
Abstract The Nellore–Khammam Schist Belt

(NKSB) in South India is a Precambrian greenstone

belt sited between the Eastern Ghats Mobile Belt

(EGMB) to the east and the Cratonic region to the

west. The belt contains amphibolites, granite gneisses

and metasediments including banded iron formations.

Amphibolites occurring as dykes, sills and lenses—in

and around an Archaean layered complex—form the

focus of the present study. The amphibolites are tho-

leiitic in composition and are compositionally similar

to Fe-rich mafic rocks of greenstone belts elsewhere.

The NKSB tholeiites show highly variable incompati-

ble trace element abundances for similar Mg#s, rela-

tively constant compatible element concentrations, and

uniform incompatible element ratios. Chondrite-nor-

malized REE patterns of the tholeiites range from

strongly LREE depleted ((La/Yb)N = 0.19) to LREE

enriched ((La/Yb)N = 6.95). Constant (La/Ce)N ratios

but variable (La/Yb)N values are characteristic geo-

chemical traits of the tholeiites; the latter has resulted

in crossing REE patterns especially at the HREE

segment. Even for the most LREE depleted samples,

the (La/Ce)N ratios are > 1 and are similar to those of

the LREE enriched samples. There is a systematic

decrease in FeOt, K2O and P2O5, as well as Ce and

other incompatible elements from the LREE enriched

to the depleted samples without any variation in the

incompatible element ratios and Mg#s. Neither batch

and fractional melting, nor magma chamber processes

can account for the non-correlation between the

LREE enrichment and HREE concentrations. We

suggest that dynamic melting of the upper mantle is

responsible for these geochemical peculiarities of the

NKSB tholeiites. Polybaric dynamic melting within a

single mantle column with variable mineralogy is the

likely mechanism for the derivation of NKSB tholeiitic

melts. It is possible that the NKSB tholeiites are de-

rived from a source with higher FeO/MgO than that of

present day ridge basalts.

Keywords Amphibolite Æ Nellore–Khammam schist
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Introduction

Langmuir et al. (1977) introduced the dynamic melting

model to explain the compositional variations in

ocean-floor basalts from the FAMOUS area in the

north Atlantic. The basalts, possibly derived from a

single homogeneous source, show unusual trace ele-

ment characteristics including crossing REE patterns

but with constant incompatible element ratios for

similar high Mg#s. Langmuir et al. (1977) suggested

that these characteristics were the result of different

degrees of both batch melting and continuous melting.

Continuous melting can be defined as an intermediate

process between batch and fractional melting, where
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the instantaneous melt is continuously but not com-

pletely removed, so a part of the melt is always re-

tained in the residue. A review of the mathematical

equations for dynamic melting models is provided by

Shaw (2000).

The dynamic melting model has been successfully

used to explain the trace element systematics of

basaltic and related rocks from a variety of geodynamic

settings including tholeiites from the Mid-Atlantic

ridge, Iceland, Troodos massif, Hawaii and New-

foundland, and cogenetic komatiites and basalts from

Gorgana (Langmuir et al. 1977; Wood 1979; Strong and

Dostal 1980; Elliott et al. 1991; Eggins 1992; Sobolev

and Shimizu 1993; Gurenko and Chaussidon 1995;

Arndt et al. 1997a). The applicability of dynamic

melting is further broadened by Zou and Zindler

(1996) through their dynamic melting inversion model,

based on the method of Maaløe (1994), which calcu-

lates the source composition and the percentage of

partial melting for cogenetic primary mantle-derived

melts using the concentration ratios in magmas.

All of the above mentioned examples are from

Phanerozoic associations from known tectonic envi-

ronments, excepting the Newfoundland tholeiites,

which are Neoproterozoic in age. In the present paper

we show that the dynamic melting model can also ex-

plain the compositional variation within the tholeiites

from a Palaeoproterozoic greenstone belt in South

India. We utilize rare earth element concentrations of

the rocks to model the melting processes as it has been

shown that REE are more sensitive to dynamic (con-

tinuous) melting of the mantle (Langmuir et al. 1977;

Hanson and Langmuir 1978; Langmuir and Hanson

1980). The importance of the NKSB dynamic partial

melts is twofold. First, their composition suggests that

melt generation processes similar to those operating in

present day ocean basins operated at least as far back

as the Palaeoproterozoic. Second, as the dynamic melts

represent instantaneous melt compositions derived

from the mantle, contrasts in the composition of the

NKSB and the present day basalts can be used to

understand the temporal evolution of the upper mantle

composition and/or conditions of melting.

Geological setting and petrography

The curvilinear Nellore–Khammam Schist Belt

(NKSB) in South India (Fig. 1) is ~600 km long and

between 30 and 130 km wide. The NKSB is sand-

wiched between the granulitic rocks of the Eastern

Ghats Mobile Belt (EGMB) to the east and the

Cratonic region to the west. The belt contains

amphibolites, granite gneisses and metasediments

including banded iron formations. Similar lithological

associations elsewhere have been attributed to a shal-

low-marine platform setting (Arndt et al. 1997b). Al-

though, certain segments of the belt are considered to

be similar to Sargur-type ‘‘Archaean’’ greenstone belts

of the Dharwar craton (Naqvi and Rogers 1987; Babu

1998), recent workers have assigned a Palaeo- to Meso-

Proterozoic age to the NKSB (see Ramakrishnan

2003). The only reliable age data come from
207Pb-206Pb single grain evaporation ages for magmatic

zircons from metarhyolites (1868 ± 6 and 1771 ± 8 Ma;

Vasudevan et al. 2003). Some of the xenocrystic zircons

in these possible crustal melts yield ages up to

2,431 Ma (Vasudevan et al. 2003), suggesting that the

belt is at least Palaeoproterozoic in age. Based on

limited geochemical studies on the metavolcanic rocks,

earlier workers have proposed marginal basin, back-

arc, oceanic island arc and continental margin arc

tectonic settings for the NKSB (Satyanarayana et al.

1994; Hari Prasad et al. 2000). The rocks of the NKSB

have undergone polyphase deformation and show a

prominent NNE–SSW to NE–SW fabric in the north-

ern parts (Sarvothaman 1995). There is a general in-

crease in the grade of metamorphism from west to east.

