut, Heidelberg). Operating conditions were 20 nA
beam current and 15 kV acceleration voltage. For analyses
of phengite, the electron beam was defocused to 10 lm to
avoid loss of alkalis. For analyses of tourmaline it was
defocused to 5 lm. Details on counting times, crystals,
standards and detection limits are given in Marschall
(2005). PAP correction was applied to the raw data
(Pouchou and Pichoir, 1984, 1985). For tourmaline, a mod-
ified matrix correction was applied, which is described in
detail in Kalt et al. (2001).

Concentrations of Li, Be and B were measured by sec-
ondary ion mass spectrometry (SIMS) with a modified
Cameca IMS 3f ion microprobe at the Mineralogisches
Institut, Heidelberg, equipped with a primary beam mass
filter. Analyses were performed using a 10 kV/20 nA 16O�
primary ion beam. Positive secondary ions were accelerated
through a nominal 4.5 kV. The energy window was set to
40 eV. We applied the energy filtering technique with an
offset of 75 eV at a mass resolution m/Dm (10%) of
�1000 to suppress interfering molecules and to minimise
matrix effects (Ottolini et al., 1993). For all silicates, sec-
ondary ion intensities of 7Li, 9Be and 11B were normalised
to the count rate of 30Si and calibrated against the NIST
SRM 610 glass reference material using the concentrations
of Pearce et al. (1997). The relative reproducibility was
<1%. The accuracy is limited by matrix effects and the
uncertainty of the element concentrations in the reference
material. The accuracy is estimated to be <20% (Ottolini
et al., 1993). Background near mass 11 was 610�2 cps
(61 ng/g). Results are not corrected for background. A
5-min pre-sputtering time was applied to each spot. For
tourmaline, a modified setup was used, which is described
in detail in Marschall et al. (2004).

Analyses of trace elements and especially of B at low
concentration levels (<5 lg/g) are easily influenced by con-
tamination on the surface of thin sections (Shaw et al.,
1988; Domanik et al., 1993; Marschall and Ludwig,
2004). Therefore, the technique described by Marschall
and Ludwig (2004) was applied to suppress the effect of
contamination on trace element analysis using SIMS.

Whole-rock concentrations of Li in all samples were
measured at the University of Bristol by ICP-OES (optical
emission spectrometry), using a Jobin Yvon Ultima 2
Sequential Spectrometer, operated by Chung Choi (Uni-
versity of Bristol). Beryllium was analysed by Cavendish
Analytical Laboratory Ltd., Canada, by ICP-OES. Details
of sample preparation and applied analytical methods are
given in Marschall (2005).

Whole-rock B concentrations were determined using
prompt gamma neutron activation analysis (PGNAA) at
the facility installed at the Budapest 10 MW research reac-
tor, equipped with a cold neutron source (20 K). Thermal
equivalent neutron flux at the target position is �5 · 107

per cm2/s. The beam area was set to 4 cm2, and exposure
time was 1–4 h for most of the samples. Energy spectra
ranging from 30 keV–11 MeV were measured using a
high-purity germanium semiconductor (HPGe)—bismuth
germanate (BGO) scintillator detector system in Comp-
ton-suppressed mode. The data acquisition was performed
by a Canberra S100 multichannel analyser. Gamma spectra
were evaluated using the Hypermet PC program (Révay
et al., 2001).

Analytical details of the Budapest PGNAA facility are
given in Révay et al. (2004), Szakmány and Kasztovszky
(2004) and Molnár (2004), and references therein. Accura-
cy of B analyses by PGNAA has been checked by measure-
ments of geological reference materials performed at
Budapest Neutron Center (BNC) and is �10% relative
(Gméling et al., 2005). Precision is better than 1.5% relative
for concentrations >5 lg/g and better than 1.7% relative in
the range of low concentrations (1.9–5 lg/g). The calculat-
ed detection limit for B is 0.3 lg/g for the standard setup.
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Further analytical details on PGNAA of high-pressure
metamorphic rocks at BNC are given in Marschall et al.
(2005).

3. Geology

The island of Syros displays a sequence of rocks of the
lower unit of the Attic–Cycladic crystalline complex
(ACCC). The major part of the island is composed of
interlayered pelitic schists and marbles dipping N to NE
(e.g. Hecht, 1984; Dixon and Ridley, 1987; Seck et al.,
1996). The petrological, structural and tectono-metamor-
phic evolution of the island of Syros has been investigated
in a large number of studies (Dixon, 1968; Bonneau et al.,
1980; Ridley, 1982, 1984, 1986; Ballhaus and Schumacher,
1995; Trotet et al., 2001a; Rosenbaum et al., 2002; Ring
et al., 2003; Brady et al., 2004; Keiter et al., 2004). For
different rock types, a prograde P–T path was derived,
characterised by a high P/T ratio, typical for subduction
zone metamorphism. Metamorphic peak conditions were
estimated at �470–520 �C and 1.3–2.0 GPa (Dixon,
1968; Ridley, 1984; Okrusch and Bröcker, 1990; Trotet
et al., 2001b; Rosenbaum et al., 2002; Keiter et al.,
2004). The most interesting formations are exposed in
the northern part of Syros near Kámpos and at the coast-
line around Hermoupolis and Kini. These formations are
composed of metagabbros, eclogites, glaucophane schists,
meta-plagiogranites, serpentinites and metasediments,
which mainly preserve a blueschist- to eclogite-facies
metamorphic overprint. They are interpreted as high-pres-
sure metamorphic equivalents of different parts of ancient
oceanic crust (e.g. Seck et al., 1996). Blocks of meta-igne-
ous and meta-sedimentary rocks are embedded in a ma-
trix of chlorite schist and serpentinite (Dixon, 1968;
Hecht, 1984; Dixon and Ridley, 1987; Okrusch and Bröc-
ker, 1990; Seck et al., 1996; Bröcker and Enders, 2001).
Contacts between blocks and chemically and mineralogi-
cally contrasting matrix are characterised by black-
walls—reaction zones rich in OH-bearing minerals. The
exhumation path of the Syros high-pressure rocks is char-
acterised by near-isothermal decompression (Trotet et al.,
2001b; Marschall et al., 2006). The lack of heating during
exhumation resulted in the preservation of the HP assem-
blages and minerals in many places. Most of the black-
walls formed during exhumation and rehydration of the
HP mélange (Marschall et al., 2006). Pressures between
0.6 and 0.75 GPa and temperatures of 400–430 �C were
estimated for different blackwall samples (Marschall
et al., 2006). Hence, the rock samples investigated in this
study represent conditions including an extended pressure
range between 0.6 and 2.0 GPa, but a limited temperature
range of �400–500 �C.

4. Investigated samples

Eight samples from high-pressure blocks and high-pres-
sure metamorphic schists were investigated during this
study, plus five samples from different blackwalls that
formed during exhumation. A detailed description of all
samples is given in an electronic Annex.
4.1. Metagabbros (SY344, SY438)

Sample SY344 is dominated by garnet and Ca-amphi-
bole, the latter topotactically intergrown with glaucophane.
All minerals are embedded in a matrix of epidote. Sample
SY438 is dominated by glaucophane, phengite and lawso-
nite and minor clinopyroxene (omphacite).
4.2. Eclogites (SY109, SY323)

The investigated eclogites consist of garnet and clinopy-
roxene with minor epidote. SY109 contains additional
white mica and glaucophane. SY308 is a garnet–jadeite–

quartz fels (the term ‘‘fels’’ refers to an isotropic
metamorphic rock) with minor amounts of glaucophane,
epidote and paragonite.
4.3. Glaucophane schists (SY304, SY314, SY406)

The glaucophane schists are dominated by glaucophane,
garnet and phengite that are accompanied by various addi-
tional phases, such as chloritoid (SY304) or tourmaline
(SY314).
4.4. Quartz-rich vein (SY425D)

The quartz vein is crosscutting a metagabbro. This sam-
ple is characterised by euhedral clinozoisite, clinopyroxene
and garnet, embedded in a matrix of quartz.
4.5. Schists from blackwalls (SY309B, SY325, SY328,

SY404, SY441)

The blackwall samples consist of glaucophane + clino-
pyroxene + chlorite + epidote + tourmaline (SY309B),
chlorite + talc + Ca-amphibole (SY325), clinopyrox-
ene + chlorite + epidote (SY328), chlorite + titanite +
apatite (SY404) and chlorite + tourmaline + titanite +
clinopyroxene (SY441).
5. Modal rock compositions

Mass fractions of minerals (Table 1) are visual estimates
combined with typical mineral densities. Only the fractions
of phengite, titanite and tourmaline were calculated from
bulk-rock concentrations of K2O, TiO2 and B2O3, respec-
tively. For titanite, this procedure was only possible for ru-
tile-free samples. Calculation of mass fractions of all
minerals was not possible, because of major element zona-
tions and similar chemical compositions of glaucophane
and clinopyroxene.



