РУДООБРАЗОВАНИЕ, МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

БЛАГОРОДНЫЕ МЕТАЛЛЫ В МАГНЕТИТОВЫХ РУДАХ КАГАНСКОГО МАССИВА УЛЬТРАОСНОВНЫХ ПОРОД НА ЮЖНОМ УРАЛЕ

В.В. Мурзин, Д.А. Варламов

Магнетит постоянно присутствует в измененных ультраосновных породах, прежде всего, в хризотиловых и антигоритовых серпентинитах, в виде рассеянной вкрапленности и является продуктом выноса железа из минералов исходных пород в процессе серпентинизации или замещения им выделений хромшпинелида. В то же время, проявления сплошных магнетитовых руд в пределах массивов ультраосновных пород, известные на Урале с конца 19 столетия, являются экзотическими образованиями. Наиболее детально в литературе описано проявление магнетитовых руд в Халиловском массиве (Ю. Урал). Здесь жилообразные тела магнетитовых руд мощностью до 30 см локализованы в хризотиловых серпентинитах и прослеживаются в субмеридиональном направлении на протяжении до 200 м [Бакиров, 1965]. На контактах тел магнетитовых руд, содержащих вкрапленность халькопирита (до 3-4 об. %), развита зона антигоритового серпентина мощностью не более 2-3 см. Опробование магнетитовых руд на платину и золото дало отрицательные результаты.

В конце прошлого столетия в результате поисково-картировочных работ в пределах Каганского массива ультраосновных пород, проведенных под руководством В.Я.Левина, была установлена повышенная золотоносность магнетитовых руд, развитых в этом массиве. Золотоносность связана с присутствием в рудах частиц самородного золота, иногда повышенной крупности. Проявления золота в магнетитовых рудах этого массива стали объектом настоящего исследования.

Каганский массив располагается в пределах Вишневогорско-Ильменогорского метаморфического комплекса рифейского возраста на Южном Урале. Гипербазиты, отнесенные к дунит-гарцбургитовой формации [Коротеев и др., 1985] претерпели позднедокембрийский региональный зональный метаморфизм с образованием серпентинизированных тальколивиновых, оливин-антигоритовых и антигоритовых серпентинитов и, позднее, региональный зональный кремнекислый метасоматоз. В результате метасоматоза возникли энстати-

товые, антофиллитовые, и тальк-карбонатные породы [Варлаков, 1995].

По данным В.Я.Левина, проявления массивных и прожилково-шлировых магнетитовых руд приурочены к тектонической зоне, протягивающейся вдоль восточного контакта массива на расстояние до 2 км. Линзы магнетита длиной до 5-6 м и мощностью до 0,2 м располагаются цепочками вдоль тектонической зоны и быстро выклиниваются. Вмещающие и околорудные породы — антигоритовые серпентиниты с реликтами оливина. Местами они амфиболизированы, оталькованы и карбонатизированы.

Магнетит-сульфидные руды – вкрапленные, густовкрапленные, сплошные - состоят из полигональнозернистых агрегатов зерен магнетита размерами менее 1 мм и небольшого количества сульфидов (не более 2-5 %) – халькопирита, борнита, пентландита. Сульфиды образуют мелкие округлые (менее 50 мкм) включения в кристаллах магнетита или более крупные выделения в межзерновом пространстве агрегатов магнетита. Аналогичную позицию занимают частицы самородного золота. Рудные скопления цементируются нерудной массой, в которой фиксируются блоки серпентинита, лейсты антигорита, талька, хлорита, а также кристаллы амфибола. Вся масса руды разбита сетью прожилков позднего петельчатого серпентина, рассекающих все перечисленные минералы.

Нами получены данные о содержании золота и элементов платиновой группы в рудах и околорудных породах (табл. 1). Анализ этих данных дает основание для следующих выводов: 1) антигоритовый серпентинит разломной зоны, к которой приурочено оруденение, характеризуется немного повышенной концентрацией Au и Pt (10 мг/т) относительно обычных уровней этих элементов в ультраосновных породах; 2) амфиболовый метасоматоз ведет к небольшому концентрированию золота; 3) в магнетитовых рудах концентрируются Au, Pd и Pt, а остальные платиноиды присутствуют на уровне чувствительности анализа или ниже его.