The mafic rocks are mainly of basaltic composition and

occur as dykes, sills, lenses and flows. They have

undergone amphibolite grade metamorphism, although

local granulite grade rocks are not uncommon. Rocks

of komatiite composition are yet to be reported from

the NKSB. The present study area is in the NE part

of the NKSB (shown in box in Fig. 1), where the

Chimalpahad intrusion—the largest Archaean-type

layered anorthosite complex in Peninsular India—is

located (Leelanandam and Narsimha Reddy 1985;

Ashwal 1993). The samples for the present study were

collected from dykes, sills and lenses in and around the

Chimalpahad layered complex (Fig. 1). Field relations

suggest that all the dykes and sills were emplaced in a

single episode. Understanding the origin of the tho-

leiites is vital in evaluating the geodynamic setting for

the NKSB and to unfold the proposed collision tec-

tonics between the Eastern Ghats Mobile Belt and

Dharwar Craton (Radhakrishna and Naqvi 1986).

Although amphibolite to granulite grade metamor-

phism has altered the original textures and mineralogy

of the mafic rocks, many of the samples in our collec-

tion show relict igneous textures and clinopyroxenes.

Textures displayed by the amphibolites include fine

grained aphanitic, intergranular, medium to coarse

grained equigranular, granuloblastic (those which are

highly deformed) and granulose (those with clinopy-

roxene >> hornblende). In rare cases, some of the
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high MgO rocks show skeletal amphiboles (originally

pyroxenes) suggesting a possible spinifex texture. The

essential mineralogy of the amphibolites is simply

plagioclase + amphibole, but their relative proportions

are highly variable. Quartz, garnet, epidote, sphene,

clinopyroxene, and magnetite/ilmenite are the subor-

dinate minerals, though all of them do not occur in a

single rock. Mafic rocks which have attained granulite

grade metamorphism contain higher modal pyroxene

than amphibole.

Geochemical characteristics of the amphibolites

Major and trace element compositions of the repre-

sentative amphibolites from the study area are given in

Table 1. The amphibolites have restricted range of

SiO2 (46.16–50.93 wt%; anhydrous basis) and low

Al2O3 (11.89–15.51); they contain high contents of

FeOt (Fe2O3
t = 12.72–15.54 wt%) which lead to rela-

tively lower Mg#s. Mg#s of the amphibolites have an

extended range from 0.65 to 0.38, and the normative

anorthite content varies from 0.72 to 0.44. TiO2 varies

by a factor of two (from 0.35 to 0.83 wt%) for samples

with similar Mg#s, but the more fractionated samples

(lower Mg#s and higher REE) contain TiO2 up to

1.65 wt%. CaO varies from 10.19 to 13.82 wt% and

the rock (JV5) with highest CaO content contains

lowest REE abundances. None of the samples are

cumulates as indicated by the trace element abundances.

Normatively, the amphibolites are quartz and olivine

tholeiites; only two samples (JV5 and P8) show nepheline

in the norm. We retain the term ‘tholeiite’ for the

NKSB amphibolites in the following discussion.
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Fig. 1 a Geological map of a part of the Nellore–Khammam
Schist Belt (NKSB; modified after Appavadhanulu et al. 1976)
marked with sample locations. Pakhals are Proterozoic sedimen-

tary formation and Gondwanas are upper Permian to lower
Cretaceous sedimentary supergroup. The inset maps (b, c) show
the location of the NKSB within the Peninsular India
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Chondrite-normalized REE patterns of the tholei-

ites (Fig. 2), covering the entire compositional spec-

trum range from strong relative LREE depletion ((La/

Yb)N = 0.19) to LREE enrichment ((La/Yb)N = 6.95)

with small negative Eu anomalies. (Sm/Yb)N ratios

(0.36–2.10) in the NKSB tholeiites show the widest

range found in any single suite of comparable rocks

from anywhere in the world. Eu anomalies in these

rocks are attributed to alteration. The samples which

show LREE enriched patterns contain relatively lower

Al2O3/TiO2 and CaO/TiO2 values than the samples

with the LREE depleted patterns. Constant (La/Ce)N

ratios but variable (La/Yb)N values (Table 2) are

characteristic geochemical traits of the tholeiites; the

latter has resulted in crossing REE patterns, especially

at the HREE end of the normalized REE profiles.

Even for the most LREE depleted samples (JV5 and

B8), the (La/Ce)N ratios are > 1 and are similar to the

LREE enriched ones (L42 and P8). The LREE

enrichment does not correlate with the HREE abun-

dances, as in the case with the FAMOUS glasses

(Langmuir et al. 1977).

Table 1 Representative major and trace element composition of the NKSB tholeiites

JV5 B8 GV7A L42 L46 P8

Major elements normalized to 100 wt% on an anhydrous basis
SiO2 46.16 49.83 50.63 47.66 50.93 47.82
TiO2 0.35 0.43 0.47 0.90 0.49 0.83
Al2O3 14.11 11.89 13.08 14.37 15.51 11.98
Fe2O3

a 12.85 14.71 13.62 14.57 12.72 15.54
MnO 0.20 0.27 0.21 0.20 0.04 0.23
MgO 10.38 8.76 8.93 7.95 7.46 9.77
CaO 13.82 12.29 11.24 11.70 10.28 10.19
Na2O 2.03 1.59 1.73 2.14 1.85 3.04
K2O 0.06 0.19 0.08 0.40 0.58 0.50
P2O5 0.03 0.03 0.01 0.10 0.14 0.10
Total 99.29 99.04 98.53 97.75 102.51 97.16
Mg/(Mg + Fetotal) 0.61 0.54 0.56 0.52 0.54 0.55
Mg/(Mg + Fe2+) 0.65 0.58 0.60 0.56 0.58 0.59
An/An+Ab 0.72 0.65 0.65 0.61 0.67 0.43