Table 1
Estimated mass fractions of minerals in samples

Sample Type Cld Ttn Grt Czo Lws Tur Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz Other minerals

SY109 Eclogite 3 15 0.5 37 25 5.5 1 8 Rt, Zrn, Aln, Ap, Ilm
SY304 Gln schist 12 4 20 38 8 8.5 2nd 3 Rt, Ap
SY308 Meta-plagiogranite 6 4 21 5 25 38 Rt, Zrn, Ap
SY309B Gln schist 0.3 2 11.8 20 36 25 0.1 2 Rt, Zrn, Aln, Ap
SY314 Gln schist 0.5 5 2.5 0.25 34 22 22 7 Ap, Mag
SY323 Eclogite 2 25 25 0.011 45 2nd 1 Rt, Zrn, Ap, Ilm
SY325 Tlc–Chl–Act schist 65 20 15 Rt
SY328 Omp–Chl felsa 0.5 6 60 20 2.5 Aln, Ap, Ilm, Mag, Py
SY344 Metagabbro 2 4 12 20 32 28 2.5 Ap
SY404 Chl schist 8 85 Rt, Aln, Ap, Py
SY406 Gln schist 0.5 35 2 4 38 19 Rt, Aln, Ap
SY425D Qtz vein 5 20 5 70
SY438 Metagabbro 1.5 5 10 5 59 18.5 2nd 1
SY441 Chl schist 1.5 40 3 55 Ap

a The term ‘‘fels’’ refers to an isotropic metamorphic rock. Mass fractions (wt%) are visual estimates, which were controlled for some minerals by
comparing whole-rock chemical analyses and electron microprobe mineral analyses. 2nd, secondary minerals formed during retrograde reactions. Mineral
abbreviations after Kretz (1983): Cld, chloritoid; Ttn, titanite; Grt, garnet; Czo, clinozoisite (incl. epidote); Lws, lawsonite; Tur, tourmaline; Cpx,
clinopyroxene (omphacite, jadeite); Cam, calcic amphibole; Gln, glaucophane; Chl, chlorite; Tlc, talc; Phe, phengite; Pg, paragonite; Ab, albite; Qtz,
quartz; Rt, rutile; Zrn, zircon; Aln, allanite; Ap, apatite; Ilm, ilmenite; Mag, magnetite; Py, pyrite.
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6. Li, Be and B concentrations in minerals

Mean, minimum and maximum abundances of Li, Be
and B in the various minerals are given in Tables 2–4.
Chloritoid, titanite, epidote/clinozoisite and quartz have
very low concentrations of all three low-atomic mass ele-
ments. Fresh lawsonite in sample SY438 has very low
abundances of Li and B (0.005 and 0.145 lg/g, respective-
ly), whereas the concentration of Be is considerable
(1.67 lg/g).

Garnet has highly variable concentrations of Li (0.152–
5.97 lg/g), depending on bulk-rock composition, while B
concentrations are very low (0.015–0.093 lg/g) and Be con-
centrations are generally near the detection limit of
0.001 lg/g. Small (<100 lm) garnet grains in samples
SY314 and SY406 show strong zonation in Li with
high contents (6–7 lg/g) in the cores and low contents
(1–2 lg/g) in the rims. Garnet grains from all other samples
are large (0.5–5 mm) and show (almost) no zonation in Li.
The concentrations of B are nearly constant within all
grains measured.

Tourmaline in sample SY314 has Li and Be concentra-
tions of 8.6 and 0.37 lg/g, respectively, whereas concentra-
tions in blackwall tourmaline (samples SY309B and
SY441) are generally lower (2.1–5.3 lg/g Li; 0.041–
0.055 lg/g Be). Profiles measured across large blackwall
tourmaline grains show very constant Li and Be concentra-
tions. B2O3 contents of 10.5–11.3 wt% result in 3.06–3.15
B cpfu, suggesting small amounts of tetrahedral B
(Marschall et al., 2004).

Clinopyroxene has very high and variable concentra-
tions of Li (6.81–130 lg/g) and Be (0.173–4.73 lg/g), but
only minor concentrations of B (0.252–3.82 lg/g).

Ca-amphibole has low abundances of Li (0.976–
1.30 lg/g) but relatively high abundances of both Be
(0.662–4.34 lg/g) and B (2.98–9.16 lg/g). Glaucophane,
similar to clinopyroxene, has very high concentrations of
Li and Be and only minor concentrations of B. Lithium con-
centrations vary between 5.94 and 115 lg/g and are much
higher than those of coexisting Ca-amphibole. On the other
hand, the concentrations of Be in glaucophane range from
0.128 to 2.47 lg/g and are thus lower than those of the coex-
isting Ca-amphibole. Boron concentrations in glaucophane
range from 0.226 to 6.96 lg/g, comparable to coexisting
Ca-amphibole.

Phyllosilicates are characterised by highly variable light
element abundances. Chlorite shows very high abundances
of Li (3.45–115 lg/g), whereas those of Be and B are low,
compared to other sheet silicates (Tables 2–4). Talc occur-
ring in paragenesis with chlorite and Ca-amphibole
(SY325) has relatively low contents of Li (0.433 lg/g) and
Be (0.02 lg/g). Phengite has very high concentrations of
all three elements (2.57–48.3 lg/g Li; 1.18–5.89 lg/g Be;
43–136 lg/g B), while paragonite has very high concentra-
tions of Be and B and moderate Li concentrations (Tables
2–4). Beryllium concentrations in paragonite exceed those
of all other silicates, and range from 2.74 to 15.6 lg/g,
while B concentrations range from 20.2 to 117 lg/g. Lithi-
um concentrations vary between 2.77 and 4.91 lg/g, and
are higher than Li concentrations in coexisting phengite.

Albite has very low concentrations of Li (0.007–
0.012 lg/g), moderate abundances of Be (0.461–0.527
lg/g) and low concentrations of B (0.307–1.35 lg/g).

