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Abstract

Stable carbon (δ13C) and hydrogen (δD) isotopic compositions of n-alkanes, anteiso-alkanes, n-alkanoic acids, n-alkanols,
phytol and sterols in raw leaves of Acer argutum and Acer carpinifolium, their fallen leaves, mold and soils from a natural Acer
forest were measured in order to: (1) understand isotopic variation of the plant biomarkers in a plant–soil system and (2) evaluate
which biomarker is the most effective recorder of soil vegetation. Long-chain (NC24) n-alkanes, n-alkanoic acids and n-alkanols are
gradually enriched in 13C up to 12.9‰ (average of 4.3‰) and depleted in D up to 94‰ (average of 55‰) from raw leaves to soils.
However, anteiso-alkanes, phytol and sterols show little variation in both δ13C (b±1‰) and δD (b±2‰) from raw leaves to soils.
These isotope signatures in a plant–soil system indicate that isoprenoid plant biomarkers such as sterols in soils faithfully preserve
the isotopic compositions of dominant higher plants growing on the soils without a diagenetic effect upon the isotopic
compositions. In contrast, long-chain n-alkyl molecules in soils undergo specific isotopic modification during biodegradation
associated with early diagenesis and/or a significant contribution from heterotrophic reworking.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Stable carbon isotopic compositions (δ13C) of long-
chain n-alkyl molecules, typically n-alkanes such as C27,
C29, C31 and C33, in soils are widely used as potentially
powerful markers for estimating past vegetation changes
on the soils (e.g. Lichtfouse, 1997, 1998; Cayet and
Lichtfouse, 2001; Wiesenberg et al., 2004; Mead et al.,
2005). This is mainly based on the general finding that
δ13C values of the n-alkyl molecules in soils have a
strong correlation with C3/C4 vegetation changes on the

soils (e.g. Lichtfouse et al., 1994, 1997; Lichtfouse,
1995). Furthermore, the estimation of vegetation
changes provides an assessment for the turnover of
organic matter in soil environments (e.g. Lichtfouse,
1997; Wiesenberg et al., 2004). However, there is
uncertainty whether plant biomarkers are isotopically
preserved during early diagenesis in plant–soil systems.
Long exposure of plant debris to oxic conditions before
burial accelerates biodegradation of plant molecules in
the soil, which may induce isotopic modification of plant
biomarkers by heterotrophic degradation and reworking.
Generally, unlike low molecular-weight compounds
such as phenol and benzoate which show isotopic
fractionation during biodegradation (e.g. Hall et al.,
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1999; Hunkeler et al., 1999), high molecular-weight
compounds such as long-chain n-alkanes have been
believed to be isotopically stable during biodegradation
(Huang et al., 1997;Mazeas et al., 2002). However, some
studies report that δ13C values of long-chain n-alkanes in
soils were different by several per mil from those of the
dominant higher plants growing on the soils in natural
environments (Lichtfouse et al., 1995; Ficken et al.,
1998; Nguyen Tu et al., 2004). In such cases, long-chain
n-alkanes in soils are commonly enriched in 13C
compared to those of the dominant higher plants.
Particularly, Nguyen Tu et al. (2004) recently reported
in detail the 13C-enrichment (∼3‰) of long-chain n-
alkanes from raw leaves to fallen leaves and suggested
that the δ13C variation might be strongly affected by
diagenesis. Thus, the isotopic stability of plant biomar-
kers in plant–soil systems has much uncertainty, even
though it is essential for reconstruction of past C3/C4
vegetation changes and turnover of organic matter in
soils.

Recently, compound-specific hydrogen isotope (δD)
analysis (Burgoyne and Hayes, 1998; Hilkert et al.,
1999) has been employed as an additional potential tool
for studying biomarker sources (Chikaraishi and Nar-
aoka, 2005; Chikaraishi et al., 2005), monitoring
biodegradation (Pond et al., 2002) and reconstructing
paleoclimatic change (Xie et al., 2000; Andersen et al.,
2001; Sauer et al., 2001; Huang et al., 2002, 2004;
Sachse et al., 2004; Liu and Huang, 2005; Schefuß et al.,
2005). Combined with compound-specific carbon iso-
tope analysis (e.g. Freeman et al., 1990; Hayes et al.,
1990; Meier-Augenstein, 1999; Lichtfouse, 2000), δD
analysis is an effective tool to help assess the detailed
source contribution and fate of organic molecules in
natural environments (Chikaraishi and Naraoka, 2005;
Chikaraishi et al., 2005). In this study, the carbon and
hydrogen isotopic compositions of n-alkanes, anteiso-
alkanes, n-alkanoic acids, n-alkanols, phytol and sterols
in raw leaves of Acer argutum and Acer carpinifolium,
their fallen leaves, mold and soils from a natural Acer
forest were measured in order to: (1) understand isotopic
variation of the plant biomarkers in a plant–soil system
and (2) evaluate which biomarker is the most effective
recorder of soil vegetation. The natural forest occupied
by the Acer species (maples) is chosen as an example of
plant–soil system globally distributed in the temperate
regions. These molecules are generally abundant in plant
leaves (e.g. Chikaraishi et al., 2004a,b), being potential
plant biomarkers for estimating past soil environments.
The isotopic compositions of n-alkanoic acids, n-
alkanols, phytol and sterols were determined with
respect to two preservation forms: solvent-extractable