Trace elements in ppm
Ni 499.3 289.8 149 164 220 350.6
Cr 725.5 444 114.9 316.4 542.9 1018.7
Co 84.5 102.1 57.4 67 69.9 83.4
V 105.2 417.1 254.9 445.7 500.5 327.2
Sc 68.2 72.8 50.9 53.2 56.3 32.3
Rb 3 2.7 8.8 14.6 15.3 5
Sr 92.8 35.6 133.2 97.9 115.5 147.6
Ba 19 38 57.5 118.9 141.3 326.7
Y 18.35 17.7 18.82 21.7 17.44 22.9
Zr 5.3 5.16 10.62 19.3 17.78 103.7
Nb 0.39 0.11 5.56 3.93 2.46 6.5
Hf 0.46 0.14 0.56 0.53 0.6 2.25
Ta 0.04 0.25 0.39 0.52 0.15 0.33
Th 0.12 ND 0.93 0.87 0.72 1.79
U 0.05 ND 0.61 0.19 0.17 3.69

Rare earth elements in ppm
La 0.36 0.74 1.9 4.98 6.25 19.59
Ce 0.85 1.56 4.58 12.41 12.46 42.25
Nd 0.81 1.24 3.34 6.4 5.58 16.08
Sm 0.44 0.51 1.34 2.04 2.02 3.6
Eu 0.15 0.23 0.43 0.83 0.48 0.91
Gd 0.8 1.1 2.3 2.6 2.21 3.62
Tb 0.17 0.25 0.38 0.46 0.35 0.6
Yb 1.28 1.52 2.4 1.75 1.55 1.86
Lu 0.2 0.31 0.34 0.28 0.26 0.29
Total REE 5.06 7.46 17.01 31.75 31.16 88.8

Major elements (in wt%) and trace elements (in ppm) are on anhydrous basis. Major elements by XRF; trace and REE on ICP-MS

ND Not determined
a Total Fe as Fe2O3; Fe2+/Fetot is taken as 0.85
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Some of the LREE depleted REE patterns for the

NKSB tholeiites are as low as any reported for rocks of

basaltic composition from the Precambrian greenstone

belts (Sun and Nesbitt 1978; Kerrich et al. 1998), and

are comparable to LREE depleted modern ocean floor

basalts and glass inclusions (Frey et al. 1974; Kay et al.

1970; Sobolev and Shimizu 1992, 1993). We have used

the least differentiated samples (MgO > 7.5 wt%) for

evaluating the partial melting processes.

Chemical mobility of elements is a common prob-

lem associated with alteration and amphibolite-granu-

lite grade metamorphism of rocks of basaltic

composition (Sun and Nesbitt 1978; Thompson 1991).

Therefore, it is mandatory to assess the relative

mobility of the elements before subjecting the ele-

mental abundances to petrogenetic interpretations. We

have used Zr as a monitor to assess the mobility of the

elements, since it is considered that Zr is immune to

chemical mobility under most metamorphic conditions

and alteration (Pearce and Cann 1973; Weaver and

Tarney 1981; Sheraton 1984). Mantle melting and

basaltic magma crystallization do not change the ratios

of very incompatible elements; as a result, the incom-

patible elements are expected to show systematic

covariance with Zr. Most studies have shown that the

large ion lithophile elements (Rb, Ba, Sr, K, Na etc.)

are relatively mobile, whereas the high field strength

elements (Zr, Hf, Nb, Ta, Y, REE etc.) show little or

no mobility. Our data reflect variable migration of

elements in the NKSB tholeiites (Fig. 3). La and Ce

show very good correlations against Zr with correlation

coefficients > 0.9 (Fig. 3a, b). Although some examples

of La mobility in basalts have been reported (for

example Frey et al. 1974), La appears to behave con-

sistently along with the other rare earth elements in the

NKSB tholeiites (Figs. 2, 3a; Table 2) suggesting that

La concentrations reflect original igneous abundances.

Additionally, the rocks JV5 and P8 with lowest

(5.06 ppm) and highest (88.8 ppm) REE concentra-

tions respectively are both olivine normative, suggest-

ing that the variable REE patterns are their original

traits and have not been modified by metamorphism

and alteration. However, the Eu abundances seem to

be modified by alteration as the samples show both

positive and negative anomalies, which do not corre-

late with their Al2O3 abundances. Elements that typi-

cally are more mobile, such as Rb (Fig. 3c) show only

limited mobility (especially in the samples with higher

abundances), but Ba (Fig. 3d), K (Fig. 3e) and Sr

(Fig. 3f) appear to be more mobile. One should be

cautious when interpreting this co-linearity because it

applies only to the highly incompatible elements; ele-

ments such as Y, Nb, Yb etc. do not show linear trends

against Zr, if their abundance distribution is controlled

by polybaric melting of the mantle. In such a case Zr/Y

and Zr/Nb ratios show a wide range (see Table 2). Our

petrogenetic interpretations are based on the REE,

which seem to be least mobile in the NKSB basaltic

rocks, and thus record original igneous compositions.

The petrogenetic discussion is based on REE patterns

smoothed by the removal of Eu.

Evidence for dynamic melting

First, we evaluate the primitive nature of the NKSB

tholeiites, since they show lower Mg#s than mantle-

derived primary basaltic magmas and subsequently test

the hypothesis of dynamic melting of mantle for their

origin. We utilize the [Mg]–[Fe] model of Rajamani

et al. (1993) to assess the source characteristics in terms

of Mg and Fe. [Mg] and [Fe] (Fig. 4a) are composi-

tionally corrected Mg and Fe abundances in cation

mole percent using Eq. 3 of Ford et al. (1983) for the

compositionally corrected olivine-melt distribution

coefficients (KD values) for MgO and FeO. Melt fields

for Gt lherzolite mantle at 0, 3 and 5 G Pa pressures

are shown in Fig. 4a. The size of the melt field de-

creases with increasing pressure. The NKSB tholeiites

and FAMOUS basalts are plotted in the [Mg]–[Fe]

diagram (Fig. 4a). Representative REE patterns for

both the NKSB tholeiites and FAMOUS basalts are

shown in Fig. 4b and c, respectively. The melts formed

by continuous melting of the mantle exhibit a trend

towards lower [Fe] and higher [Mg] values ‘‘because

the bulk composition of the effective parent moves to

lower FeO and higher MgO abundances as the melting

proceeds’’ (Hanson and Langmuir 1978). This [Fe]

depletion is correlatable with a remarkable decrease in
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Fig. 2 Chondrite-normalized REE patterns for the NKSB
tholeiites. Normalizing values (after Masuda et al. 1973) are as
reported in Hanson (1980). The petrogenetic discussion is based
on these REE patterns smoothed by removal of Eu
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rare earth element abundances especially in the