7. Budgets of Li, Be and B

The budgets of Li, Be and B for representative samples
are displayed in Fig. 1. The highest concentrations of Li
were found in chlorite, glaucophane, clinopyroxene, pheng-
ite and paragonite. These phases contain more than 95% of



Table 2
Concentrations of Li in silicates (determined by SIMS) and whole-rock Li concentrations of investigated samples

Sample Cld Ttn Grt Czo Lws Tur Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz WRc WRm

SY109 Eclogite Mean n.a. 0.295 n.a. 8.06 7.17 2.57 4.91 <0.001 5.01 6.05
1r 0.078 0.36 0.28 0.34 1.51 1.00 0.37
n 38 15 13 19 11 5

SY304 Gln schist Mean <0.001 0.174 n.a. 9.95 11.9 2.71 (10.5) 0.007 5.50 7.75
1r 0.020 1.67 2.5 0.41 (3.4) 0.003 1.10 0.17
n 5 7 14 13 9 12 4

SY308 MPGa Mean n.a. 0.152 n.a. 6.81 5.94 2.77 <0.002 2.43 5.02
1r 0.077 0.32 1.27 1.27 0.49 0.18
n 9 5 8 10 7

SY309B Gln schist Mean 0.030 0.545 2.10 27.2 41.0 34.7 5.85 29.2 31.7
1r 0.004 0.092 0.33 3.9 3.1 2.5 1.04 5.8 0.6
n 6 5 33 17 19 16 21

SY314 Gln schist Mean 0.042 5.97 n.a. 8.59 94.0 45.9 0.007 n.a. 42.4 39.6
1r 0.023 0.92 2.70 16.9 9.3 0.004 8.5 0.8
n 3 18 2 27 14 2

SY323 Eclogite Mean 0.042 3.47 1.11 n.a. 80.6 n.a. n.a. 37.4 45.8
1r 0.007 0.81 0.40 18.1 7.5 0.9
n 5 52 25 50

SY325 Chl schist Mean 1.30 3.45 0.433 1.60 2.29
1r 0.40 0.12 0.128 0.32 0.51
n 46 10 11

SY328 Omp–Chl fels Mean n.a. 0.436 65.4 115 0.012 62.3 65.3
1r 0.152 11.7 12 0.009 12.5 2.9
n 10 30 21 4

SY344 Metagabbro Mean n.a. 0.805 n.a. 24.7 0.976 30.6 9.71 14.1 18.8
1r 0.136 2.3 0.435 7.2 1.32 2.8 0.4
n 37 29 26 29 10

SY404 Chl schist Mean 0.033 9.04 7.69 7.65
1r 0.006 0.83 1.54 0.14
n 3 18

SY406 Gln schist Mean n.a. 3.19 n.a. 130 115 49.3 59.4 66.7
1r 1.52 24 41 12.2 11.9 4.3
n 38 17 35 26

SY425D Qtz vein Mean 1.06 0.220 59.7 0.067 3.17 3.30
1r 0.17 0.155 1.2 0.011 0.63 0.37
n 18 5 6 7

SY438 Metagabbro Mean 0.048 n.a. 0.005 56.4 108 19.9 n.a. 70.2 88.7
1r 0.037 0.002 8.0 13 6.7 14.0 1.9
n 2 13 4 9 8

SY441 Chl schist Mean 0.057 5.29 49.6 92 54.2 n.a.
1r 0.001 1.2 4 10.8
n 3 1 2 3

a MPG, meta-plagiogranite. All concentrations in (lg/g). Numbers in parentheses refer to secondary mineral phases and were not used to calculate partition coefficients. The first row of each sample is
mean concentration; the second row is standard deviation (1r) of all analyses; the third row is the number of analyses (n) of this mineral in this sample. WRc, whole-rock concentrations calculated by
using mass fractions of minerals (Table 1) and Li concentrations of minerals (uncertainty of 20% assumed for estimations in mineral concentrations and mass fractions). WRm, measured whole-rock
concentrations. n.a., not analysed. Mineral abbreviations after Kretz (1983): Cld, chloritoid; Ttn, titanite; Grt, garnet; Czo, clinozoisite (incl. epidote); Lws, lawsonite; Tur, tourmaline; Cpx,
clinopyroxene (omphacite, jadeite); Cam, calcic amphibole; Gln, glaucophane; Chl, chlorite; Tlc, talc; Phe, phengite; Pg, paragonite; Ab, albite; Qtz, quartz.
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Table 3
Concentrations of Be in silicates (determined by SIMS) and whole-rock Be concentrations of investigated samples

Sample Cld Ttn Grt Czo Lws Tur Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz WRc WRm

SY109 Eclogite Mean n.a. <0.003 n.a. 1.31 2.47 5.58 15.6 <0.001 1.57 1.77
1r 0.66 1.18 0.94 5.1 0.31 0.07
n 6 15 13 19 11 5

SY304 Gln schist Mean 0.017 <0.001 n.a. 0.487 0.234 2.67 (2.95) <0.001 0.58 0.46
1r 0.007 0.151 0.115 0.23 (1.52) 0.12 0.06
n 11 7 14 13 18 12 4

SY308 MPGa Mean n.a. <0.001 n.a. 0.311 0.128 2.74 <0.001 0.76 0.82
1r 0.046 0.050 0.51 0.15 0.01
n 9 5 8 10 7

SY309B Gln schist Mean <0.002 0.030 0.041 2.38 0.812 0.295 4.11 0.85 0.65
1r 0.009 0.006 0.19 0.218 0.055 0.38 0.17 0.04
n 6 5 33 17 19 16 21

SY314 Gln schist Mean 0.028 0.008 n.a. 0.37 1.59 5.67 0.527 n.a. 1.91 2.32
1r 0.008 0.004 0.30 1.25 0.48 0.342 0.38 0.04
n 3 5 2 27 14 14

SY323 Eclogite Mean <0.001 <0.004 0.046 n.a. 4.73 n.a. n.a. 2.14 2.08
1r 0.030 2.38 0.43 0.02
n 5 8 13 50

SY325 Chl schist Mean 4.34 0.357 <0.021 2.89 2.59
1r 1.08 0.047 0.58 0.03
n 46 10 11

SY328 Omp–Chl fels Mean n.a. 0.016 0.173 0.081 0.461 0.13 0.88
1r 0.010 0.113 0.030 0.057 0.03 0.03
n 5 30 21 4

SY344 Metagabbro Mean n.a. <0.001 n.a. 0.285 0.662 0.390 1.18 0.41 0.54
1r 0.148 0.213 0.186 0.39 0.08 0.02
n 13 29 26 29 10

SY404 Chl schist Mean <0.001 0.350 0.3 0.91
1r 0.030 0.06 0.02
n 3 18

SY406 Gln schist Mean n.a. 0.012 n.a. 2.89 1.43 5.89 1.78 1.46
1r 0.013 0.65 0.41 1.55 0.36 0.2
n 9 17 35 26

SY425D Qtz vein Mean <0.001 0.020 1.25 <0.001 0.07 0.15
1r 0.007 0.15 0.01 0.02
n 18 5 6 7

SY438 Metagabbro Mean 0.008 n.a. 1.67 3.02 1.59 4.74 n.a. 2.13 1.28
1r 0.003 0.74 0.75 0.95 3.37 0.4 0.03
n 2 13 4 9 8

SY441 Chl schist Mean <0.002 0.055 1.08 0.315 0.23 n.a.
1r 0.29 0.022 0.05
n 3 1 2 3

a MPG, meta-plagiogranite. All concentrations in (lg/g). Numbers in parentheses refer to secondary mineral phases and were not used to calculate partition coefficients. The first row of each sample is
mean concentration; the second row is standard deviation (1r) of all analyses; the third row is the number of analyses of this mineral in this sample. WRc, whole-rock concentrations calculated by using
mass fractions of minerals (Table 1) and Be concentrations of minerals (uncertainty of 20% assumed for estimations in mineral concentrations and mass fractions). WRm, measured whole-rock
concentrations. n.a., not analysed. Mineral abbreviations after Kretz (1983): Cld, chloritoid; Ttn, titanite; Grt, garnet; Czo, clinozoisite (incl. epidote); Lws, lawsonite; Tur, tourmaline; Cpx,
clinopyroxene (omphacite, jadeite); Cam, calcic amphibole; Gln, glaucophane; Chl, chlorite; Tlc, talc; Phe, phengite; Pg, paragonite; Ab, albite; Qtz, quartz.
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Table 4
Concentrations of B in silicates (determined by SIMS) and whole-rock B concentrations of investigated samples

