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Abstract

Existing models of brittle shear failure are unable to account for three-dimensional deformation involving the development of
polymodal sets of fractures. Motivated by field observations of contemporaneous arrays of quadrimodal faults and deformation bands,
we use an idealised micromechanical model to explain how brittle shear fractures can form oblique to all three remote principal stresses.
We model tensile microcracks as finite ellipsoidal voids, subjected to small opening strains, in a linear isotropic elastic matrix. The
geometry of the tensile stress lobes around the ends of an isolatedmicrocrack promotes the en echelon interaction of neighbouring cracks
with respect to the prescribed crack orientation. Coalescence of these interacting crack arrays into a through-going composite fracture
surface leads to a brittle shear failure plane oriented obliquely to all three coordinate axes and all three remote principal stresses.
Experimental evidence supports the idea that composite shear fractures can propagate in-plane through the coalescence of many
constituent tensile microcracks. Our newmodel, based on the 3-D geometry of the elastic stress field around a mode I crack, can explain
the oblique orientations of polymodal faults formed in a triaxially compressive stress field.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Existing theory for brittle shear failure in rocks fails
to explain the deformation in three-dimensions. Con-
sequently, our understanding of rock failure, derived
from Coulomb's seminal 18th century study [1], is un-
able to account for a frequently observed class of
natural fractures, in which quadrimodal fault sets dis-
play orthorhombic symmetry [2–6]. The Andersonian
model of faulting [7], based on the Coulomb–Mohr
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failure criterion (e.g. [8]), can explain conjugate (i.e.
bimodal) sets of normal, wrench or thrust faults, but
conjugate faulting produces two-dimensional (2-D)
plane strains (Fig. 1a). Polymodal fault arrays including
quadrimodal fault sets (Fig. 1b), are able to accommo-
date the three-dimensional (3-D) strains that must
inevitably arise from deformation caused by oblique
lithospheric plate motion (e.g. [9,10]).

A model describing the strain due to slip along pre-
existing quadrimodal faults has been presented by
Reches [2,3]. However, to date there is no accepted
model of fracture initiation and growth that can explain
the distinct geometrical arrangement of newly formed
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Fig. 1. Contrasting patterns of conjugate (bimodal) and polymodal
faults. a) Conjugate faults form symmetrically about the remote σ1

direction, which bisects the acute angle between the planes, and
intersect along a line parallel to the remote σ2 direction. b)
Quadrimodal faults intersect to form rhombohedral traces on outcrop
surfaces with σ1 and σ2 bisecting the acute angles between the failure
planes. c) Mohr circle for bimodal faulting showing the relationship
between the principal stresses at failure, the cohesive strength C0 and
the failure angle θ. d) Conjugate brittle shear failure planes inclined at
acute angle θ to the maximum compressive stress σ1.

15D. Healy et al. / Earth and Planetary Science Letters 249 (2006) 14–28
quadrimodal fault planes. In this paper, we present a
new model for rock failure based on the interaction of
tensile cracks in 3-D to explain the observed angular
relationships between quadrimodal shear failure planes
and the principal remote stresses.

The overall purpose of this study is twofold: firstly, in
comparison to the existing 2-D models of fracture
development, a 3-D model will improve our theoretical
understanding of brittle deformation processes. Secondly,
since fault planes can act as either conduits or barriers to
fluid flow, the precise geometry, and hence connectivity
of fault networks or ‘meshes’ [11], can have a significant
impact on fluid flow through fractured reservoirs (e.g.
[12]). Themodel we present here can be applied to predict
the geometric patterns of naturally developed fractures
formed due to 3-D strain in sub-surface environments.

In this study, we focus on the geometry of newly
formed brittle shear failure planes in 3-D. We first review
existing models for brittle shear failure in rocks, with
particular emphasis on model predictions for the orien-
tation of failure surfaces. We then present our own field
observations from an array of contemporaneous non-
conjugate faults from outcrops in the UK, before dev-
eloping a new model for the formation of shear fractures
through the interaction and coalescence of mode I micro-
cracks in 3-D.