(termed “free”) and saponifiable-released (termed
‘bound') forms, because the biomarker stability during
early diagenesis may depend on the preservation forms
(e.g. Eyssen et al., 1973; Cranwell, 1981; Cranwell and
Volkman, 1981).

2. Materials and methods

2.1. Study field and samples

Raw leaves of C3 higher plants (A. argutum and A.
carpinifolium), their fallen leaves, mold and soils were
collected from a single site in a forest around Lake
Haruna located at Gunma Prefecture in Japan (36°28′N,
138°52′E, about 100km northwest from Tokyo), which
was chosen as a location with minimum urban pollution.
The two Acer trees are the dominant C3 higher plants
(deciduous angiosperms) at the field site and no fallen
leaves from other species were observed. Raw leaves
(fresh green leaves) were collected from the living
plants in spring and autumn 1999, in order to determine
seasonal isotopic variations. About 20–30 raw leaves
were collected from three to five plants each time. About
50 fallen leaves (degraded as light-brown leaves,
probably fallen the preceding years) of two Acer species
were collected from litter in spring 2002. The surface of
the raw and fallen leaves was cleaned with distilled
water to remove visible contaminants such as dust. Mold
(small detrital leaves, probably produced by degradation
of leaves from previous years) was collected from the
surface layer (0–2cm in depth) between fallen leaves
and soil in spring 2002. Soils were collected from the
underlying layer (2–10cm in depth) in spring and
autumn 1999, and in spring 2002, which was brown
forest soil with high organic carbon concentrations
(N10wt%). Approximately 100g of mold and 500g of
soil were collected from two to three points each time.
All samples were freeze-dried and homogenized to
provide sample materials. The sample materials were
stored at −20°C until analysis. δ13C and δD values of n-
alkanes, n-alkanoic acids, phytol and sterols in the raw
leaves for the two Acer species were reported in
Chikaraishi and Naraoka (2003) and Chikaraishi et al.
(2004b).

2.2. Lipid preparation

Lipid preparation followed the procedures of Chikar-
aishi and Naraoka (2005). Free- and bound-plant
biomarkers were differentiated based on operational
procedures. In brief, the dried sample was sonicated
with CH2Cl2/CH3OH (2/1, v/v, 20min×4times) to
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extract free-biomarkers and the residue was subsequent-
ly saponified using 0.5 M KOH in CH3OH/H2O (95/5,
wt/wt) by refluxing (4.5h) to extract bound-biomarkers.
Hydrocarbon (including n- and anteiso-alkanes),
n-alkanoic acid, n-alkanol and isoprenoid alcohol
fractions (including phytol and sterols) were isolated
by silica gel column chromatography, urea adduction
and silver nitrate-impregnated silica gel column chro-
matography. For isotope analysis, the n-alkanoic acids
and alcohols (i.e. n-alkanols, phytol and sterols) were
methylesterified with 14% BF3/CH3OH or acetylated
with acetic anhydride/pyridine (1/1, v/v), respectively
(Chikaraishi et al., 2004a,b).

Sterols are not baseline resolved on the complex
chromatograms of the isoprenoid alcohol fraction,
particularly for soil samples (Fig. 1), which cannot
allow for accurate compound-specific isotope determi-
nations. Generally, an independent peak composed of
one compound on the chromatogram is needed to
determine precise isotopic compositions. Therefore,
three sterols: cholest-5-en-3β-ol (cholesterol),
24-methylcholest-5-en-3β-ol (campesterol) and 24-
ethylcholest-5-en-3β-ol (β-sitosterol) were further sep-
arated from the isoprenoid alcohol fraction by 10 wt.%
silver nitrate-impregnated silica gel column chromatog-
raphy (Chikaraishi and Naraoka, 2005; Chikaraishi et
al., 2005).