LREE (Fig. 4b, c). During continuous melting,

melts with higher [Fe] values and REE abundances

(with enriched LREE patterns) represent the first

increments derived from the ‘‘fertile’’ source, and

melts with lower [Fe] and REE concentrations

(with ultra-depleted LREE patterns), and slightly

higher Mg#s and compatible element concentrations,
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Fig. 3 Zr vs incompatible
element variation in all the
analyzed NKSB tholeiites.
Strong positive correlation for
La and Ce suggests little
mobility of REE due to
metamorphism in the NKSB
tholeiites. For discussion see
the text

Table 2 Petrogenetic parameters for the samples shown in Fig. 2

Sample No. Mineralogy Mg # La Nature of REE pattern (La/Yb)N (La/Ce)N Ce/Zr (Ti/Y)/100 Zr/Y

JV5 (Hbl + Pl + Gt (tr)) 0.61 0.36 LREE depleted 0.19 1.09 0.16 1.14 0.29
B8 (Pl + Hbl + Cpx) 0.54 0.74 LREE depleted 0.32 1.22 0.30 1.45 0.29
GV7A (Hbl + Pl + Epi) 0.56 1.90 LREE depleted 0.52 1.07 0.43 1.46 0.56
L42 (Pl + Cpx + Hbl + Gt + Opx) 0.52 4.98 LREE enriched 1.88 1.04 0.64 2.43 0.89
L46 (Hbl + Pl + Scp + Epi) 0.54 6.25 LREE enriched 2.66 1.29 0.70 1.71 1.02
P8 (Pl + Cpx + Hbl + Opx + Gt) 0.55 19.59 LREE enriched 6.95 1.20 0.41 2.12 4.53

Hbl Hornblende, Pl Plagioclase, Gt Garnet, Cpx Clinopyroxene, Epi Epidote, Opx Orthopyroxene, Scp Scapolite

Mg # = Mg/(Mg + Fetotal)
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represent the last increments derived from ‘refractory’

source that has already undergone melt extraction. In

a way, the systematic changes in a cogenetic suite of

rocks formed by continuous melting are reverse of

what one might expect from differentiation through

fractional crystallization of a single parental magma.

In spite of their extreme depletion in LREE, the

melts formed by continuous melting show constant

La/Ce values (Fig. 4b, c). This is due to the fact that

during continuous melting, a small melt fraction is

retained with the residue (effective parent). This small

melt fraction enables the residue to retain the con-

stant La/Ce ratio, though the overall REE pattern

progressively shifts to LREE depletion as the melting

proceeds. Both the NKSB tholeiites and the

FAMOUS basalts strikingly display this characteristic

feature (Fig. 4b, c).

The trends of the NKSB tholeiites and FAMOUS

basalts are similar in the [Mg]–[Fe] diagram but the

former have at least 2% higher [Fe] values than the latter

for comparable [Mg] values. Three possible reasons for

higher [Fe] abundances in the NKSB tholeiites could be:

(1) extensive fractional crystallization of clinopyroxene

(± olivine), (2) derivation from sources that have greater

FeO/MgO ratios than the present day MORB mantle or

(3) melting at greater pressures (depths).

Fractional crystallization involving olivine and clino-

pyroxene results in wide variation in Mg#s and com-

patible element concentrations whereas different

degrees of melting of mantle under similar conditions
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liquidus temperature of the mantle, which varies with pressure.
The solidii for 0, 3 and 5 GPa pressures (solid squares) are based
on the experimental work of Takahashi (1986). A possible path

of adiabatic melting is given by the thick arrow. During
continuous melting of the mantle the melting path moves
towards lower [Fe] and higher [Mg] values because the bulk
composition of the effective parent moves to lower FeO and
higher MgO abundances as the melting proceeds (Hanson and
Langmuir 1978). Basalts from the FAMOUS area (Langmuir
et al. 1977) are also plotted. b Representative REE patterns of
the NKSB tholeiites. Sample P8 and other fractionated samples
have been omitted. c Representative REE patterns for Famous
basalts. Sample numbers and ([Mg], [Fe]) values are shown on
the curves in b and c
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would result in melts with a limited range in Mg#s and

compatible element abundances (Rajamani et al. 1989)

as characteristically shown by the NKSB tholeiites.

Even if clinopyroxene fractionation is assumed, it re-

quires at least 25% of clinopyroxene removal to account

for change in the [Fe] values (from 11 to 13.6; Fig. 4)

and Cr concentrations (from 725 to 315 ppm; Table 1)

for samples JV5 and L42. For 25% clinopyroxene re-

moval from JV5, La increases from 0.36 to 0.50 ppm,

where as La in L42 is 4.98 ppm. The possibility of

clinopyroxene fractionation is further negated by high

CaO contents in the NKSB tholeiites comparable to the

most primitive basalts from FAMOUS and elsewhere. It

is much more difficult to explain the huge range in REE

abundances for a limited variation in Mg#s (Table 1)

with olivine fractionation, which has very high Kd for

Mg and insignificant partition coefficients for REE.

Further, extensive fractional crystallization of mafic

phases is unlikely due to higher abundances of Ni and

Cr in the NKSB tholeiites. Therefore, based on the

above arguments, we suggest that the higher [Fe] values

and variable REE abundances in the NKSB tholeiites

have an origin in the mantle.

Systematic compositional variations, especially in

the [Fe] contents of Palaeoproterozoic NKSB tholei-

ites and present day ridge basalts strongly suggest

either that the depth of melting of the upper mantle

has decreased with time or that the mantle sources for

NKSB tholeiites are Fe-rich than the present day

MORB sources. The indistinguishable [Mg] contents of

NKSB tholeiites and FAMOUS basalts rules out any

significantly higher potential temperature, conse-

quently pressures, for the NKSB mantle. Further,

parental melts to the Palaeoproterozoic NKSB tholei-

ites (present study), Neoproterozoic Newfoundland

tholeiites (Strong and Dostal 1980) and the modern

FAMOUS basalts (Langmuir et al. 1977) all are

possibly derived within the garnet-spinel and spinel

stability fields, suggesting similar depths of derivation.