2. Existing models of brittle shear failure

2.1. Macroscopic failure criteria

At the macroscopic level, the Coulomb–Mohr failure
criterion [8] adequately predicts the orientation of con-
jugate bimodal fault planes under plane strain conditions.
In the brittle regime, shear failure planes are predicted to
form along either of twoplanes inclined at acute angles ±θ
to the direction of the maximum compressive stress σ1

(see Fig. 1c–d) and which lie parallel to (i.e. contain) the
direction of the intermediate stress σ2. The relationship
between the shear stress τ along the shear plane and the
normal stress σn across it is given by

s ¼ C0 þ ldrn ð1Þ

where μ is the coefficient of internal friction and C0 is the
cohesive strength of the rock. The angle of failure θ can be
expressed in terms of the angle of (internal) friction ϕ as

h ¼ k=4−/=2 ð2Þ
For brittle rocks deformed in the Earth's crust with a
coefficient of internal friction taken as 0.6 [13], θ works
out at c. ±31°, consistent with many field and laboratory
observations. Eq. (1), which marks the onset of shear
failure, can be recast in terms of the principal stresses
acting on the rock as

r1½ðl2 þ 1Þ1=2−l�−r3½ðl2 þ 1Þ1=2 þ l� ¼ 2C0 ð3Þ

We suggest that the expression of the widely used
Coulomb–Mohr criterion in terms of a single failure angle
(θ), together with the absence of σ2 from the failure
equation (Eq. (3)) acts to conceal any role for the third
spatial dimension during brittle shear failure of rocks.

The role of σ2 in brittle shear failure has long been the
subject of debate, (e.g. [14]). The stress state at depth
within the lithosphere is likely to be triaxially compressive
and the orientation of shear fractures formed under these
conditions might be expected to be influenced by all three
principal stresses. Motivated by the clay-cake experi-
ments of Oertel [15], Reches employed field observations
[2] and polyaxial (i.e. truly triaxial) rock deformation
experiments [16] to investigate the strains produced by
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slip along pre-existing polymodal faults [2,3]. He arrived
at an empirical slip criterion (note: not a failure criterion),
involving the first and second invariants of the principal
stress tensor, and two constants estimated by curve fitting
for different rock types.

Many other brittle failure criteria have been proposed
in the past (for a recent review see [17]). However, few of
these other criteria are able to predict the orientations of
the shear failure plane which differ significantly from
those of the Coulomb–Mohr criterion, i.e. two conjugate
shear planes inclined at an acute angle to σ1, and parallel
to σ2.

2.2. Experimental work on brittle shear failure in rocks

Rock deformation experiments in the laboratory have
provided much useful data on the nature and orientation
of brittle shear fractures (for a review see [18]). Note that
most so-called ‘triaxial’ experiments conducted in the
compressive regime are in fact uniaxial, with an axially
applied load (σ1) greater than a radial load (σ2=σ3)
applied through a confining jacket. Many experiments
confirm the general form of the Coulomb–Mohr
criterion, both in terms of the magnitude of the applied
stresses at failure and the angle of failure with respect to
σ1. An important finding is that, in detail, the shear
fracture surface is often not smooth, with a trace that
follows a ‘staircase’ trajectory, e.g. see Fig. 14 of Moore
and Lockner [19]. The angle of shear fracture relative to
σ2 or σ3 is rarely measured, but we anticipate that it is
also not smooth (for a rare published example see [20],
their Fig. 16). This inherent roughness of newly formed
shear fractures is consistent with their composite nature
and supports micromechanical models of shear fracture
growth through crack interaction and coalescence (see
below).

Reches and Dieterich [16] carried out polyaxial rock
deformation experiments by varying the applied strain
rates on the sample. This enabled them to measure the
orientation of the final shear failure surface with respect to
the applied strains and, by inference, the applied stresses.
Using cubic samples of granite, sandstone and limestone
deformed under controlled strain rates, and taking care to
eliminate shear stresses at the piston-sample interface,
Reches and Dieterich generated multimodal shear
fractures oriented at varying degrees of obliquity to the
applied stresses ([16], their Figs. 2 and 3). Oertel [15] also
produced multimodal fault patterns in analogue experi-
ments with clay, although the rheology of this material
makes it difficult to extend his analysis to brittle rocks.

Experimental results have lead to the widespread
acceptance that brittle shear fractures nucleate and
propagate through the interaction and eventual coales-
cence of tensile microcracks. Microstructural observa-
tions of deformed samples (e.g. [21,22,19]) and the
recording of acoustic emission (AE) data during rock
deformation experiments [23,24] suggest that the
localisation of tensile microcrack arrays occurs in the
region of the final shear fracture. The coalescence of the
interacting microcracks into a through-going shear
fracture is catastrophic and occurs just prior to sample
failure (e.g. [25]). The prevailing view is that the
majority of these tensile microcracks are oriented
parallel to the σ1–σ2 plane in the sample, for example
see Fig. 3 of Peng and Johnson [21] and Fig. 14 of
Reches and Lockner [26]. The cumulative effect of many
microcracks with mode I opening leads to the onset of
positive dilatancy before failure.