These plant biomarkers were identified by gas chro-
matography/mass spectrometry (GC/MS) using an HP
6890 GC connected to an HP MSD 5972A. Their con-
centrations were quantified using anHP 6890GCwith an
on-column injector and a flame-ionization detector (FID)
relative to the peak area of external n-alkane standards
(mixture of 16 n-alkanes ranging from C18 to C36).

2.3. Compound-specific carbon and hydrogen
isotope analyses

Compound-specific carbon and hydrogen isotope
analyses were carried out by GC/combustion/isotope
ratio mass spectrometry (GC/combustion/IRMS) using a
Finnigan Delta S interfaced with HP 5890IIGC and by
GC/pyrolysis/IRMS using a Finnigan Delta plus XL
interfaced with HP 6890GC, respectively. The combus-
tion was performed in a microvolume ceramic tube with
CuO and Pt wires at 840°C (Hayes et al., 1990). The
pyrolysis was performed in a microvolume ceramic tube
with graphite at 1440°C (Burgoyne and Hayes, 1998;
Hilkert et al., 1999). δ13C and δD values are reported in
per mil (‰) relative to Peedee Belemnite (PDB) and
Standard Mean Ocean Water (SMOW), respectively.
Standard deviations of carbon and hydrogen isotope
analyses were better than 0.5‰ (∼0.3‰ on average) and
7‰ (∼3‰ on average), respectively. For n-alkanoic

Fig. 1. Representative chromatogram (total ion chromatogram, TIC, on GC/MS analysis) of soil sterols (a) before and (b) after separation by silver
nitrate (10 wt.%) impregnated silica gel column chromatography.
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acids and alcohols, the contribution of carbon and
hydrogen incorporated during derivatization was cor-
rected by an isotopic mass balance calculation, after
consideration of the isotopic fractionation associated
with the derivatization (Chikaraishi et al., 2004a,b).

3. Results

3.1. Molecular characteristics of plant biomarkers

The concentrations (μg g−1 dry sample) of plant
biomarkers extracted from the plant–soil samples are
summarized in Table 1.Molecular distributions of n-alkyl
molecules (i.e. n-alkanes, n-alkanoic acids and
n-alkanols) are shown in Fig. 2. All samples have a
strong predominance of odd carbon-number for
n-alkanes, and of even carbon-number for n-alkanoic
acids and n-alkanols, which is typically interpreted that
these molecules were derived from higher plants. No
substantial difference is found in the molecular distribu-
tion between the spring and autumn leaves and among the
three soil samples. However, the molecular distribution

of soils is significantly different from that of raw leaves.
For example, the carbon-number with abundance
maximum gradually decreases from raw leaves to soils.
In particular, a clear shift is observed for n-alkane (from
C31 to C29) and free-n-alkanols (from C32 to C26). In
addition, the carbon preference index (CPI) of n-alkanes
and n-alkanoic acids clearly decreases from raw leaves to
soils (Fig. 2). These changes from raw leaves to soils
suggest that the biomarker distribution is affected by
diagenetic processes such as biodegradation and hetero-
trophic reworking. C30 and C32 anteiso-alkanes are found
in raw leaves, fallen leaves and mold, but not in soils
(Table 1). Although there is a possibility that the anteiso-
alkanes are derived from microorganisms, several
previous studies reported these anteiso-alkanes originate
in higher plant leaves (e.g. Eglinton and Hamilton, 1967;
Reddy et al., 2000). In the bound-form biomarkers, n-
alkanols are detected in fallen leaves, mold and soils, but
not in raw leaves. These bound-n-alkanols may be
derived from free-n-alkanols in the plant leaves (for long-
chain n-alkanols) and/or other soil sources (for short-
chain n-alkanols) followed by combination into high-

Table 1
Concentrations (μg g−1 dry) of lipid biomarkers extracted from the plant–soil samples

Sample Raw leaves a Fallen leaves a Mold Soils

Aa 99
spring

Aa 99
autumn

Ac 99
spring

Ac 99
autumn

Aa 02
spring

Ac 02
spring

02
spring

99
spring

99
autumn

02
spring

n-Alkane (free)
Total of C21–C37 771 239 744 479 220 145 113 5 4 5

Anteiso-alkane (free)
C30+C32 21 10 42 40 1 4 1 – – –

n-Alkanoic acid (free)
Total of C12–C34 942 577 913 767 741 1028 289 45 73 56

n-Alkanoic acid (bound)
Total of C12–C34 2945 3489 1789 2806 1490 2194 633 301 351 329