Sample Cld Ttn Grt Czo Lws Tur Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz WRc WRm

SY109 Eclogite Mean n.a. 0.024 n.a. 1.60 1.90 43.0 94.2 0.044 4.38 n.a.
1r 0.009 0.42 0.81 7.7 18.0 0.022 0.88
n 6 15 13 19 11 5

SY304 Gln schist Mean 0.014 0.024 n.a. 1.93 2.38 74.9 (117) 0.040 13.1 12.0
1r 0.010 0.004 0.42 0.90 4.9 (32) 0.033 2.6 0.2
n 5 7 6 5 9 12 4

SY308 MPGa Mean n.a. 0.015 n.a. 0.251 0.226 20.2 0.029 5.13 10.3
1r 0.005 0.057 0.092 6.3 0.014 1.03 0.1
n 9 5 8 10 7

SY309B Gln schist Mean 0.030 0.478 33,623 1.92 5.53 1.47 136 3960 3960
1r 0.022 0.075 566 0.25 0.98 0.20 15 50
n 4 5 33 17 19 8 14

SY314 Gln schist Mean 0.408 0.090 n.a. 31,496 1.43 66.3 0.307 n.a. 93.9 93.9
1r 0.134 0.031 404 0.96 6.0 0.120 1.2
n 3 5 2 5 14 2

SY323 Eclogite Mean 0.046 0.093 0.273 n.a. 2.04 n.a. n.a. 4.77 4.77
1r 0.018 0.041 0.097 0.39 0.06
n 5 8 5 22

SY325 Chl schist Mean 9.16 1.92 4.77 7.05 7.15
1r 1.86 0.28 1.34 1.41 0.10
n 46 10 11

SY328 Omp–Chl fels Mean n.a. 0.609 3.82 2.50 1.35 2.86 7.58
1r 0.304 0.70 0.52 0.65 0.57 0.10
n 5 5 5 4

SY344 Metagabbro Mean n.a. 0.023 n.a. 1.52 2.98 3.99 48.2 3.58 5.05
1r 0.005 0.68 0.72 1.88 5.5 0.72 0.07
n 13 29 26 29 10

SY404 Chl schist Mean 0.091 2.51 2.14 3.75
1r 0.014 0.47 0.43 0.06
n 3 18

SY406 Gln schist Mean n.a. 0.090 n.a. 2.70 3.92 86.9 18.1 18.2
1r 0.077 1.07 1.22 13.9 3.6 0.2
n 9 17 35 26

SY425D Qtz vein Mean 0.040 0.221 0.824 0.027 0.11 1.90
1r 0.009 0.107 0.099 0.005 0.02 0.03
n 18 5 6 7

SY438 Metagabbro Mean 0.149 n.a. 0.145 1.29 6.96 79.6 n.a. 18.9 19.6
1r 0.017 0.071 0.10 2.25 21.2 3.8 0.2
n 2 13 4 9 8

SY441 Chl schist Mean 0.031 34,700 3.28 2.94 13,900 n.a.
1r 0.007 0.02 0.31 2800
n 3 1 2 3

a MPG, meta-plagiogranite. All concentrations in (lg /g). Numbers in parentheses refer to secondary mineral phases and were not used to calculate partition coefficients. The first row of each sample is
mean concentration; the second row is standard deviation (1r) of all analyses; the third row is the number of analyses of this mineral in this sample. WRc, whole-rock concentrations calculated by using
mass fractions of minerals (Table 1) and B concentrations of minerals (uncertainty of 20% assumed for estimations in mineral concentrations and mass fractions). WRm, measured whole-rock
concentrations. n.a., not analysed. Mineral abbreviations after Kretz (1983): Cld, chloritoid; Ttn, titanite; Grt, garnet; Czo, clinozoisite (incl. epidote); Lws, lawsonite; Tur, tourmaline; Cpx,
clinopyroxene (omphacite, jadeite); Cam, calcic amphibole; Gln, glaucophane; Chl, chlorite; Tlc, talc; Phe, phengite; Pg, paragonite; Ab, albite; Qtz, quartz.
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Fig. 1. Lithium, Be and B budgets of 12 samples. Every sample is shown in four columns for mass fraction of minerals, Li, Be and B contents, respectively,
normalised to 100% of measured whole-rock contents. Uncertainties in calculation of the budgets are assumed to be 20% and are marked in all diagrams as
dashed lines. *Boron whole-rock data for sample SY109 are not available; Boron budget for this sample is normalised to the calculated concentration of
Table 4.
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4758 H.R. Marschall et al. 70 (2006) 4750–4769
the Li budget of every sample investigated. Garnet, clino-
zoisite, tourmaline, Ca-amphibole and talc have only min-
or concentrations of Li. Chloritoid, titanite, lawsonite,
quartz and albite are negligible for the Li budgets of the
samples.

Beryllium contents are highest in paragonite, phengite,
Ca-amphibole, clinopyroxene, lawsonite and glaucophane
and much lower in albite and chlorite. All other phases
are negligible for the Be budgets of the bulk rocks.

Apart from tourmaline, the most important hosts for B
are paragonite and phengite, with B contents between 20
and 130 lg/g. All other phases have concentrations below
10 lg/g, with Ca-amphibole, talc, chlorite, glaucophane,
clinopyroxene and albite between 0.2 and 9 lg/g. Neverthe-
less, these phases are important for the B budget of samples
that have very low modal abundances of tourmaline and
white micas (e.g. SY325 and SY344).

Lithium, Be and B budgets of the samples were calculat-
ed from mineral mass fractions (Table 1) and mean element
concentrations (Tables 2–4). In most cases, calculated
bulk-rock budgets of Li, Be and B are within 80–120% of
the measured bulk-rock concentrations (Fig. 1). Only in a
few cases are there significant differences between both val-
ues. In principle, these discrepancies could be due to (i)
incorrect estimates of mineral mass fractions or (ii) incor-
poration of Li, Be and B in secondary and/or non-silicate
minerals or in fluid inclusions.

8. Partitioning of Li, Be and B between high-pressure

minerals

Equilibrium element partitioning between two phases
depends on temperature, pressure and phase compositions.
Temperatures during metamorphism were similar among
samples and range from 400� to 500� (Okrusch and
Bröcker, 1990; Trotet et al., 2001b; Marschall et al.,
2006). However, as many mineral grains are chemically
zoned, it is obvious that equilibrium was not attained.
Nevertheless, the partitioning of Li, Be and B between the
coexisting mineral phases was found to be rather constant
and independent of element concentrations (Tables 5–7;
Fig. 2). For almost all mineral pairs, apparent partition
coefficients vary by less than one order of magnitude, for
many of them by less than a factor of three, while concentra-
tions vary by more than one order of magnitude.

Partitioning of trace elements between clinopyroxene
and garnet is most relevant for eclogites. The partitioning
of Li and B between these two phases is shown in Fig. 2a
and b, respectively. Lithium concentrations range from
6.81 to 80.6 lg/g in clinopyroxene and from 0.152 to
3.47 lg/g in garnet, resulting in clinopyroxene/garnet parti-
tion coefficients between 23 and 56 with an average of 37
(Tables 2 and 5). Boron concentrations vary between
0.251 and 2.70 lg/g in clinopyroxene and between 0.015
and 0.090 lg/g in garnet. clinopyroxene/garnet partition
coefficients for B range from 16 to 67 with an average of
37 (Tables 4 and 7). Beryllium concentrations in garnet
are at or even below detection limit for most of the sam-
ples. Therefore, it is only possible to calculate a minimum
clinopyroxene/garnet partition coefficient of 250 for Be
(Table 6). The results show that in eclogitic lithologies,
all three elements are strongly fractionated into
clinopyroxene.