2.3. Micromechanical models of shear failure

Physical explanations of brittle shear failure have
been developed using a variety of micromechanical
models. Building on the concept of Griffith cracks
[27,28] in an elastic solid, Brace [29] and Brace and
Bombolakis [30] suggested that pre-existing micro-
cracks inclined to a compressive σ1 would deform in
mode II (shear). Fracture mechanics theory suggests that
shear cracks cannot propagate in their own plane. Using
photoelastic plastic and glass, Brace and Bombolakis
[30] showed that tensile ‘wing’ cracks develop at the tips
of shear cracks. These ‘wing’ cracks propagate in a
curved path, towards the applied σ1 direction. Their
model suggests that arrays of interacting shear and
tensile ‘wing’ cracks could coalesce to form a through-
going shear fracture (see Fig. 2a and [30], their Fig. 4).
Horii and Nemat-Nasser [31] presented a detailed
quantitative basis for this model. However, microstruc-
tural observations from experimentally deformed rocks
by Peng and Johnson [21] suggest that the majority of
microcracks were tensile and grew parallel to σ1–σ2, a
finding supported more recently by Reches and Lockner
[26].

Reches and Lockner [26] based their model for shear
fracture development on the interaction of tensile micro-
cracks aligned parallel to the plane of σ1–σ2 (Fig. 2a).
Using a standard solution for the elastic field around a
mode I crack from Pollard and Segall [32], Reches and
Lockner [26] calculated the locus of maximum tensile
interaction for a given microcrack and found it to be
inclined at an acute angle to σ1, typically in the range of
20–30°. This angle exerts a fundamental control on the
geometry of the final shear failure plane by promoting en
echelon interaction of neighbouring cracks. The tensile



Fig. 2. Differing concepts of crack interaction. a) Tensile mode I crack
interaction, after [26]. Microcracks initially form and dilate throughout
the rock mass, but interactions among en echelon cracks generate a
shear plane nucleus (grey shade) inclined at approximately 30° to the
maximum compressive stress σ1. b) Shear and ‘wing’ crack interaction,
after [30]. Pre-existing optimally oriented Griffith cracks activate in
mode II shear. Tensile mode I ‘wing’ cracks form at the tips of the shear
cracks, initially at a high angle but growing towards the direction of the
maximum compressive stress σ1. Through-going shear failure results
from coalescence of shear and ‘wing’ cracks arranged en echelon.
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stress field of a crack acts to open neighbouring cracks in
zones above and below and to either side of itself; cracks
located alongside fall in the compressive field and tend to
be closed. The combined field from two interacting en
echelon cracks extends over a wider area than those of
individual cracks, leading to a self-organising runaway
of the shear fracture nucleus. The Reches and Lockner
model successfully explains the final geometry of brittle
shear failure planes and is consistent with the bulk of
experimental evidence for pre-failure localised tensile
microcracking. However, in their model, the core
concept taken from Pollard and Segall [32] is that of a
mode I tensile crack infinite in the direction parallel to σ2

(the z coordinate axis of Reches and Lockner [26]; the x3
axis of Pollard and Segall [32]). The interaction and
eventual coalescence of these ‘blade-like’ or tabular
cracks cannot predict a shear failure plane oblique to σ2,
and therefore cannot explain polymodal faulting in non-
plane strain conditions.

The detailed mechanisms of the actual coalescence
among arrays of interacting microcracks have been des-
cribed by Sammis and Ashby [33] and King and Sammis
[34] in terms of buckling ‘beams’ of intact rock between
arrays of opening cracks. However, the dominant control
on the orientation of the final through-going fracture is from
the earlier interaction of microcracks, rather than their
eventual coalescence [23,26]. The mechanisms of coales-
cence may slightly alter the orientation of the final shear
fracture, but we do not consider the details of microcrack
coalescence further in this study.