Iso- and anteiso-alkanoic acid (free)
C15+C17 – – – – b1 b1 2 2 2 2

Iso- and anteiso-alkanoic acid (bound)
C15+C17 – – – – b1 b1 40 31 42 35

n-Alkanol (free)
Total of C18–C34 382 177 576 295 63 87 38 6 4 5

n-Alkanol (bound)
Total of C18–C34 – – – – 42 25 66 53 39 46

Isoprenoid (free)
Phytol 459 381 252 286 b1 b1 b1 – – –
Cholesterol – – – – b1 b1 b1 b1 b1 b1
Campesterol 57 45 69 40 1 3 1 b1 b1 b1
β-Sitosterol 534 343 221 189 14 16 11 2 2 2

Isoprenoid (bound)
Phytol 2716 2332 2751 3019 63 53 60 36 40 38
Cholesterol – – – – 1 b1 1 b1 1 1
Campesterol 20 26 19 18 3 10 6 1 4 3
β-Sitosterol 113 141 70 110 43 44 48 3 28 17

(–) It was not detected.
a Full plant names: Acer argutum (Aa) and Acer carpinifolium (Ac).
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Fig. 2. Histograms of the average molecular distributions of n-alkane, n-alkanoic acid and n-alkanol from plant–soil samples. Histogram and bar represent average and standard deviation of relative
abundance (RA) within the same n-alkyl group, respectively. CPI=∑RA(odd carbon-numbered homologues) /∑RA(even carbon-numbered homologues) for n-alkane or ∑RA(even carbon-
numbered homologues) /∑RA(odd carbon-numbered homologues) for n-alkanoic acid and n-alkanol.
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molecular weight substances such as humic substance
during early diagenesis (Lichtfouse et al., 1998a,b,c).
Generally, it is known that phytol, campesterol and β-
sitosterol are commonly found in higher plant leaves as
major isoprenoid constituents, while short-chain iso- and
anteiso-alkanoic acids, short-chain n-alkanols and cho-
lesterol are found in heterotrophic organisms such as
microorganisms and bacteria (e.g. Killops and Killops,

1993, Volkman, 1986, 2003). Therefore, the finding of
short-chain iso- and anteiso-alkanoic acids, short-chain n-
alkanols and cholesterol on fallen leaves, mold and soils
in this study suggests heterotrophic activities on the leaf
debris and soils. The concentrations of long-chain n-alkyl
molecules, anteiso-alkanes, phytol, campesterol and β-
sitosterol gradually decrease from raw leaves to soils
probably due to dilution and biodegradation associated

Table 2
Carbon isotopic compositions of plant biomarkers extracted from the plant–soil samples (‰, relative to PDB)

Sample Raw leavesa Fallen leavesa Mold Soils

Aa 99
spring

Aa 99
autumn

Ac 99
spring

Ac 99
autumn

Aa 02
spring

Ac 02
spring

02
spring

99
spring

99
autumn

02
spring

n-Alkane (free)
C27 −35.7 −34.9 −35.5 −35.5 −33.6 −33.8 −31.7 −31.5 −32.2 −31.7
C29 −35.9 −35.6 −35.5 −37.3 −34.5 −34.8 −32.6 −32.5 −32.3 −32.5
C31 −36.4 −36.0 −35.4 −37.1 −35.0 −34.6 −33.6 −34.3 −32.8 −33.8
C33 −34.7 −34.0 −35.2 −37.0 −33.2 −34.1 −34.2 −33.0 −32.7 −32.9

Anteiso-alkane (free)
C30 −32.9 −32.1 −34.4 −34.0 −32.5 −34.0 −33.0
C32 −32.6 −31.0 −33.8 −33.7 −32.0 −34.0 −32.8

n-Alkanoic acid (free)
C16 −35.9 −38.2 −34.5 −39.2 −30.1 −29.5 −29.0 −26.4 −28.3 −27.1
C24 −36.1 −35.9 −37.9 −30.6 −36.8 −32.6 −32.2 −30.8 −31.3
C26 −36.2 −37.6 −36.0 −35.1 −31.9 −36.4 −33.3 −32.3 −32.2 −32.3
C28 −36.8 −35.6 −35.6 −37.5 −32.6 −35.8 −33.8 −34.0 −31.8 −33.8
C30 −36.0 −37.0 −35.7 −38.1 −33.7 −35.9 −35.1 −34.4 −34.0 −34.3
C32 −37.2 −36.1 −37.7 −35.7 −36.5 −35.8 −34.2 −35.1 −34.4