The partitioning of light elements between glaucophane
and garnet (Fig. 2c and d) is very similar to that between
clinopyroxene and garnet. Glaucophane and coexisting
garnet from various samples show large variations in Li
concentration (Table 2). Glaucophane/garnet partition
coefficients for Li vary between 16 and 57 with an average
of 35 (Table 5). In the case of B, variations in concentra-
tions are smaller. Apparent partition coefficients show a
relatively wide range from 15 to 170 (Table 7). Beryllium
is concentrated in glaucophane, and the minimum partition
coefficient is 160. All three elements are thus strongly frac-
tionated into glaucophane.

Since phengite forms a significant constituent of many
blueschists, the partitioning of light elements between glau-
cophane and phengite is of some importance. Observed Li
concentrations in phengite vary between 2.57 and 49.3 lg/g
(Table 2), resulting in glaucophane/phengite partition coef-
ficients between 2.1 and 7.0 with an average of 3.8 (Table 5
and Fig. 2e). Beryllium concentrations in phengite range
from 1.18 to 5.89 lg/g (Table 3) and glaucophane/phengite
partition coefficients range from 0.18 to 0.44 with an aver-
age of 0.29 (Fig. 2f and Table 6). Measured B concentra-
tions in phengite vary between 43.0 and 136 lg/g B
(Table 4). The partition coefficient (glaucophane/phengite)
is well defined between 0.022 and 0.088, with an average of
0.050 (Table 7 and Fig. 2g). These results show that Li is
partitioned into glaucophane, Be is partitioned into pheng-
ite and B is almost exclusively fractionated into phengite.

Partitioning of Li, Be and B between clinopyroxene and
glaucophane is shown in Fig. 2h, i and j, respectively. Lith-
ium concentrations in both minerals show a wide range
among different samples, as mentioned above. Clinopyrox-
ene/glaucophane partition coefficients range from 0.52 to
1.15 with an average of 0.90 (Table 5). The partition coef-
ficients for Be and B range from 0.5 to 2.9 (average 1.8) and
from 0.19 to 1.11 (average 0.59), respectively (Tables 6 and
7). Note that partition coefficients between clinopyroxene
and glaucophane of all three elements scatter around unity.

The partitioning of Li, Be and B between clinopyroxene
and phengite is shown in Fig. 2k, l and m, respectively.
Fig. 2k displays the large spread in Li concentrations in
both clinopyroxene and phengite and shows a rather con-
stant partition coefficient ranging from 2.6 to 4.7 with a
mean of 3.2 (Table 5). The spread in Be concentrations is
smaller and partition coefficients for Be vary between
0.23 and 0.64, with an average of 0.44 (Table 6). Boron
concentrations in both minerals do not vary greatly. The
partition coefficients range from 0.014 to 0.037, with an
average of 0.026 (Table 7). The results show that Li parti-
tions into clinopyroxene, while Be and B are preferentially
incorporated into phengite.



Table 5
Partition coefficients of Li between 15 silicates, calculated from concentrations of Table 2

Cld Ttn Grt Czo Lws Tur Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz

Cld Mean >160 >8900 >1.1 · 104 >2400 >6.6
n 1 1 1 1 1

Ttn Mean 110 22 0.096 120 1200 2000 1000 570 0.17
n 2 2 1 3 4 3 3 3 1
Min 80 18 70 800 1400 300 200
Max 140 26 200 1900 2300 1600 1090

Grt Mean <0.0065 0.0097 0.26 1.4 37 1.2 35 69 12 17 0.0012 0.053
n 1 2 2 1 6 1 6 1 5 2 1 2
Min 0.0071 0.21 23 16 8 17 0.043
Max 0.0122 0.32 56 57 16 18 0.064

Czo Mean 0.046 4.0 3.9 140 75 160 11 0.027
n 2 2 1 4 1 2 1 1
Min 0.038 3.0 50 60
Max 0.055 4.8 270 260

Lws Mean 10 1.2 · 104 2.3 · 104 4300
n 1 1 1 1

Tur Mean 0.010 0.70 0.26 11 15 17 4.1 8.3 · 10�4

n 3 1 1 2 2 2 2 1
Min 0.005 9 11 17 2.8
Max 0.014 13 20 17 5.3

Cpx Mean 9.1 · 10�4 0.030 0.011 8.2 · 10�5 0.092 0.040 1.2 1.6 0.33 0.51 1.8 · 10�4 0.0011
n 4 6 4 1 2 1 6 3 5 2 1 1
Min 5.3 · 10�4 0.018 0.004 0.077 0.9 1.3 0.22 0.41
Max 11.5 · 10�4 0.043 0.020 0.107 1.9 1.9 0.34 0.61

Cam Mean 0.83 31 2.7 0.33 10
n 1 1 1 1 1

Gln Mean <1.1 · 10�4 5.4 · 10�4 0.034 0.013 4.3 · 10�5 0.071 0.90 0.032 1.0 0.31 0.58 7.6 · 10�5 7.4 · 10�4

n 1 3 6 1 1 2 6 1 2 7 2 1 1
Min 4.5 · 10�4 0.018 0.051 0.52 0.8 0.14 0.47
Max 7.3 · 10�4 0.064 0.091 1.15 1.2 0.49 0.69

Chl Mean <9.4 · 10�5 0.0017 0.015 0.0098 0.059 0.63 0.38 1.0 0.13 0.20 1.0–10�4 6.2 · 10�4

n 1 3 1 2 2 3 1 2 1 2 1 1
Min 0.0006 0.0038 0.058 0.54 0.8 0.17
Max 0.0037 0.0157 0.061 0.79 1.2 0.23

Tlc Mean 3.0 8.0
n 1 1

Phe Mean <4.2 · 10�4 0.0028 0.091 0.093 2.3 · 10�4 0.27 3.2 0.10 3.8 5.2 1.9 1.6 · 10�4 0.0027
n l 3 5 1 1 2 5 1 7 2 1 1 1
Min 0.0009 0.064 0.19 2.6 2.1 4.4
Max 0.0051 0.130 0.36 4.7 7.0 5.9

Pg Mean 0.058 2.1 1.8 0.52 <6 · 10�4

n 2 2 2 1 2
Min 0.055 1.6 1.5
Max 0.060 2.5 2.1

Ab Mean 5.9 840 37 1200 1.3 · 104 9700 6400
n 1 1 1 1 1 1 1

(continued on next page)
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The examples discussed above show that in the high-
pressure metamorphic rocks from Syros, partitioning of
Li, Be and B between coexisting minerals is systematic.
Partition coefficients vary by a factor of two or three in
most examples and they are independent of absolute con-
centrations. Only in some cases, such as the partitioning
of B between garnet and other phases, the partition coeffi-
cients vary by more than one order of magnitude. This
unusually large variation may be due to analytical uncer-
tainties at very low concentration levels of B in garnet, or
due to slow diffusion of B in garnet.

In many blueschist- and eclogite-facies high-pressure
metamorphic rocks, clinopyroxene is a major host for Li
and Be, and it also incorporates some B. The partitioning
of Li, Be and B between clinopyroxene and melt and clin-
opyroxene and aqueous fluid has been studied experimen-
tally (Brenan et al., 1998a,b). Therefore, in the following
discussion, clinopyroxene is used as a reference mineral.
Mineral/clinopyroxene partition coefficients for Li, Be
and B calculated from the observed mineral/mineral parti-
tion coefficients (Tables 5–7) are presented in Fig. 3. The
results for Li show that almost all mineral/clinopyroxene
partition coefficients are smaller than unity, except for
glaucophane (1.2 ± 0.6) and chlorite (1.6 ± 0.3). For Be,
actinolite/clinopyroxene and glaucophane/clinopyroxene
partition coefficients are near to unity, while the respective
partition coefficients of white micas and albite are clearly
above unity. For B, phengite/clinopyroxene and parago-
nite/clinopyroxene partition coefficients are very high (45
and 70, respectively) and those for the amphiboles, chlorite
and talc are close to unity.