3. Field observations of quadrimodal faults

There are many documented cases of fractured rocks
containing polymodal fracture sets. Reches [2] reviewed
field examples of quadrimodal faults. Aydin and Reches
[4] provided detailed measurements from the Chimney
Rock area in Utah (USA), although the contemporaneity
of the four constituent fracture sets in this area has recently
been questioned by Davatzes et al. [35]. Krantz [5,6]
developed the odd-axis technique to estimate the 3-D
strain field frommeasurements of orthorhombic fault sets.
Koestler and Ehrmann [36] measured a quadrimodal fault
array in the Chalk of northern Germany. Jones and Tanner
[37] and Jones et al. [38] documented polymodal fracture
sets across a large area of central Scotland. More recently,
Crider [39] has modelled elastic interactions among an
array of normal faults in Oregon (USA) which display a
clear quadrimodal pattern at themap (km) scale (see Fig. 3
of [39]). Imber et al. [40] have recorded large-scale qua-
drimodal faulting in 3-D seismic data on the Norwegian
Atlantic margin. De Paola et al. [41] described small-scale
quadrimodal faults in sandstones around the 90 Fathom
Fault in NE England. Here we present additional field
observations of demonstrably contemporaneous polymo-
dal non-conjugate fault sets from the UK.

3.1. Gruinard Bay, NW Scotland

At Gruinard Bay in Wester Ross (Fig. 3a–b), Triassic
sandstones and conglomerates were deformed during the
Mesozoic development of the Minch Basin. Extensional
brittle strain is recorded within these rocks from km-scale
normal faults down to arrays of discrete deformation bands,
each with up to a few millimetres of normal offset. These
deformation bands display shear offsets of laminations in
the sandstone and represent brittle shear fractures. Bedding
in the sandstones remains sub-horizontal and many
exposed bedding planes reveal the traces of four distinct
sets of deformation bands (see Fig. 3c). Note that in 2-D
cross-sections normal to bedding (Fig. 3d), these faults
display apparently conjugate geometries. Measurements of
deformation band orientation taken from small (<5 m2)
domains of contiguous outcrop reveal clear polymodal or
quadrimodal patterns when plotted as poles on a stereonet
(see Fig. 3e).

For the domain with the largest number of measure-
ments (n=75), we group the orientation data into four sets
based on fracture strike and dip direction: 030/WNW,
030/ESE, 060/NWand 060/SE. As discussed by Potts and



Fig. 3. Field data from Gruinard Bay, NW Scotland. a) Map of Scotland with Gruinard Bay enclosed by rectangle. b) Map of Gruinard Bay. c)
Photograph of a bedding surface in Triassic sandstones on the foreshore North of Laide. Fracture traces occur as distinct ridges in four sets of
deformation bands. d) Photograph showing a cross-section at a high angle to bedding, with apparent conjugate traces of deformation bands from the
four distinct sets. e) Lower hemisphere equal area stereonets of poles to deformation bands measured at three stations North of Laide. Each station
covers <5 m2 of contiguous outcrop.
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Reddy [42,43], the number of different possible deforma-
tion histories, hc, that can account for a given number, n,
of separate fracture sets is given by:

hc ¼ ðn−1Þ! ð4Þ
such that for four fracture sets, hc=3!=6. The number of
different cross-cutting relationships, pc, that need to be
established to determine the complete history for the
fracture sets is:

pc ¼ nðn−1Þ ð5Þ

so that for four fracture sets we need to collect evidence
from twelve different cross-cutting relationships to fully
constrain the relative timing history. A systematic
collection of shear offset relationships yielded the results
shown as field sketches in Fig. 4 and from these data we
have constructed a matrix of age relationships. These data
demonstrate that members of each fracture set were active
(i.e. accumulating shear offset), contemporaneously with
each of the other sets. In commonwith other faulted high-
porosity sandstones elsewhere (e.g. [44,4,45]), slip along
shear planes involving cataclasis leads to strain-hardening
behaviour and therefore rules out subsequent reactivation
in another stress field as an explanation for the mutual
shear offsets. Furthermore, microstructural measurements
from deformation bands produced in the laboratory reveal
concentrations of microcracks aligned parallel to σ1

consistent with their formation through the interaction and
coalescence of tensile cracks [46]. In summary, the
deformation bands observed at Gruinard Bay are brittle
shear fractures displaying clear polymodal and quad-
rimodal patterns which formed synchronously.