n-Alkanoic acid (bound)
C16 −36.1 −37.5 −35.0 −39.9 −34.4 −35.3 −32.5 −28.6 −29.1 −28.7
C24 −36.5 −40.1 −36.5 −41.3 −32.4 −36.0 −32.7 −28.7 −28.8 −28.4
C26 −38.4 −37.3 −37.7 −32.1 −34.8 −32.6 −30.5 −30.7 −30.6
C28 −36.3 −35.6 −35.9 −32.7 −35.5 −32.7 −34.3 −31.5 −33.2
C30 −38.0 −35.8 −38.3 −32.8 −36.3 −34.3 −33.2 −34.0 −33.7
C32 −38.1 −36.4 −38.1 −35.8 −37.5 −35.2 −33.0 −33.9 −33.3

n-Alkanol (free)
C26 −34.1 −35.8 −36.3 −33.8 −34.4 −33.6 −33.7 −32.2 −32.8
C28 −36.0 −35.8 −35.6 −37.0 −35.1 −34.6 −33.9 −33.9 −32.1 −32.3
C30 −35.4 −36.4 −35.3 −38.0 −35.3 −35.0 −33.5 −35.2 −31.6 −33.9
C32 −35.6 −37.1 −35.3 −37.5 −35.8 −35.0 −34.0 −35.2 −33.3 −34.4

n-Alkanol (bound)
C18 −25.0 −25.4 −26.0 −26.6 −25.0 −25.1
C26 −33.9 −34.3 −33.8 −33.7 −33.6 −33.6
C28 −34.8 −34.4 −33.7 −33.6 −33.2 −33.5
C30 −34.0 −34.2 −32.2 −31.8 −31.8 −31.7
C32 −35.2 −34.6 −34.0 −33.1 −34.5 −33.5

Isoprenoid (free)
Phytol −37.9 −37.5 −36.9 −38.8
Cholesterol −28.1 −28.7 −28.1
Campesterol −35.2 −37.3 −33.4 −35.3 −35.4 −34.5 −32.5 −34.9 −36.5 −35.5
β-Sitosterol −35.6 −35.5 −33.6 −36.0 −35.1 −34.8 −35.3 −35.1 −35.2 −35.2

Isoprenoid (bound)
Phytol −40.6 −38.1 −37.8 −37.9 −37.3 −37.7 −37.5 −37.3 −37.2 −37.2
Cholesterol −25.3 −26.5 −25.3
Campesterol −34.6 −36.7 −33.6 −35.7 −35.4 −34.8 −35.1 −33.4 −34.9 −34.9
β-Sitosterol −34.8 −36.3 −34.4 −35.6 −35.5 −34.9 −34.9 −34.7 −34.2 −34.9
a Full plant names: Acer argutum (Aa) and Acer carpinifolium (Ac).
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with early diagenesis, where the different relative rates of
concentration decrease may depend on distinct stabilities
of molecular structures and/or preservation forms. In
particular, the absence of anteiso-alkanes and free-phytol
in soils suggests that these molecules are quickly
degraded during early diagenesis. It is likely that the
free-molecules are degraded more quickly than the
bound-molecules.

3.2. Carbon and hydrogen isotopic composition of
plant biomarkers

Carbon and hydrogen isotopic compositions of the
plant biomarkers are summarized in Tables 2 and 3,
respectively. The δ13C values of long-chain (NC24)
n-alkyl molecules, anteiso-alkanes, phytol, campesterol
and β-sitosterol range from −28.4‰ to −41.3‰, which

Table 3
Hydrogen isotopic compositions of plant biomarkers isolated from the plant–soil samples (‰, relative to SMOW)

Sample Raw leavesa Fallen leavesa Mold Soils

Aa 99
spring

Aa 99
autumn

Ac 99
spring

Ac 99
autumn

Aa 02
spring

Ac 02
spring

02
spring

99
spring

99
autumn

02
spring

n-Alkane (free)
C27 −119 −93 −120 −105 −158 −148 −163 −170 −170 −170
C29 −119 −123 −134 −161 −159 −155 −166 −166 −168 −167
C31 −111 −116 −111 −127 −157 −163 −170 −174 −172 −173
C33 −113 −133 −107 −128 −141 −152 −163 −161 −163