9. Discussion

In the following discussion, the budgets of Li, Be and B
in progressively metamorphosed subducting oceanic crust
are discussed and a model is presented, which can be used
to estimate the mobilisation of the light elements during
dehydration. Li, Be and B are strongly fractionated among
different minerals in HP metamorphic rocks. Very high
concentrations of lithium are found in the major phases
of chlorite schists, glaucophane schists, metagabbros and
eclogites, namely chlorite, glaucophane and clinopyroxene.
Thus, the major phases are the principal carriers of Li and
are able to incorporate large amounts of Li into their crys-
tal structures. Therefore, Li has the potential to stay in the
rocks during prograde high-pressure metamorphism of al-
tered oceanic crust. At low metamorphic grades, Li can
be hosted in chlorite, and during formation of blueschists,
it will enter glaucophane. Later on, the blueschist-eclogite
transition is characterised by continuous reactions occur-
ring over certain P–T ranges. During this process, the mod-
al abundance of glaucophane decreases, while the amount
of clinopyroxene increases, until finally an eclogite assem-
blage dominated by clinopyroxene and garnet will form.
As described above, the clinopyroxene structure is able to
incorporate large amounts of Li and, therefore, a large por-



Table 6
Partition coefficients of Be between 15 silicates, calculated from concentrations of Table 3

Cld Ttn Grt Czo Lws Tur Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz

Cld Mean <0.03 29 14 160 <0.02

n 1 1 1 1 1
Ttn Mean 0.30 >10 210 22 390 130 >160 400 19

n 1 2 1 3 1 2 3 2 1

Min 13 60 200
Max 30 200 610

Grt Mean >30 3.4 >10 44 250 >900 160 >500 590 >4000 63 d.l.

n 1 1 2 1 1 1 2 1 2 1 1 4
Min 120 510

Max 190 680

Czo Mean <0.1 1.4 64 27 7.5 140 30 <0.02

n 2 1 4 1 2 1 1 1
Min 11 5.2

Max 103 9.8

Lws Mean 0.0047 1.8 0.95 2.8
n 1 1 1 1

Tur Mean 0.077 0.023 0.73 39 12 6.4 58 1.4

n 1 1 1 2 2 2 2 1
Min 20 4 5.7 15

Max 58 20 7.2 100

Cpx Mean 0.0013 0.0020 0.032 0.55 0.034 2.3 0.84 0.30 2.8 10 2.7 <0.002
n 4 6 4 1 2 1 6 3 5 2 1 3

Min 0.0003 0.0005 0.010 0.017 0.34 0.12 1.6 9

Max 0.0026 0.0024 0.090 0.051 1.89 0.47 4.3 12
Cam Mean <0.001 0.43 0.59 0.082 <0.005 1.8

n 1 1 1 1 1 1

Gln Mean 0.035 0.0083 0.0037 0.037 1.1 0.14 1.8 1.7 0.42 3.8 14 0.33 <0.005
n 1 3 6 1 1 2 6 1 2 7 2 1 3

Min 0.0023 0.0010 0.05 0.5 0.36 2.3 6

Max 0.0177 0.0081 0.23 2.9 0.48 5.5 21
Chl Mean 0.072 <0.006 <0.002 0.15 0.16 4.5 12 2.4 <0.06 13 5.7 <0.002

n 1 3 1 2 2 3 1 2 1 2 1 1

Min 0.10 0.14 2.1 2.1 11
Max 0.19 0.18 8.1 2.8 14

Tlc Mean >200 >20

n 1 1
Phe Mean 0.0063 0.0024 9.4 · 10�4 0.0074 0.35 0.038 0.44 0.56 0.29 0.080 2.8 0.093 <1 · 10�4

n 1 3 5 1 1 2 5 1 7 2 1 1 2

Min 0.0005 1.8 · 10�4 0.010 0.23 0.18 0.072
Max 0.0050 19.6 · 10�4 0.065 0.64 0.44 0.088

Pg Mean 1.9 · 10�4 0.099 0.10 0.36 <3 · 10�4

n 1 2 2 1 2
Min 0.084 0.05

Max 0.114 0.16

Ab Mean 0.054 0.016 0.034 0.70 0.38 3.0 0.18 11
n 1 1 1 1 1 1 1 1

Qtz Mean >40 >1 >60 >400 >200 >600 >7000 >4000

n 1 4 1 3 3 1 2 2

Partition coefficients of Be between two minerals are ratios of concentrations (Be in mineral 1/Be in mineral 2). Mineral 1 is given in the top row, mineral 2 is given in the first column. The first row of each mineral is the mean

coefficient; the second row is the number of samples (n) used for calculation of partition coefficients (maximum or minimum values are given for cases in which one mineral shows concentrations below the detection limit; d.l., both
minerals below detection limit). The third and fourth rows give minimum (min) and maximum (max) values for the partition coefficients. Mineral abbreviations after Kretz (1983): Cld, chloritoid; Ttn, titanite; Grt, garnet; Czo,

clinozoisite (incl. epidote); Lws, lawsonite; Tur, tourmaline; Cpx, clinopyroxene (omphacite, jadeite); Cam, calcic amphibole; Gln, glaucophane; Chl, chlorite; Tlc, talc; Phe, phengite; Pg, paragonite; Ab, albite; Qtz, quartz.
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Table 7
Partition coefficients of B between 14 silicates, calculated from concentrations of Table 4

Cld Ttn Grt Czo Lws Cpx Cam Gln Chl Tlc Phe Pg Ab Qtz

Cld Mean 1.7 140 170 5300 2.8
n 1 1 1 1 1

Ttn Mean 1.1 11 0.97 56 79 57 1800 0.75
n 2 2 1 4 3 3 3 1
Min 0.2 6 9 35 28 160
Max 2.0 16 104 186 94 4600

Grt Mean 0.60 2.5 4.3 37 130 68 100 1800 2600 3.4 1.5
n 1 2 2 6 1 6 1 5 2 1 4
Min 0.5 2.9 16 15 700 1300 0.7
Max 4.5 5.6 67 170 3200 4000 1.9

Czo Mean 0.12 0.26 5.4 12 3.6 280 2.2 0.12
n 2 2 4 1 2 1 1 1
Min 0.06 0.18 3.7 3.1
Max 0.17 0.34 7.5 4.1

Lws Mean 1.0 8.9 48 550
n 1 1 1 1

Cpx Mean 0.041 0.037 0.20 0.11 2.0 2.4 0.77 45 70 0.35 0.059
n 4 6 4 1 1 6 3 5 2 1 3
Min 0.010 0.015 0.13 0.9 0.66 27 59 0.027
Max 0.116 0.061 0.27 5.4 0.90 71 81 0.116

Cam Mean 0.0079 1.3 0.21 0.52 16
n 1 1 1 1 1

Gln Mean 0.0074 0.10 0.031 0.087 0.021 0.59 0.75 0.75 25 70 0.21 0.058
n 1 3 6 1 1 6 1 2 7 2 1 3
Min 0.01 0.006 0.19 0.27 11 50 0.021
Max 0.29 0.068 1.11 1.23 46 90 0.129

Chl Mean 0.006 0.022 0.010 0.28 1.3 4.8 2.3 2.5 62 0.54 0.017
n 1 3 1 2 3 1 2 1 2 1 1
Min 0.011 0.24 1.1 0.8 32
Max 0.036 0.33 1.5 3.8 92