4. Recent 2-D studies of fracture interaction

Several authors have studied interactions among
various types of fractures, often with some form of
simplifying 2-D approximation. The elastic interaction
of arrays of tensile microcracks arranged en echelon
have been studied by Du and Aydin [47], but their
analysis was limited to plane strain. Lockner and
Madden [48,49] modelled interactions among periodic
arrays of cracks oriented either parallel, normal or at
45° to the maximum remote compressive stress in 2-D.
Pollard et al. [50] also analysed en echelon arrays of



Fig. 4. Maps of deformation band shear offsets. A systematic search was conducted at the station with the largest number of data (n=75) for age
relationships among the four sets of deformation bands. The clusters of poles on the stereonet were binned into four orientations based on approximate
strike and dip direction. a–g show examples of mm-scale shear offsets among seven combinations of deformation bands (see Table 1). Note that the
060/NW deformation band in c is the same as that in d, viewed further along strike.
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cracks emanating from the edge of a parent dilatant
crack, with the modelled tensile cracks infinite in one
dimension. At a larger scale, Crider and Pollard [51]
studied the elastic interaction of an en echelon pair of
dipping normal faults to explain the formation of
breaching fractures in the relay zone. Crack interaction
is the subject of intensive study in the field of materials
Table 1
Matrix of age relationships for the deformation bands seen at Gruinard
Bay

Younger

030/ESE 030/WNW 060/NW 060/SE

Older 030/ESE (not seen) (not seen) ✓g
030/WNW ✓c+d ✓c ✓f
060/NW ✓d ✓b (not seen)
060/SE ✓a ✓e (not seen)

Each cell in the matrix represents a possible relative age determination
among each of the four sets of fractures (see stereonet in Fig. 4). For
these quadrimodal deformation bands, relative ages have been
determined from observations of shear offset of one set (older) by
another (younger). The lowercase letters in each cell refer to the field
sketches in Fig. 4. Most of the 12 possible mutual relationships have
been observed, and we infer that all four sets of fractures were
contemporaneous.
science, particularly in relation to metal-matrix compo-
sites (MMC), where the focus is on calculating stress
intensity factors for randomly oriented cracks, or esti-
mating the effective elastic properties of a given ma-
terial (e.g. see [52–54]).

5. Numerical modelling

The numerical model we present here is a micro-
mechanical analysis of the development of fractures by
the interaction and coalescence of individual micro-
cracks, and is a further development of the analysis of
Reches and Lockner [26]. In contrast to their model of
tensile mode I cracks extending to infinity in one
dimension, we model each tensile microcrack as a finite
3-D ellipsoidal void. We retain the simplifying concept
of a homogeneous, isotropic linear elastic matrix, and
focus on the geometry of the problem, i.e. to determine
the 3-D distribution of elastic stress around interacting
cracks and thereby explain the formation of shear frac-
tures oblique to all principal stresses, as seen in quadri-
modal fault patterns. Our model prescribes the location
and geometry of these cracks, and the elastostatic nature
of the solution does not incorporate tensile crack nucle-
ation or propagation.
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5.1. Eshelby's solution

To calculate the elastic stress field around an ellip-
soidal void in 3-D we employ the solution of Eshelby
[55,56]. Murrell and Digby [57] used Eshelby's solution
to model Griffith cracks as 3-D voids in an elastic matrix.
However, they restricted their analysis to non-interacting
fields in order to find the optimum orientation for in-
plane propagation of each Griffith crack.

Eshelby [55,56] derived the elastic field for two
related problems, without recourse to ellipsoidal coordi-
nates (e.g. [58]). The first solution is for the case of an
inclusion with a prescribed strain enclosed within a
matrix where the elastic properties of inclusion and
matrix are the same. The prescribed inclusion strain, or
‘stress-free transformation strain’ of Eshelby [55], has
been called the ‘eigenstrain’ by Mura [59]. Eigenstrains
are non-elastic strains due to thermal expansion, phase
transformation or twinning. Eshelby [55] produced the
surprising result that if the inclusion is bounded by an
ellipsoid, the total strain within the inclusion (the eigen-
strain plus the strain due to constraint from the sur-
rounding matrix) is uniform. This first result is then used
to obtain a second more useful result for inclusions with
material properties differing from those of the matrix.
Eshelby [55] called these ‘inhomogeneities’ to distin-
guish them from ‘inclusions’ sensu stricto. Note that if
the elastic properties of the inhomogeneity are set to
zero, it becomes a void in an elastic matrix. Eshelby [55]
calculated the elastic field due to an inhomogeneity with
his ‘equivalent inclusion’ method. The equivalent in-
clusion has material properties identical to those of the
matrix, but is subjected to an eigenstrain that produces
the same total elastic field as the original inhomogeneity.
Using the previous solution for the homogeneous in-
clusion an expression can be derived for the total field
due to the inhomogeneity in terms of the known strains
and material properties (see Chapter 4 of Mura [59] for a
complete analysis).