Based on the above arguments, we infer that the lower

Mg#s in the NKSB tholeiites, giving an apparent

evolved character to the rocks, in fact are a reflection

of an Fe-rich mantle source. The present study sup-

ports the proposed existence of Fe-rich mantle sources

during the Archaean and Palaeoproterozoic as exem-

plified by Francis et al. (1999) and Hanski and Smolkin

(1995). We suggest that the compositional variations in

the NKSB tholeiites are controlled by source compo-

sition, depth, degree and type of melting, with frac-

tional crystallization and crustal contamination having

little influence.

Relevant petrogenetic parameters of the tholeiites

are given in Table 2. Characteristic features of the

NKSB tholeiites are the constant incompatible element

ratios for similar Mg#s, and highly variable La con-

centrations and REE slopes as demonstrated by (La/

Yb)N ratios (Table 2). Fractional crystallization, batch

melting and fractional fusion, are not capable of pro-

ducing the entire range of concentrations displayed by

the NKSB tholeiites. Fractional crystallization can not

change the (La/Yb)N ratio from 0.19 to 6.95 and La

concentrations from 0.36 to 19.59 ppm (Table 1)

without significantly affecting the Mg# and compatible

element concentrations, for any set of minerals frac-

tionating in a basaltic magma. Our samples show sim-

ilar Mg#s and similarly high compatible element

concentrations. Further, batch melting and fractional

melting of a homogeneous source are not capable of

producing crossing REE patterns.

Figure 5 shows melt compositions for different ex-

tents of batch, fractional and continuous melting of a

mantle source with LaN = 3.6 and (La/Sm)N = 2.57.

Details of the calculation of the source composition are

given in the caption to Fig. 6. It is evident that the

compositional variations in the NKSB tholeiites are

best explained by continuous melting of the source.

Melts formed by batch and fractional melting show

higher and lower abundances respectively, than the

observed concentrations. Some of the REE composi-

tions could be explained by batch or fractional melting

of the mantle source but neither model can produce the

entire range of REE compositions displayed by the

NKSB tholeiites. Although fractional melt composi-

tions merge with the observed LaN and (La/Sm)N

values, especially in the rocks with higher LaN values,

fractional melting is not capable of delivering the con-

stant (La/Ce)N ratios observed in the NKSB tholeiites;

fractional melting depletes La over Ce as the melting

proceeds, and hence melts show progressive decrease in

La/Ce ratios rather than constant values. Langmuir

et al. (1977) have suggested that LREE enriched and

depleted patterns, crossing of REE patterns and rea-

sonably constant La/Ce ratios are characteristics of

melts produced by dynamic (continuous + batch)

melting processes. The NKSB tholeiites show all these

features (Table 2) and so in the section below, we test

the hypothesis that the tholeiites were produced by

dynamic melting of a homogeneous source.

In the modeling calculations, it is surmised that

melting begins in the Gt–Sp lherzolite stability field; as

melting progresses, the rising mantle column passes in

sequence through Sp lherzolite, Sp–Pl lherzolite and Pl

lherzolite, a similar progression to that proposed

by Prinzhofer and Allegre (1985), McKenzie and

O’ Nions (1991) and Gurenko and Chaussidon (1995).

Melting events producing both the LREE enriched and
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depleted patterns of the tholeiitic melts could have

taken place within the rising mantle column progres-

sively in the Gt–Sp lherzolite field and Sp lherzolite

field. We see no samples which might have formed in

the plagioclase stability field.

Figure 6 shows the calculated melt patterns for the

mantle source for various extents of batch and con-

tinuous melting. Samples P8 and L46 might have been

produced by 7 and 20% batch partial melting of a

source of the composition shown in Fig. 6a. These

melts are considered to have formed when the melting

column was within the Gt–Sp lherzolite stability field.

The composition of P8 which has the highest incom-

patible and transition element abundances, and an

alkaline nature (nepheline in norm) suggests its deri-

vation by low degree melting of a deeper source. It is

well known that the transition element abundances (in

a mantle derived melt) depend on the depth of melting,

while the abundance of an incompatible element de-

pends on the degree of melting (Langmuir and Hanson

1980; Rajamani et al. 1985). Samples L42, GV7A, B8

and JV5 have formed by continuous melting of the

same source. Degrees of melting and the proportion of

the melt retained within the residue are shown in

Fig. 6b. During the derivation of the melts parental to

samples L42, GV7A, B8 and JV5, it is assumed that the

melting regime has entered the Sp lherzolite stability

field. This assumption is based on the fact that the

samples show flat to LREE depleted patterns, which

requires exclusion of garnet in the source. Further,

systematic decrease in Zr/Y ratio from P8 to JV5 with

changing REE patterns from LREE-enriched to

LREE-depleted (Table 2; Fig. 2) bears testimony to

the changing physical conditions during melting (from

Gt–Sp stability field to Sp stability field). We have used

a critical (continuous) melting model (Sobolev and

Shimizu 1992) for modeling melts formed by continu-

ous melting. Mantle source mineralogy, melting pro-

portions, and the mineral/melt partition coefficients are

given in Appendix. A composite of the melts produced

by both batch and continuous melting is shown in

Fig. 6c and is compared to patterns for the NKSB

tholeiites in Fig. 6d. Langmuir et al. (1977) considered

such composite patterns to be a characteristic result of

the dynamic melting process. Dynamic melting of the

mantle explains the generation of melts with lower La

(ultradepleted) than the source itself but without

altering the La/Ce ratio of all the possible melts de-

rived from a single homogeneous source.

Discussion

In addition to the dynamic model presented here,

source heterogeneity (Schilling 1973; Zindler et al.

1979) and magma chamber processes (Elthon 1984) are

also capable of producing LREE enriched and de-

pleted patterns for a cogenetic series of rocks. We

appeal to constant incompatible element ratios in the

NKSB tholeiites to argue against heterogeneous sour-

ces. Even if heterogeneous sources with similar

incompatible element ratios are assumed, they can not

produce the observed REE range of NKSB tholeiites

by simple batch melting.