Tlc Mean 1.9 0.4
n 1 1

Phe Mean 1.9 · 10�4 0.0028 7.5 · 10�4 0.0035 0.0018 0.026 0.062 0.050 0.021 2.2 0.0046 7.8 · 10�4

n 1 3 5 1 1 5 1 7 2 1 1 2
Min 0.0002 3.2 · 10�4 0.014 0.022 0.011 5.4 · 10�4

Max 0.0062 13.6 · 10�4 0.037 0.088 0.032 10.2 · 10�4

Pg Mean 5.1 · 10�4 0.015 0.016 0.46 9.5 · 10�4

n 2 2 2 1 2
Min 2.5 · 10�4 0.012 0.011 4.7 · 10�4

Max 7.6 · 10�4 0.017 0.020 14.4 · 10�4

Ab Mean 1.3 0.30 0.45 4.7 1.9 220
n 1 1 1 1 1 1

Qtz Mean 0.35 0.78 8.2 25 33 59 1400 1400
n 1 4 1 3 3 1 2 2
Min 0.53 9 8 1000 700
Max 1.47 36 48 1900 2200

Partition coefficients of B between two minerals are ratios of concentrations (B in mineral 1 /B in mineral 2). Mineral 1 is given in the top row, mineral 2 is
given in the first column. The first row of each mineral is the mean coefficient; the second row is the number of samples (n) used for calculation of partition
coefficients (maximum or minimum values are given for cases in which one mineral shows concentrations below the detection limit). The third and fourth
rows give minimum (min) and maximum (max) values for the partition coefficients. Mineral abbreviations after Kretz (1983): Cld, chloritoid; Ttn, titanite;
Grt, garnet; Czo, clinozoisite (incl. epidote); Lws, lawsonite; Cpx, clinopyroxene (omphacite, jadeite); Cam, calcic amphibole; Gln, glaucophane; Chl,
chlorite; Tlc, talc; Phe, phengite; Pg, paragonite; Ab, albite; Qtz, quartz.
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tion of the rock’s Li could be retained within the eclogite.
Woodland et al. (2002) have shown that metabasaltic
eclogites from different localities and metamorphic grade
have significant whole-rock Li concentrations of up to
31 lg/g, most of which is hosted in clinopyroxene. Further-
more, Zack et al. (2002, 2003) report whole-rock Li con-
tents of eclogites from Trescolmen (Central Alps)
reaching 41 lg/g and Hermann (2002) reports Li contents
of 46 and 102 lg/g in two phengite-bearing eclogites from
Dora Maira (Western Alps).

Beryllium is mainly hosted in clinopyroxene, glauco-
phane and white mica; in addition, Ca-amphibole, lawso-
nite and albite may also contain significant amounts of
Be. As discussed above for Li, Be should also be retained
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Fig. 2. (a–d) Concentrations of Li (a and c) and B (b and d) in coexisting clinopyroxene-garnet (a and b) and glaucophane-garnet (c and d) pairs. Garnet
in sample SY406 is zoned in Li with decreasing concentrations from core (filled cycle) to rim (open cycle). (e–g) Concentrations of (e) Lithium, (f)
Beryllium and (g) Boron in coexisting glaucophane–phengite pairs in various samples. (h–j) Concentrations of Li, Be and B in coexisting clinopyroxene–
glaucophane pairs. (k–m) Concentrations of Li, Be and B in coexisting clinopyroxene–phengite pairs. Diagonal lines mark constant partition coefficients
(values given on lines). Circles, glaucophane schists; diamonds, black wall schists; squares, eclogites; and triangles, meta gabbros. Note that not all mineral
pairs occur in each samples, and therefore, not all samples are plotted in each diagram.
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in progressively dehydrating rocks of the subducting oce-
anic crust. It will be hosted by Ca-amphibole and albite
in greenschists, by glaucophane and white mica in blues-
chists and by clinopyroxene in eclogites. Domanik et al.
(1993) found white mica to contain the highest concentra-
tions of Be in high-pressure rocks, which is in agreement
with the results presented here. However, the limited modal
abundance of white mica compared to glaucophane and
clinopyroxene limits the importance of phengite and parag-
onite for the Be budgets of the rocks. Zack et al. (2002)
underlined the importance of clinopyroxene as the princi-
pal carrier of Be in eclogites, which is in agreement with
the results obtained in this study.

During our investigation special emphasis was put on
analyses of boron at low concentration levels (Marschall
and Ludwig, 2004). This turned out to be very important,
as almost all of the investigated minerals contain less than
10 lg/g B and most contain even less than 1 lg/g. The only
minerals (except for tourmaline) showing higher concentra-
tions of B are phengite and paragonite. Previous studies
demonstrated that white micas are important carriers of
B in high-pressure rocks (Domanik et al., 1993; Hermann,
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Fig. 3. Mineral/clinopyroxene partition coefficients of (a) Lithium, (b)
Beryllium and (c) Boron for 15 different HP metamorphic minerals plotted
as log Dmineral/Cpx. Minerals are arranged in the order of increasing silicate
polymerisation. Open diamonds display minerals for which partition
coefficients were directly calculated from concentration ratios between the
respective mineral and coexisting clinopyroxene. Black diamonds display
minerals which were not observed in equilibrium with clinopyroxene. D

values for these minerals were calculated by combining clinopyroxene/
chlorite with mineral/chlorite concentration ratios. Open circle represents
clinopyroxene.
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2002; Zack et al., 2002). However, these studies were not
focused on accuracy of B measurements at low concentra-
tion levels and, therefore, might have overestimated the
concentrations of B in minerals coexisting with white mica,
namely clinopyroxene, amphibole and garnet. Overestima-
tion of B at low concentration levels leads to partition
coefficients between white mica and coexisting minerals
that are too low. The measurements presented here
revealed relatively low concentrations in minerals coexis-
ting with B-rich white micas, resulting in high partition
coefficients (DPhe/Cpx = 45; DPg/Cpx = 70; Table 5). The lat-
ter underline the importance of phengite and paragonite as
hosts of B. The contribution of phases other than phengite,
paragonite and tourmaline to the B budget of HP meta-
morphic rocks is smaller than formerly thought. In con-
trast to the results of Domanik et al. (1993) who
measured 5–55 lg/g B in lawsonite, our measurements of
Syros lawsonite reveals only 0.145 lg/g B (SY438; Table
4) in equilibrium with B-rich phengite in a B-rich rock (Ta-
ble 4). Lawsonite has much lower B concentrations than
the coexisting clinopyroxene and glaucophane. Therefore,
the role of lawsonite as an important carrier of B in
high-pressure metamphic rocks has to be negated on the
basis of our results. Analyses of chlorite during this study
showed that surface contamination is a serious problem,
especially for sheet silicates. The highest concentrations
of B in chlorite from six different samples are only between
2.50 and 2.95 lg/g and are almost two orders of magnitude
lower than B concentrations of coexisting paragonite (Ta-
ble 4). Therefore, chlorite must be recognised as only a
minor host of B. Our analyses of Syros rocks also revealed
very low B concentrations in garnet (15–93 ng/g), making
garnet insignificant for the B budget of garnet–glaucopha-
nites and eclogites, even at high modes, which is in contrast
to earlier studies (e.g. Zack et al., 2002). The significantly
higher apparent B concentrations reported in previous
studies using SIMS or LA-ICP-MS techniques may be ex-
plained by surface contamination of thin sections or by
small mineral and fluid inclusions, which were not recog-
nisable during analysis.