Expressions for the external elastic field of spheroi-
dal inclusions (prolate, oblate and spherical) have been
presented in closed form by Ju and Sun [60,52]. In
contrast to the elastic stress within the inclusion, the
elastic stress (σ) outside an ellipsoidal inclusion varies
with coordinate position (x), and can be expressed as

rðxÞ ¼ ½C0d GðxÞ� : e⁎0 ð6Þ

where the symbol “:” denotes tensor contraction and C0

is the linear fourth order stiffness tensor of the elastic
matrix. G is the Eshelby tensor for the external field,
also a fourth order tensor and is similar in form to the S
tensor for the interior field, but is position dependent.
ε⁎0 is the eigenstrain within the inclusion. The value
for ε⁎0 is calculated from

e⁎0 ¼ −½Aþ S�−1 : e0 ð7Þ
where S is the fourth order Eshelby tensor for the
internal field, ε0 is the prescribed strain within the
inclusion and A is the fourth order elastic ‘phase-
mismatch’ tensor of Ju and Sun [60,52]. This is given by

A ¼ ½C1−C0�−1d C0 ð8Þ
where C1 is the linear fourth order stiffness tensor of the
inclusion.

To model a tensile microcrack as an ellipsoidal void,
we set the elastic properties (stiffness tensor, C1) of the
inclusion to zero. During brittle deformation of the
lithosphere, dilatant tensile microcracks are likely to be
filled with a hydrous fluid phase. At shallow depths
(relatively low confining pressure), the elastic stiffness
of this fluid will be very much reduced by comparison to
the enclosing matrix, and we believe that setting the
inclusion stiffness tensor to zero is a valid approxima-
tion. We only consider ‘penny-shaped’ cracks modelled
as oblate spheroidal voids with semi-axes a=b≫c. The
length–width aspect ratio (a/c) of the modelled cracks is
fixed at 100, with semi-axis c aligned parallel to our
coordinate z direction (see Fig. 5a), to match the obser-
vations of preferred microcrack orientation in the σ1–σ2

plane (e.g. [21,26]). The elastic properties of the iso-
tropic matrix are defined using a Young's modulus of
20 GPa and Poisson's ratio of 0.3, comparable with
those of sandstone.
5.2. Elastic stress field of an isolated tensile crack in
3-D

The elastic stress field around an isolated tensile mode
I crack is shown in Fig. 5, calculated from Eshelby's
solution (after Ju and Sun [60,52]). The crack is modelled
with an opening mode eigenstrain εzz of 2e–5, equivalent
to a uniaxial tensile stress (or equivalent uniform internal
pressure) of 1 MPa for the chosen elastic properties.
Although we do not impose a remote compressive stress
field in these models, we assume that tensile microcracks
in a rock subjected to a triaxially compressive stress field
will in general be aligned parallel to the remote σ1–σ2

principal plane, corresponding to our x–y coordinate
plane.

Fig. 5c shows a contour plot of the σzz component
of the stress tensor in the x–z plane. This normal stress
component is the most important when considering



Fig. 5. Elastic stress field around an isolated ‘penny-shaped’ crack. a) Reference frame used in this study with a ‘penny-shaped’ tensile microcrack
modelled as an oblate spheroidal void with semi-axes a=b≫c, and aspect ratio (a/c) of 100. Semi-axes a, b and c are aligned with the x, y and z
coordinate axes respectively. b) 3-D plot to show the elastic stress field around an isolated tensile crack. Mapped value is the σzz component of the
perturbed stress field, which is the most important when considering tensile interactions of cracks oriented with their short c-axes parallel to z.
Regions with compressive stress appear white; increasing tensile stress is shown as darker grey. c) Detail of the x–y region outlined in (b).
Neighbouring crack A lies in the tensile field while crack B lies in the compressive field. Crack Awill tend to be opened and crack B will tend to be
closed by the elastic field of the parent crack. d) Detail of the y–z region outlined in (b). Neighbouring crack C lies in the tensile field of the parent
crack, while crack D lies in the compressive field. Crack C will tend to be opened and crack D will tend to be closed by the elastic field of the parent
crack. e) 3-D view of the isolated crack and the surrounding σzz field. The elastic stress field of an isolated crack will promote en echelon tensile
interaction with neighbouring cracks in 3-D, and this interaction is not confined to a single (e.g. x–z) plane.
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tensile interactions among mode I cracks. Compressive
stress is not contoured and appears as white, while
increased tensile stress is shown in a grey scale (higher
tensile stress is darker). The form of the stress distri-
bution is very similar to the results calculated by
Reches and Lockner [26] (their Fig. 5) from the
solutions of Pollard and Segall [32] for a mode I crack
under uniaxial tension or uniform internal pressure,
with bi-lobate regions of increased tensile stress at
either end of the crack. A neighbouring tensile crack
located in the tensile field of the modelled crack (e.g.
crack A) will tend to be opened, while a crack in
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the compressive region (e.g. crack B) will tend to be
closed.