Lack of a correlation of LREE enrichment and

HREE concentrations, high MgO, and high Ni abun-

dances even in samples with low Mg#s can not be ex-

plained by magma mixing in a periodically replenished

magma chamber. Further, for a 5% change in the Mg#,

Sr and Zr vary by a factor of 5 and 20 respectively; this

is difficult to reconcile even if a steady state (30–50

cycles) magma chamber is assumed. Therefore, we

suggest that the trace element variation shown by the

NKSB tholeiites is not an outcome of magma chamber

processes but has an origin within the mantle.

Although mixing may not produce the entire range of

REE abundances in the NKSB tholeiites, it might have

influenced the compositions of some. For example,

sample B8 can be derived by mixing of samples JV5

and GV7A.
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Fig. 5 LaN versus (La/Sm)N variation in the NKSB tholeiites.
Curves for batch, fractional and continuous melting have been
calculated for different extents of melting of a source with
LaN = 3.6 and (La/Sm)N = 2.57. Melting equations are given in
Appendix. The NKSB tholeiites plot along the continuous
melting curve of the mantle; batch and fractional melting
compositions are higher and lower respectively than the
observed concentrations. For fractional fusion, the source is
melted by 2%, the melt produced is completely removed and the
residue is melted further by 2% and so on; during continuous
melting the melt produced is continuously but not completely
removed with some percentage of melt constantly retained in the
residue. Percentages of partial melting are indicated on the batch
(in normal font), continuous (italic) and fractional (bold) melting
curves
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Fig. 6 Proposed model for
the generation of LREE
enriched and depleted
patterns from a homogenous
source. Percentages of
melting (F) and the melt
fractions retained (a) are
shown. a REE patterns
produced by different extents
of batch partial melting of a
Gt–Sp lherzolite source. The
source was calculated
assuming that the sample P8
is derived by 6–8% of melting
of the mantle source. The
average composition thus
produced is shown. b REE
patterns derived by
continuous melting of the
same source in the Sp–
lherzolite stability field.
During continuous melting
some percentage of melt is
always retained in the residue.
Samples L42, GV7A, B8 and
JV5 were derived by 7, 15, 18
and 21% continuous melting
of the mantle respectively.
c Composite of a and b results
in the dynamic melting model
as suggested by Langmuir
et al. (1977). d REE patterns
smoothed by removal of Eu.
Batch and continuous melting
equations and the partition
coefficients used in the
calculations are given in
Appendix
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A cartoon summarizing the processes and products

of dynamic melting of the NKSB mantle is shown in

Fig. 7. The samples with enriched LREE patterns are

derived from the Gt–Sp lherzolite stability field, and

the samples with depleted LREE have a source in the

Sp–lherzolite stability field. Average compositions of

some elements for both LREE enriched and depleted

samples are shown in Fig. 7. There is a continuous

decrease in FeOt, K2O and P2O5, as well as Ce and

other incompatible elements from the former to the

latter, which is expected from continuous melting of

the mantle. Samples with enriched LREE and other

incompatible elements (P8 and L46) are considered to

be early derived melts whereas depleted melts (JV5

and B8) represent the final fractions of melts produced

by critical (continuous) melting of the mantle. Irre-

spective of such a huge variation in the incompatible

element concentrations, the Mg#s, Ce/Zr and (La/Ce)N

ratios are constant for both the LREE enriched and

depleted melts (Table 2). Average FeOt content of

the enriched REE samples is 13.90 wt% and that of

depleted samples is 12.21 wt% suggesting a marginal

decrease in FeOt in the melts with progressive melting.

Although the melts show a Fe-deficient trend with

progressive dynamic melting, the absolute values are

higher because melting of sources with higher FeO/MgO
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Fig. 7 Cartoon illustrating the processes and products of
dynamic melting. Average abundances of elements for LREE
enriched and depleted groups are shown. Sample L42 was

included in the enriched group. Boundaries for mantle phase
assemblages are from Takahashi and Kushiro (1983) and Kinzler
and Grove (1992)
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ratios. Fe-enriched sources for the NKSB tholeiites is

not at odds with general models for the origin of

Archaean/Proterozoic mafic rocks (Rajamani et al. 1989;

Hanski and Smolkin 1995; Francis et al. 1999). The

proportional decrease of these elements is a function of

the magnitude of their incompatibility with the mantle

mineralogy. For instance, the proportional decrease in

FeOt is 10%, while it is by a factor of 5 in K2O and

P2O5 and a factor of 10 in Ce. The relative incompat-

ibility of the elements during the dynamic melting of

the NKSB mantle is in the order Ce >> P2O5 ‡
K2O > FeOt. Available mineral/melt partition coeffi-

cient data do not negate the proposed order of

incompatibility for a peridotitic mantle.

Conclusions

The Precambrian tholeiites of the Nellore–Khammam

Schist Belt of South India characteristically show

variable incompatible trace element abundances for

similar Mg#s, relatively constant transition element

values and constant ratios for highly incompatible

elements. The tholeiites show both LREE enriched

and depleted patterns, but the LREE enrichment is not

correlated with HREE abundances, leading to the

crossing of REE patterns. This chemical divergence in

the NKSB tholeiites has been evaluated using the

dynamic melting model of Langmuir et al. (1977). The

discovery of the products of dynamic partial melting in

the Palaeoproterozoic NKSB when compared with the

Neoproterozoic Newfoundland basalts (Strong and

Dostal 1980) and modern ridge basalts (Langmuir et al.