Anteiso-alkane (free)
C30 −172 −188 −171 −189 −183 −180 −181
C32 −163 −182 −155 −180 −174 −168 −170

n-Alkanoic acid (free)
C16 −119 −123 −94 −103 −147 −155 −157 −174 −173 −173
C24 −105 −91 −104 −142 −153 −159 −165 −153 −152
C26 −111 −104 −142 −156 −160 −167 −159 −162
C28 −112 −124 −103 −144 −158 −161 −165 −166 −169
C30 −119 −119 −116 −116 −147 −165 −163 −169 −168 −161
C32 −110 −91 −101 −149 −166 −159 −169 −162 −165

n-Alkanoic acid (bound)
C16 −107 −125 −114 −127 −148 −148 −150 −159 −159 −159
C24 −101 −127 −96 −121 −132 −142 −158 −159 −163 −167
C26 −99 −144 −163 −160 −176 −167 −176
C28 −75 −118 −101 −151 −164 −168 −166 −168 −165
C30 −114 −117 −125 −151 −156 −171 −170 −171 −172
C32 −108 −81 −97 −137 −164 −160 −175 −169 −174

n-Alkanol (free)
C26 −148 −117 −135 −160 −150 −167 −177 −167 −179
C28 −115 −106 −123 −126 −135 −145 −156 −170 −159 −167
C30 −117 −106 −138 −139 −137 −154 −160 −165 −175 −165
C32 −119 −108 −119 −115 −115 −117 −117 −167 −185

n-Alkanol (bound)
C18 −239 −229 −238 −229 −240 −239
C26 −187 −177 −197 −208 −200 −204
C28 −168 −158 −178 −202 −168 −186
C30 −161 −154 −168 −175 −165 −179
C32 −161 −152 −170 −171 −182 −175

Isoprenoid (free)
Phytol −323 −343 −333 −337
Cholesterol −216 −220 −215
Campesterol −233 −245 −230 −253 −245 −240 −242 −243 −239 −242
β-Sitosterol −227 −250 −227 −259 −244 −242 −241 −240 −238 −242

Isoprenoid (bound)
Phytol −325 −347 −338 −341 −334 −337 −337 −337 −344 −334
Cholesterol −218 −214 −216
Campesterol −238 −251 −234 −239 −239 −241 −242 −244 −243 −240
β-Sitosterol −236 −255 −229 −236 −247 −239 −248 −244 −242 −239
a Full plant names: Acer argutum (Aa) and Acer carpinifolium (Ac).
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is consistent with the general δ13C distribution of lipid
molecules from C3 higher plants (e.g. Collister et al.,
1994; Lockheart et al., 1997; Ballentine et al., 1998;
Chikaraishi and Naraoka, 2003; Conte et al., 2003;
Chikaraishi et al., 2004a,b; Bi et al., 2005). Lockheart et

al. (1997) reported seasonal δ13C variations of up to
5.7‰ for long-chain n-alkanes within a single plant
species, with n-alkanes being 13C-depleted for autumn
leaves relative to spring leaves and raised a caution for
interpretations based on small δ13C variations of plant

Fig. 3. δ13C variations of plant biomarkers from raw leaves to soils. The δ13C shift is calculated by average δ13C value (as indicated by dash line)
between raw leaves and soils (mold for anteiso-alkane). For C26 and C32 n-alkanols, it is calculated with an assumption that δ13C values of the bound-
alkanols for raw leaves are equal to the values of their free-alkanols.
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biomarkers. However, in this study, the δ13C and δD
variation between spring and autumn leaves for
individual molecules is very small (Δ13C autumn–
spring=−1.1±1.6‰ and ΔD autumn–spring=−8±

13‰) and among three soil samples (Δ13C max–
min=1.1±0.8‰ and ΔD max–min=8±7‰).