The location and shape of these lobes of increased
tensile stress are well known from published 2-D
solutions of elastic fields aroundmode I cracks. Eshelby's
solution provides the complete 3-D elastic field around
the ellipsoidal crack. Fig. 5d shows the σzz stress
component in the y–z plane, orthogonal to that shown in
Fig. 5c. For the ‘penny-shaped’ crack modelled here,
symmetry predicts that the stress field in the y–z plane is
identical to that in the x–z plane, and this is confirmed
numerically using the Eshelby solution. This implies that
stress interaction with neighbouring cracks also applies in
this y–z plane, and indeed, throughout three-dimensional
space. The en echelon character of this tensile stress
interaction is seen to be a fundamentally 3-D feature of the
model. In 3-D, the region of increased tensile stress
around a tensile microcrack forms an indented ring-
shaped, toroidal zone enclosing the crack and extending
outwards from the crack tips (Fig. 5e).

For a given distance from the crack, the precise
locus of the maximum tensile stress can be computed.
This locus is derived from the value of the average
crack normal stress (CNS) defined as

CNSaverage ¼
Z sþL=2

s−L=2
rzzds ð9Þ
Fig. 6. Locus of maximum tensile interaction. a) side-on 2-D view of the locus
the surface from the plane of the crack, and defines an upper limit to the orie
among neighbouring cracks. Compare the edges of this surface to the M cur
tensile interaction, a hyperboloid with radial symmetry (for a ‘penny-shaped’
envelopes to the locus of maximum tensile interaction (dark grey). The most l
the outer surfaces of the cones.
where L is the crack length (equal to 2a, the ellipsoid
semi-axis), and s is the crack parallel component of radial
distance from the crack tip. We compute CNSaverage by
numerical integration and then calculate the locus of the
maximum of CNSaverage around the crack. This locus
forms a hyperbola in 2-D (Fig. 6a) and this is theM curve
of Reches and Lockner [26]. In 3-D it forms a one-sheeted
hyperboloid (Fig. 6b) enclosing two conical tangential
envelopes symmetrical about the z axis (Fig. 6c). These
cones can be considered as the rotation of the tangents in
Fig. 6a through 360° about the z axis. The angle θ these
tangents make with any crack-parallel axis is a constant of
the elastic stress field around an ellipsoidal crack, and for
a narrow crack (c≪a) is approximately ±26°. This is
close to the value of ±34° reported by Reches and
Lockner [26] from their 2-D model and we ascribe the
discrepancy to the differences between 2-D and 3-D
formulations of the stress field and a component of error
from inexact numerical calculation. Shear fracture planes
formed by tensile crack coalescence are equally likely to
form in any orientation bounded by the outer surface of
these cones (Fig. 6b). Irrespective of the spacing of the
interacting cracks, the envelope to the locus of maximum
tensile interaction provides a limiting angle controlling
the relative position of cracks that are most likely to
preferentially interact and coalesce. Assuming that shear
fractures nucleate through the mutual interaction of
of maximum tensile interaction The angle θmeasures the inclination of
ntation of likely shear fractures formed by interaction and coalescence
ve of Reches and Lockner [26] b) 3-D view of the locus of maximum
crack) about the z axis. c) 3-D view of the conical (light grey) tangential
ikely shear failure planes are expected to lie within the volume between
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neighbouring tensile cracks, shear planes are therefore
much less likely to develop at θ angles greater than 26°.

5.3. Interaction of ellipsoidal inclusions

The 3-D geometric form of the tensile stress around a
single tensile microcrack has important implications for
the stress interaction between neighbouring microcracks.
Eshelby [60,52] derived his solution for the case of an
isolated ellipsoid. Chalon and Montheillet [61] used
Eshelby's solution to investigate the elastic interaction of
spherical gas bubbles in an elastic matrix. In the case
where the bubbles are of the same size and subject to the
same pressure (i.e. the same eigenstrain), the total elastic
strain field reduces to the linear superposition of the
individual strain fields.