1977) suggests no change in the processes of melt

generation in the upper mantle through time, but it is

possible that the NKSB tholeiites were derived from a

source with higher FeO/MgO than that of the present

day ridge basalts.
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Appendix

Equations used in the calculations

1. Modal batch and fractional melting (Schilling 1966)

C1
i

C0
i

¼ 1

½D0
i ð1� FÞþF�

ð1Þ

(for fractional melting the residue is remelted after con-

tinuous and complete removal of 2% incremental melts)

2. Critical (continuous) melting (Sobolev and Shimizu

1992)

C1
i

Co
i

¼ 1

Do
i þ ð1� PiÞa=ðaþ 1Þ
ðDo

i þ aÞ � ðPi þ aÞF
ðDo

i þ aÞ � ðPi þ aÞa=ðaþ 1Þ

� �ðð1�PiÞ=ðPiþaÞÞ
; ð2Þ

Ci
l = Concentration of the element i in the liquid

(current liquid in the case of continuous melting),

Ci
o = Initial concentration of the element i in the

original source,

Di
o = Initial solid bulk distribution coefficientP

XiKdi
;

Pi= Weighted distribution coefficient of liquid,

F = Degree of melting,

a = Amount of critical melt retained with the residue.

Source mineralogy and melting proportions

(Gurenko and Chaussidon 1995)

Phase proportions Gt–Sp Lherzolite Sp Lherzolite
Ol 0.55 0.53
Opx 0.22 0.24
Cpx 0.15 0.20
Sp 0.02 0.03
Gt 0.06 0.00
Melting proportions
Ol –0.10 –0.30
Opx 0.25 0.40
Cpx 0.61 0.82
Sp 0.04 0.08
Gt 0.20 0.00

Mineral/melt partition coefficients (McKenzie and

O’ Nions 1991; Shaw 2000)

Ol Opx Cpx Sp Gt
La 0.000053 0.000044 0.0536 0.00002 0.01
Ce 0.000125 0.00014 0.0858 0.00003 0.021
Pr 0.000251 0.00033 0.137 0.0001 0.054
Nd 0.000398 0.00052 0.1873 0.0002 0.087
Pm
Sm 0.00065 0.0016 0.291 0.0004 0.217
Eu 0.0008 0.0033 0.329 0.0006 0.32
Gd 0.0015 0.005 0.367 0.0009 0.498
Tb 0.0021 0.0067 0.405 0.0012 0.75
Dy 0.0027 0.0084 0.442 0.0015 1.06
Ho 0.005 0.0127 0.415 0.0023 1.53
Er 0.01 0.017 0.387 0.003 2
Tm 0.016 0.025 0.409 0.0038 3
Yb 0.027 0.033 0.43 0.0045 4.03
Lu 0.03 0.041 0.433 0.0053 5.5

254 Contrib Mineral Petrol (2006) 152:243–256

123



References

Appavadhanulu K, Setti DN, Badrinarayanan S, Subba Raju M
(1976) The Chimalpahad meta-anorthosite complex,
Khammam district, Andhra Pradesh. Geol Surv India Misc
Publ 23, pp 267–278

Arndt NT, Kerr AC, Tarney J (1997a) Dynamic melting in
plume heads: the formation of Gorgana komatiites and
basalts. Earth Planet Sci Lett 146:289–301

Arndt NT, Albarede F, Nisbet EG (1997b) Mafic and ultramafic
magmatism. In: de Wit MJ, Ashwal LD (eds) Greenstone
belts. Oxford University Press, London, pp 233–254

Ashwal LD (1993) Anorthosites. Springer, Germany, pp 422
Babu VRRM (1998) The Nellore schist belt: an Archaean

greenstone belt, Andhra Pradesh, India. Gondwana Res Gr
Mem 4:97–136

Eggins SM (1992) Petrogenesis of Hawaiian tholeiites: 2, aspects
of dynamic melt segregation. Contrib Mineral Petrol
110:398–410

Elliott TR, Hakesworth CJ, Gronvold K (1991) Dynamic melting
of the Iceland plume. Nature 351:201–206

Elthon D (1984) Plagioclase buoyancy in oceanic basalts:
chemical effects. Geochim Cosmochim Acta 48:753–768

Ford CE, Russel DG, Frisk MR (1983) Olivine–liquid equilibria:
temperature, pressure and composition dependence of
crystal/liquid partition coefficients for Mg, Fe2+, Ca and Mn.
J Petrol 24:256–265

Francis D, Ludden J, Johnstone R, Davis W (1999) Picrite evi-
dence for more Fe in Archean mantle reservoirs. Earth
Planet Sci Lett 167:197–213

Frey FA, Bryan WB, Thompson G (1974) Atlantic ocean floor:
geochemistry and petrology of basalts from Legs 2 and 3 of
the Deep Sea Drilling Project. J Geophys Res 79:5507–5527

Gurenko AA, Chaussidon M (1995) Enriched and depleted
primitive melts in olivine from Icelandic tholeiites: origin by
continuous melting of a single mantle column. Geochim
Cosmochim Acta 59:2905–2917

Hanski EJ, Smolkin VF (1995) Iron- and LREE-enriched mantle
source for early Proterozoic intraplate magmatism as
exemplified by the Pechenga ferropicrites, Kola Peninsula,
Russia. Lithos 34:107–126

Hanson GN (1980) Rare earth elements in petrogenetic studies
of igneous systems. Annu Rev Earth Planet Sci 8:371–406

Hanson GN, Langmuir CH (1978) Modeling of major elements
in mantle-melt systems using trace element approaches.
Geochim Cosmochim Acta 42:725–741

Hari Prasad B, Okudaria T, Hayasaka Y, Yoshida M, Divi RS
(2000) Petrology and geochemistry of amphibolites from the
Nellore–Khammam schist belt, SE India. J Geol Soc India
56:67–78

Kay R, Hubbard NS, Gast PW (1970) Chemical characteristics
and origin of oceanic ridge volcanic rocks. J Geophys Res
75:1585–1613

Kerrich R, Wyman D, Fan J, Bleeker W (1998) Boninite series:
low Ti-tholeiite associations from the 2.7 Ga Abitibi
greenstone belt. Earth Planet Sci Lett 164:303–316

Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean
ridge basalts 1. Experiments and methods. J Geophys Res
97:6885–6906

Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylor SR
(1977) Petrogenesis of basalts from the FAMOUS area:
Mid-Atlantic ridge. Earth Planet Sci Lett 36:133–156

Langmuir CH, Hanson GN (1980) An evaluation of major ele-
ment heterogeneity in the mantle sources for basalts. Philos
Trans R Soc Lond A 297:383–407