Содержания благородных металлов в породах и рудах Каганского массива ультраосновных пород

№ обр.	Породо прирадко	Содержания, г/т					
	Порода, привязка	Au	Pt	Pd	Rh	Os	
3p-1315	Серпентинит, вмещающий магнетитовую руду, К-5	0,01	0,01	_	< 0,01		
3p-1313	Серпентин-амфиболовый метасоматит, шурф возле шх. 1	0,017	< 0,01	_	_	_	
3p-888	Сплошная магнетитовая руда с частицами золота, шх.1	_	_	0,005	_	ı	
3p-1071	Густовкрапленная магнетитовая руда, шх.1	0,16	0,01	0,77	< 0,01	0,012	
3p-1312	То же	0,055	_	0,005	_	0,012	
3p-1318	Сплошная магнетитовая руда, К-6	0,065	0,02	0,02	< 0,01	_	

Примечание. По данным химико-спектрального (Au, Pt, Pd, Rh, Ir) и спектрофотометрического (Os, Ru) анализов, выполненных в Институте геологии и геохимии УрО РАН (аналитики Ю.П. Любимцева, И.И. Неустроева, О. Березикова). Чувствительность методов: Pd $-0.005 \, \text{г/т}$, Pt, Au, Rh $-0.01 \, \text{г/т}$, Ir $-0.02 \, \text{г/т}$, Os, Ru $-0.012 \, \text{г/т}$. Прочерк – не обнаружено. Ir и Ru – не обнаружены во всех пробах.

Несмотря на присутствие частиц самородного золота, анализом фиксируются низкие его концентрации в рудах (менее 0,2 г/т). По данным пробирного анализа, содержание золота составляет 0,2-1,2 г/т, а в отдельных пробах еще выше [Сазонов и др., 2001]. Это связано с очень неравномерным распределением частиц золота в руде и значительной вариацией их крупности. В руде обнаружены как частицы размером менее 5 мкм, так и крупностью до нескольких миллиметров. Скопления мелких золотин иногда локализуются в каймах замещения реликтового хромшпинелида, сложенных хлоритом и магнетитом (рис. 1). Они имеют очень невыдержанный состав даже в пределах единого их скопления (табл. 2, обр. 888). Крупные выделения золота также не выдержаны по составу. В одних образцах они однородны, всегда содержат медь (до 10,5 %) и имеют среднюю-высокую пробность (табл.2, обр. К-2 и Шх-1). В других образцах частицы золота зональны и низкопробны – центральная их часть представлена пластинками медистого золота (табл.2, обр. 890/2-4) в массе серебристого (табл. 2, обр. 890/1), а краевая часть сложена ртутьсодержащим кюстеллитом (табл. 2, обр. 890/5-7).

Минералы палладия в магнетитовых рудах пока не обнаружены, однако достаточно высокое его содержание в пробе 3p-1071 (см. табл.1) свидетельствует о том, что этот элемент имеет собственные минеральные носи-

тели. Небольшая часть палладия находится в качестве изоморфной примеси в мелком золоте (см. табл.2, обр. 888).

Таким образом, если собственно магнетитовое оруденение в ультраосновных породах имеет мелкие масштабы и не представляет промышленного интереса, то специализация его на благородные металлы меняет это положение.

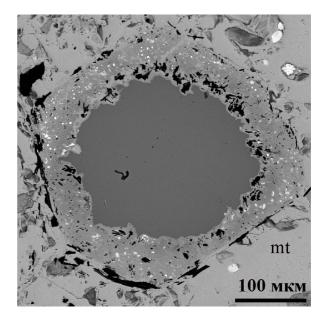


Рис. 1. Кристалл зонального хромшпинелида с каймой феррихромита, хроммагнетита и хромового хлорита в зернистом агрегате магнетита (mt). В кайме присутствуют скопления мелких частиц самородного золота, халькопирита и борнита. Снимок в отраженных электронах.