On the other hand, the variation of δ13C and δD
values observed from raw leaves to soils is very

Fig. 4. δD variations of plant biomarkers from raw leaves to soils. The δD shift is calculated by average δD value (as indicated by dash line) between
raw leaves and soils (mold for anteiso-alkane). For C26 and C32 n-alkanols, it is calculated with an assumption that δD values of the bound-alkanols
for raw leaves are equal to the values of their free-alkanols.
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variable. Long-chain n-alkyl molecules in soils become
enriched in 13C by up to 12.9‰ (average of 4.3‰) and
depleted in D by up to 94‰ (average of 55‰) relative to
those in raw leaves of Acer species growing on the same
soils (Figs. 3 and 4). The distinct 13C-enrichment and
D-depletion are also observed for the free- and bound-
forms of n-alkanoic acids and n-alkanols with the
bound-forms generally showing larger shifts in 13C than
the free-forms, but with no systematic shift in δD
between the preservation forms. However, the δ13C and
δD values of anteiso-alkanes, phytol, campesterol and
β-sitosterol show little variation (b±1‰ for δ13C, ±2‰
for δD) from raw leaves to soils (Figs. 3 and 4), i.e.
isotope values of soils are essentially identical to the
isotope values of the raw leaves.

4. Discussion

4.1. Isotopic modification by diagenesis

For anteiso-alkanes, phytol, campesterol and β-si-
tosterol, the similar δ13C and δD compositions in the
plant–soil system indicates that these molecules in soils
faithfully preserve the isotopic compositions of domi-
nant higher plants growing on the soils without dia-
genetic effect upon the isotopic compositions. These
results are consistent with the conventional wisdom and
experimental findings that high molecular-weight com-
pounds are isotopically unaltered during biodegradation
(e.g. Huang et al., 1997; Mazeas et al., 2002; Pond et al.,
2002). However, 13C-enrichment and D-depletion from
raw leaves to soils was observed for three long-chain
n-alkyl molecules (Tables 1 and 2), in which the extent of
the isotopic shifts may depend on the molecular struc-
tures and the form of preservation. Although 13C-enrich-
ment for long-chain n-alkanes has been reported
(Lichtfouse et al., 1995; Ficken et al., 1998; Nguyen
Tu et al., 2004), this contradicts the studies with no
substantial isotopic change during biodegradation
experiments (Huang et al., 1997; Mazeas et al., 2002;
Pond et al., 2002).

Besides diagenetic effects such as heterotrophic de-
gradation and reworking, there are three other possibil-
ities that may explain the isotopic shifts of n-alkyl
molecules: (1) seasonal isotope variation within Acer
species, (2) isotopic shifts of carbon (CO2) and hydrogen
sources (H2O) over the past few decades and (3) con-
tribution of C4 plants outside of the plant–soil system.
However, the seasonal isotope variation of the same
molecules is very small between autumn and spring
leaves in this study. Moreover, little isotopic variation of
anteiso-alkanes, phytol and sterols in the plant–soil

system strongly suggests that isotopic shifts of carbon and
hydrogen sources for Acer species and possible contri-
bution of C4 vegetation into the plant–soil system are
unlikely causes of the isotopic shifts of n-alkylmolecules.

Therefore, the diagenetic effects responsible for 13C-
enrichment and D-depletion of long-chain n-alkyl mol-
ecules are specific to these molecules, which may be
related to heterotrophic degradation and reworking.
Moreover, the presence of short-chain iso- and anteiso-
alkanoic acids, short-chain n-alkanols and cholesterol
(Table 1) in fallen leaf, mold and soil samples probably
represents heterotrophic activities on the leaf debris and
soils. Generally, high molecular-weight compounds are
isotopically unchangeable during biodegradation (e.g.
Huang et al., 1997; Mazeas et al., 2002; Pond et al.,
2002). However, Sun et al. (2004) recently reported that
different biomarkers exhibited distinct patterns of carbon
isotopic fractionation during biodegradation experi-
ments, with 13C-enrichment of 2–7‰ for n-alkanoic
acids, 13C-depletion of 4–6‰ for alkenones and no
change for sterols after 40–90% degradation of the mol-
ecules. These isotopic changes are similar to the trends of
the δ13C variations of n-alkanoic acids and sterols
observed in this study, suggesting that long-chain n-alkyl
molecules in soils may undergo specific isotopic mod-
ification during biodegradation associated with early
diagenesis. In addition, heterotrophic reworking could
also be responsible for the isotopic shifts of n-alkyl
molecules in the plant–soil system. A variety of
heterotrophic soil organisms such as insects, bacteria
and fungi produce various long-chain n-alkyl molecules.
For example, insects such as termites produce C25, C27