Leelanandam C, Narsimha Reddy MN (1985) Petrology of the
Chimalpahad anorthosite complex, Andhra Pradesh, India.
Neues Jahrbuch Miner Abh 153:91–119

Maaløe S (1994) Estimation of the degree of partial melting
using concentration ratios. Geochim Cosmochim Acta
58:2519–2525

Masuda A, Nakamura N, Tanaka T (1973) Fine structures of
mutually normalized rare-earth patterns of chondrites.
Geochim Cosmochim Acta 37:239–248

McKenzie D, O’Nions RK (1991) Partial melt distributions from
inversion of rare earth element concentrations. J Petrol
32:1021–1091

Naqvi SM, Rogers JSW (1987) Geology of India. Oxford
Monographs in Geology and Geophysics No. 6, Oxford
University Press, Oxford, 223 pp

Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic
rocks determined using trace element analyses. Earth Planet
Sci Lett 19:290–300

Prinzhofer A, Allegre CJ (1985) Residual peridotites and
mechanisms of partial melting. Earth Planet Sci Lett 74:251–
265

Radhakrishna BP, Naqvi SM (1986) Precambrian crust of India
and its evolution. J Geol 94:145–166

Rajamani V, Balakrishnan K, Hanson GN (1993) Komatiite
genesis: insights provided by Fe–Mg exchange equilibria.
J Geol 101:809–819

Rajamani V, Shirey SB, Hanson GN (1989) Fe-rich Archaean
tholeiities derived from melt-enriched mantle sources: evi-
dence from the Kolar schist belt, South India. J Geol 97:487–
501

Rajamani V, Shivkumar K, Hanson GN, Shirey SB (1985) Geo-
chemistry and petrogenesis of amphibolites, Kolar schist
belt, South India: evidence for komatiitic magma derived by
low percentage of melting of mantle. J Petrol 26:92–123

Ramakrishnan M (2003) Craton-mobile belt relations in south-
ern granulite terrain. Mem Geol Soc India 50:1–24

Sarvothaman H (1995) Amphibolites of Khammam schist belt:
evidence for the Precambrian Fe-tholeiitic volcanism in
marginal zone. Indian Mineral 49:177–186

Satyanarayana K, Dhana Raju R, Kanungo DN (1994) Geo-
chemistry of amphibolites from the Nellore schist belt,
Andhra Pradesh, India: an example of Back-arc basin low-K
tholeiitic magmatism. J Geol Soc India 44:253–265

Schilling J-G (1966) Rare earth fractionation in Hawaiian vol-
canic rocks. Unpublished Ph.D. thesis, Massachusetts Insti-
tute of Technology

Schilling J-G (1973) Iceland mantle plume. Nature 246:141–143
Shaw DM (2000) Continuous (dynamic) melting theory revisited.

Can Mineral 38:1041–1063
Sheraton JW (1984) Chemical changes associated with high-

grade metamorphism of mafic rocks in the east Antarctic
shield. Chem Geol 47:135–157

Sobolev AV, Shimizu N (1992) Ultra-depleted melts and per-
meability of the oceanic mantle (in Russian). Doklady Acad
Sci Russia 236:354–360

Sobolev AV, Shimizu N (1993) Ultra-depleted primary melt in-
cluded in an olivine from the Mid-Atlantic Ridge. Nature
363:151–154

Strong DF, Dostal J (1980) Dynamic melting of Proterozoic
upper mantle: evidence from rare earth elements in oceanic
crust of Eastern Newfoundland. Contrib Mineral Petrol
72:165–173

Sun S-s, Nesbitt RW (1978) Petrogenesis of Archaean ultrabasic
and basic volcanics: evidence from rare earth elements.
Contrib Mineral Petrol 65:301–325

Contrib Mineral Petrol (2006) 152:243–256 255

123



Takahashi E (1986) Melting of dry peridotite KLB1 up to 14
GPa: implications on the origin of peridotite upper mantle.
J Geophys Res 91:9367–9382

Takahashi E, Kushiro I (1983) Melting of dry peridotite at high
pressures and basalt magma genesis. Am Mineral 68:859–
879

Thompson G (1991) Metamorphic and hydrothermal processes:
basalt-seawater interactions. In: Floyd PA (ed) Oceanic
basalts, Blackie, Glasgow, pp 148–173

Vasudevan D, Kroner A, Wendt I, Tobschall H (2003) Geo-
chemistry, Petrogenesis and age of felsic to intermediate
metavolcanic rocks from the Palaeoproterozoic Nellore
schist belt, Vinjamur, Andhra Pradesh, India. J Asian Earth
Sci, in press

Weaver BL, Tarney J (1981) Chemical changes during dyke
metamorphism in high-grade basement terrains. Nature
289:47–49

Wood DA (1979) Dynamic partial melting: its application to the
petrogenesis of basalts erupted in Iceland, the Faeroe Is-
lands, the Isle of Skye (Scotland) and the Troodos Massif
(Cyprus). Geochim Cosmochim Acta 43:1031–1046

Zindler A, Hart SR, Frey FA, Jakobsson SP (1979) Nd and Sr
isotope ratios and rare element abundances in Reykjanes
Peninsula basalts: evidence for mantle heterogeneity be-
neath Iceland. Earth Planet Sci Lett 45:249–262

Zou H, Zindler A (1996) Constraints on the degree of dynamic
partial melting and source composition using concentration
ratios in magmas. Geochim Cosmochim Acta 60:711–717

256 Contrib Mineral Petrol (2006) 152:243–256

123


	Dynamic melting of the Precambrian mantle: evidence from rare earth elements of the amphibolites from the Nellore ndash Khammam Schist Belt, South India
	Abstract
	Introduction
	Geological setting and petrography
	Geochemical characteristics of the amphibolites
	Fig1
	Tab1
	Evidence for dynamic melting
	Fig2
	Fig3
	Tab2
	Fig4
	Discussion
	Fig5
	Fig6
	Fig7
	Conclusions
	Acknowledgments
	Appendix
	Equations used in the calculations
	Source mineralogy and melting proportions \(Gurenko and Chaussidon 1995\)
	Tabb
	Mineral/melt partition coefficients \(McKenzie and O rsquo  Nions 1991; Shaw 2000\)
	Tabc
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