РУДООБРАЗОВАНИЕ, МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Таблица 2

Состав частиц самородного золота из магнетитовых руд

№ обр.	Au	Ag	Fe	Cu	Pd	Pt	Hg	Сумма	Проба
888/23	93,99	2,00	1,55	1,33	0,44	0,00	0,00	99,31	946
888/24	81,58	13,79	2,44	0,20	0,75	0,00	0,00	98,77	826
888/25	55,24	40,11	1,74	0,12	0,97	0,00	0,00	98,19	563
K-2/1	88,89	0,14	_	10,45	_	_	0,0	99,98	889
K-2/2	97,71	0,49	_	1,52	_	_	0,0	99,72	980
K-2/3	98,73	0,24	_	1,30	_	_	0,05	100,32	984
K-2/4	87,13	10,50	_	2,56	1	-	0,0	100,18	870
K-2/5	98,26	0,73	_	1,52	_	_	0,0	100,51	978
K-2/6	81,23	18,04	_	1,26	_	_	0,0	100,53	808
К-2/7	84,40	11,26	_	4,71	_	_	0,0	100,37	841
K-2/8	99,40	0,0	_	0,41	_	_	0,0	99,81	996
Шх-1	86,19	11,24	_	1,69	0,0	_	0,26	99,38	867
890/1	62,47	35,94	_	0,65	0,0	_	0,0	99,06	631
890/2	71,16	7,94	_	20,07	0,0	_	0,0	99,17	718
890/3	46,41	43,82	_	8,31	0,0	_	0,0	98,54	471
890/4	51,35	15,91	_	31,03	0,0	_	0,0	98,29	522
890/5	29,95	68,23	_	0,0	0,0	_	0,40	98,58	304
890/6	40,13	57,61	_	0,0	0,0	_	1,27	99,01	405
890/7	43,65	53,98	_	0,40	0,0	_	0,73	98,76	442

Примечание. Микроанализ обр. 888 выполнен в ИЭМ РАН на сканирующем микроскопе CamScan MV2300 с энергодисперсионным рентгеновским микроанализатором Link INCA Energy. Жирным выделены определения со значениями концентрации элемента ниже 2 σ (среднеквадратичной ошибки анализа). Остальные образцы исследованы на рентгеноспектральном микроанализаторе IXA-5 в Институте геологии и геохимии УрО РАН в волновом режиме. Чувствительность микроанализа 0,03-0,04 %. Прочерк – элемент не определялся.

Важным моментом в этом плане является то, что в зонах рассланцованных антигоритовых серпентинитов золотая минерализация связана не только с магнетитовыми скоплениями, но и присуща самим серпентинитам. В частности, в Каганском массиве в этих породах обнаружены частицы самородного золота во многих шурфах и канавах. Они высокопробны (преимущественно более 900), иногда являются медь- или ртутьсодержащими. В вопросах о происхождении благороднометальной минерализации в изученных образованиях еще много неясного, однако, уже сейчас антигоритовая метасоматическая формация рассматривается как золотопродуктивная [Сазонов, 1998].

Исследование осуществлялось при финансовой поддержке Российского Фонда фундаментальных исследований (грант РФФИ № 04-05-64679) и Минобрнауки (грант РНП.2.1.1.1840).

Список литературы

Бакиров А.Г. О связи с колчеданным оруденением магнетитовых и сульфидных проявлений в гипербазитах Южного Урала // Минералы рудных месторождений и пегматитов Урала. Минералогический сборник. № 6. Свердловск: УФАН СССР, 1965. С. 185-192.

Варлаков А.С. Рифтогенные офиолиты, метаморфизм гипербазитов и строение Вишневогорско-Ильменогорского комплекса. Миасс: ИГ3, 1995. 66 c.

Коротеев В.А., Зоненшайн Л.П., Парначев В.П. u др. Офиолиты Южного Урала. Свердловск: Ильменский гос. заповедник, 1985. 80 с.

Сазонов В.Н. Золотопродуктивные метасоматические формации подвижных поясов. Екатеринбург: УГГГА, 1998. 181 с.

Сазонов В.Н., Огородников В.Н., Коротеев В.А., Поленов Ю.А. Месторождения золота Урала. Екатеринбург: УГГГА, 2001. 622 с.