Tomascak et al. (2002) discussed Li, Be and B contents
and Li isotopic compositions of basalts and andesites
from different island arcs. They found that volcanic rocks
enriched in B (high B/Be) demonstrate neither a signifi-
cant enrichment in Li nor a subduction-related Li isotope
signature. The authors emphasise a strong discrepancy be-
tween the fluid-mobile character of Li and its lack of
enrichment in arc magmas. This apparent contradiction
is solved by assuming that Mg-silicates of the mantle
wedge may act as a filter. Fluids released from the dehy-
drating slab are thought to contain high concentrations of
Li and B. Experimental studies on the trace-element
mobility in fluids (as well as supercritical fluids and melts)
released from eclogites at ultra-high pressures (4–6 GPa)
by Kessel et al. (2005) have revealed much lower eclog-
ite/fluid partition coefficients for B than for Li for a wide
temperature range. The partitioning of Li and B between
peridotite and hydrous fluid at high pressures and temper-
atures is also significantly different from each other, with
Dperidotite/fluid � 0.01 for B and �0.1 for Li (Brenan et al.,
1998b). Consequently, B should be transferred through
the mantle wedge to the magma source region, while Li
should be stripped from the fluids by Mg-silicates in the
mantle peridotite directly overlying the subducting plate.
Paquin and Altherr (2002) and Paquin et al. (2004) have
demonstrated that the ultrahigh-pressure garnet peridotite
from Alpe Arami (Central Swiss Alps) was subjected to a
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subduction-related Li metasomatism without a concomi-
tant significant enrichment in B. They argued that clino-
pyroxene and olivine of the lower and colder parts of
the mantle remove slab-derived Li from fluids migrating
from the dehydrating slab into the hot regions of sub-
arc melting. B, in contrast, is not significantly incorporat-
ed by these minerals, due to its low mineral/fluid partition
coefficients for mantle minerals (e.g. Brenan et al., 1998b).
However, other studies suggest that partition coefficients
of Li, Be and B between olivine–orthopyroxene assem-
blages and hydrous fluids may not differ significantly from
each other (Scambelluri et al., 2004; Tenthorey and Her-
mann, 2004).
Table 8
Partition coefficients of Li, Be and B between 15 silicates and fluid

Li Be B

Chloritoid 2.4 · 10�5 0.039 7.4 · 10�5

Titanite 1.5 · 10�4 2.3 · 10�3 6.6 · 10�4

Garnet 4.8 · 10�3 3.6 · 10�3 5.9 · 10�4

Clinozoisite 1.8 · 10�3 0.058 3.2 · 10�3

Lawsonite 1.3 · 10�5 0.99 1.8 · 10�3

Tourmaline 0.015 0.061 —
Clinopyroxenea 0.16 1.8 0.016
Ca-amphibole 6.4 · 10�3 4.1 0.032
Glaucophane 0.19 1.5 0.038
Chlorite 0.26 0.54 0.012
Talc 0.033 0.032 0.031
Phengite 0.053 5.0 0.72
Paragonite 0.082 18 1.1
Albite 2.9 · 10�5 4.9 5.6 · 10�3

Quartz 1.8 · 10�4 3.6 · 10�3 9.4 · 10�4

a Cpx/Fluid data from Brenan et al. (1998b). No B value for the boro-
silicate tourmaline was calculated.
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Fig. 4. (a) Modal composition of a hypothetical metabasalt at three differen
Modelled Li, Be and B concentrations of the sequence of rocks displayed in
concentrations are almost constant (or slightly increase due to the loss of H2O
respectively. The abundances were calculated using whole rock/fluid partition c
mineral/fluid partition coefficients (Table 8). H2O concentrations of the rocks
Modelling trace-element mobility during dehydration of
the subducting slab requires knowledge on the partition
behaviour of elements between HP metamorphic rocks
and released fluids. Brenan et al. (1998b) combined exper-
imentally determined Li, Be and B partition coefficients be-
tween clinopyroxene (and garnet) and aqueous fluid (pure
water and 0.5 M HCl at 2.0 GPa and 900 �C) with miner-
al/clinopyroxene partition coefficients determined on natu-
ral HP metamorphic rocks (Domanik et al., 1993), and
derived mineral/fluid partition coefficients for five different
HP minerals (Grt, Cpx, Lws, Am and mica). Whole rock/
fluid partition coefficients were derived from modal compo-
sition of MORB + H2O during progressive subduction
(Poli and Schmidt, 1995). Using this method, Brenan
et al. (1998b) showed that B/Be ratios of rocks and fluid
in subducting hydrous MORB strongly decrease during
the first �60 km of subduction. Our study contributes
information on the partitioning and budget of Li, Be and
B for a broader range of HP metamorphic minerals, which
can be used in the same way for a quantitative calculation
of light element release. Table 8 shows mineral/fluid parti-
tion coefficients derived from the combination of inter-min-
eral partition coefficients (Tables 5–7) with mineral/
clinopyroxene partition coefficients (Brenan et al., 1998b).
Fig. 4a shows the modal composition of a hypothetical
metabasalt at three different stages of dehydration, from
greenschist (�5 wt% H2O), to blueschist (�1.5 wt% H2O)
to a phengite-bearing eclogite (�0.1 wt% H2O). The release
of trace elements during each step of dehydration is mod-
elled by using the calculated whole-rock/fluid partition
coefficients, and the amount of released H2O. In Fig. 4b
the modelled Li, Be and B concentrations are shown for
the progressive dehydration from a pre-metamorphic
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t metamorphic stages, i.e. greenschist, blueschist and eclogite facies. (b)
(a) plotted relative to the initial element concentrations. Note that Be
), while Li and B concentrations decrease to levels of �45% and �10%,

oefficients derived from the modal rock compositions in combination with
were calculated from stoichiometric concentrations in the minerals.
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protolith (�10 wt% H2O) through the three metamorphic
stages displayed in Fig. 4a. The results show that Be con-
centrations are unaffected by the metamorphic dehydra-
tion. Lithium is decreased to �45% of the initial value, and
only �10% of the boron is preserved in the eclogite. The re-
sults suggest that Li much stronger than B may be retained in
the subducting oceanic crust itself, and thus, half of the lith-
ium may not even be mobilised. Hence, the retention of Li in
eclogitic clinopyroxene probably also contributes to the frac-
tionation of the fluid-mobile elements Li and B. A more
quantitative examination of fluid transport and fraction-
ation of the light elements and their isotopes will be discussed
in a separate paper.

Formation and stability of tourmaline will immobilise B
and will cause a quantitative retention of B in the subduct-
ing material. Preferential incorporation of B in white mica
shows that this element is hosted by the same minerals as
are K, Rb, Ba, Cs (LILE) in high-pressure metamorphic
rocks (Domanik et al., 1993; Sorensen et al., 1997; Melzer
and Wunder, 2000; Zack et al., 2001; Schmidt et al., 2004).
Therefore, in the absence of tourmaline, a white mica-bear-
ing oceanic crust will show coupled B-LILE systematics
during subduction. In contrast, high-pressure dravite has
very low concentrations of LILE (Marschall, 2005),
whereas B is a major component of this mineral, with con-
centrations of �3 wt% B. Formation of tourmaline will
thus lead to a decoupling of B from LILE (K, Rb, Ba,
and Cs).

10. Conclusions

All three elements Li, Be and B are strongly fractionated
among different HP minerals. Very high concentrations of
lithium occur in chlorite, glaucophane and clinopyroxene
and to a lesser extent in paragonite and phengite. Beryllium
is mainly hosted by clinopyroxene, glaucophane and white
mica. In addition, Ca-amphibole, lawsonite and albite may
also contain considerable amounts of Be. The only miner-
als (except for tourmaline) showing B concentrations in ex-
cess of 10 lg/g are phengite and paragonite.

This study presents a set of inter-mineral partition
coefficients for the light elements Li, Be and B for 15
HP metamorphic minerals, derived from in-situ analyses
of coexisting phases in different natural rock samples.
This data set provides important information on the
behaviour of the light elements in different lithologies
within subducting slabs in the depth region between the
onset of subduction and the stability field of eclogites.
Also, it is essential for modelling trace-element and iso-
tope fractionation during subduction and dehydration
of oceanic crust. The calculated model presented here
demonstrates that much more lithium than boron will
be retained in the metabasalts, which may contribute to
the fractionation of the two fluid mobile elements in sub-
duction zones. Modelling of Li, Be and B mobilisation
and isotope fractionation will be presented in greater de-
tail in a separate paper.
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