and C29 n-alkanes (e.g. Jurenka and Subchev, 2000;
Subchev and Jurenka, 2001; Szafranek et al., 2001; Kaib
et al., 2002), and C32 n-alkanols (e.g. Szafranek et al.,
2001). Several soil heterotrophic bacteria and fungi
produce C22, C24 and C26 n-alkanoic acids (e.g. Rezanka
et al., 1991; Rezanka and Sokolov, 1993;Muchembled et
al., 2000). It is likely that the relative contribution of
long-chain n-alkyl molecules from heterotrophic re-
working becomes increasingly significant with progres-
sive decay of plant leaves, which may also explain the
changes in relative molecular distributions (e.g. carbon
number with abundance maximum and CPI values) of
this study (Fig. 2). A dramatic increase of the abundance
ratio of n-alkanes (C29+C31) vs. anteiso-alkanes (C30+
C32) (Fig. 5) indicates additional inputs of n-alkanes into
this plant–soil system besides the dominant plant leaves,
because n-alkanes should be degraded faster than
anteiso-alkanes (e.g. Schaeffer et al., 1979; Aggarwal
and Hinchee, 1991). Moreover, C18 n-alkanol (probably
derived from soil heterotrophs) has δ13C values of
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∼−25.5‰ and δD values of ∼−236‰ in fallen leaf,
mold and soil samples (Tables 2 and 3), being
enriched in 13C and depleted in D relative to long-
chain n-alkyl molecules of Acer leaves. When long-
chain n-alkyl molecules from the heterotrophic rewor-
king are also 13C-enriched and D-depleted relative to
those from Acer leaves, the 13C-enrichment and D-
depletion from raw leaves to soils can be explained by
a mixing of both contribution.

4.2. Implications for the soil vegetation record

Diagenetic effects on the isotopic compositions of
plant biomarkers in plant–soil systems have are poorly
understood, even though significant degradation of the
biomarkers might occur during exposure to oxic con-
ditions. For example, considerable isotopic changes of n-
alkyl molecules during migration from plant to soil are
observed in this study (Figs. 4 and 5) as well as previous
studies (e.g. Lichtfouse et al., 1995; Ficken et al., 1998;
Nguyen Tu et al., 2004), suggesting a common isotope
gradient for n-alkyl molecules in natural plant–soil sys-
tems. These results indicate the necessity for circum-
spection during reconstruction of possible past C3/C4
vegetation changes and the turnover of organic matter in
soils based on δ13C changes of n-alkyl molecules.
Detailed biodegradation and reworking experiments are
needed to clarify the isotopic modification of n-alkyl
molecules in plant–soil systems. In contrast, anteiso-
alkanes, phytol, campesterol and β-sitosterol in soils
faithfully preserve the isotopic compositions of domi-
nant higher plants growing on the soils without
diagenetic effect upon the isotopic compositions (Figs.
4 and 5). An important requirement for environmental
indicators of past conditions is that biomarkers should be

isotopically unchanged during diagenesis. Therefore,
anteiso-alkanes, phytol, campesterol and β-sitosterol
will bemore suitable plant biomarkers to reconstruct past
C3/C4 vegetation changes and turnover of organic
matter in soils. In particular, since bound-sterols show
greater resistance to biodegradation in the soils com-
pared to anteiso-alkanes and phytol (Table 1), bound-
sterols such as campesterol and β-sitosterol will be the
most effective proxies of soil vegetation.

5. Conclusions

Dual isotope (δ13C–δD) analysis of various plant
biomarkers provides more detailed information on their
isotopic variations in plant–soil systems. Two important
results of this study are summarized as follows:

(1) Similar to previous studies (Lichtfouse et al., 1995;
Ficken et al., 1998; Nguyen Tu et al., 2004), long-
chain (NC24) n-alkanes, n-alkanoic acids and n-
alkanols are gradually enriched in 13C (average of
4.3‰) and depleted in D (average of 55‰) from
raw leaves to soils, suggesting a common isotope
gradient for n-alkyl molecules in natural plant–soil
systems. Although detailed biodegradation and
reworking experiments are needed to clarify this
isotopic modification in plant–soil systems, this
study clearly suggests the necessity for circum-
spection during reconstruction of past C3/C4
vegetation changes and turnover of organic matter
in soils based on δ13C values of n-alkyl molecules.

(2) Compared to the long-chain n-alkyl molecules,
both δ13C and δD values of anteiso-alkanes,
phytol, campesterol and β-sitosterol show little
variation from raw leaves to soils, which indicates
that these molecules in soils faithfully preserve the
isotopic compositions of dominant higher plants
growing on the soils without diagenetic effect
upon the isotopic compositions. These results
suggest that isoprenoid plant biomarkers such as
campesterol and β-sitosterol will be more suitable
plant biomarkers to reconstruct past C3/C4
vegetation changes and turnover of organic matter
in soils.
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