The distribution of tensile stress in 3-D around an
isolated tensile mode I microcrack promotes interaction
among en echelon arrays of mode I cracks. To explore
the 3-D interaction of tensile microcracks, we calculate
the total elastic stress fields for two arrays of three
cracks each. The arrays are oriented so that they are
Fig. 7. Oblique 3-D view of a shear fracture formed through the
interaction and coalescence of two orthogonal arrays of tensile cracks.
Equidimensional penny-shaped cracks with their centres coplanar in
the x–z and y–z coordinate planes. Increasing tensile σzz stress is
shown as a grey shade, compressive stress is left white. Interaction of
tensile stresses at the crack tips leads to increased tensile stress at each
end of the whole array, when compared with an isolated crack,
expanding the region of interaction. This self-organised expansion is
believed to generate a run-away coalescence of the cracks and a
through-going shear fracture [26]. The same pattern of interaction in
the y–z plane to that in the x–z plane is clear. This implies that the
interaction and eventual coalescence of arrays of tensile cracks
arranged en echelon in 3-D will be oblique to the common flat plane of
the tensile cracks, and oblique to all three coordinate axes and remote
principal stresses.
coplanar with the principal axes of the far-field stress
system. The crack spacing is 1 unit in z and 2.75 units in
x or y. In all cases, the cracks are defined with semi-axes
a=b=1 unit, c=0.01 unit.

The σzz component of the total elastic stress field for
a 3-D en echelon array of six cracks is shown in Fig. 7.
The lobes of increased tensile stress for each crack
merge with those of the adjacent crack, and the stress at
the ends of the array is increased relative to that of a
single crack. This mutual amplification forms the basis
for the self-organising nucleation and runaway propa-
gation of the shear fracture nucleus [26]. For a given
population of pre-existing tensile microcracks in a rock
volume, these interactions will lead to the nucleation of
a brittle shear failure plane inclined at an acute angle to
the direction of remote σ1 (our coordinate x), but also
inclined to the direction of remote σ2 (our coordinate y).
Based on the geometry of tensile stress interaction
calculated for the prescribed en echelon crack array, one
possible orientation for a newly formed shear plane is
shown (light shade in Fig. 7). The trace of this oblique
shear plane makes an acute angle with the x axis
(inferred direction of remote σ1) in the x–z plane
(remote σ1–σ3 plane), and within this plane conforms to
existing macroscopic models of 2-D brittle shear failure
(e.g. Coulomb–Mohr). However, the trace of the shear
plane also makes an acute angle with the y axis (inferred
direction of remote σ2) in the y–z plane. The implication
of these results, based on fundamental properties of the
elastic field around tensile microcracks, is that 3-D crack
interaction is likely to cause preferential fracture devel-
opment in orientations oblique to all three remote prin-
cipal stresses.

5.4. Orientation of newly formed brittle shear fractures
in 3-D

In our 3-D models, and the 2-D models of Reches and
Lockner [26], the locus of maximum tensile stress around
each crack exerts a major control on the tensile interaction
among neighbouring microcracks. A key issue is to deter-
mine the factors that control this locus. The position and
orientation of this locus is not dependent on the opening
strain (or stress) across the crack, the length–width aspect
ratio of the crack, or the elastic moduli of the matrix. The
pattern is self-similar for a range of crack openings,
length–width ratios and/or variations in elastic moduli,
and only the magnitude of the tensile stress varies. There-
fore, for oblate spheroidal cracks, the angle θ (see Fig. 6a)
between the tangent to the locus of maximum tension and
the x axis (direction of remote σ1), is effectively a con-
stant for a given material.
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Reches and Lockner [26] expressed their angle of
failure β (equivalent to the angle θ in the Coulomb–Mohr
criterion, Eq. (2)) as a function of crack spacing S, crack
length L and the angle of the locus of maximum tension θ.
In our 3-Dmodel, the shear failure plane will in general be
oblique, and not perpendicular to the x–z (remote σ1–σ3)
plane. We label the angle between the trace of the shear
failure plane in x–z and the direction of remote σ1 as β1
(see Fig. 7). The spacing of cracks in the z direction of the
x–z plane is labelled S1 and the length of the crack in the x
direction is L1 (=2a). The angle between the failure plane
and the direction of σ2 in the y–z (remote σ2–σ3) plane is
labelled β2 (see Fig. 7), the spacing of cracks in the z
direction of the y–z plane is labelled S2 and the length of
the crack in the y direction is L2 (=2b). Following Reches
and Lockner [26] we can write

b1 ¼ tan−1f½2ðS1=L1Þsinh�=½sinhþ 2ðS1=L1Þcosh�g
ð10Þ

and from our 3-D model we can show

b2 ¼ tan−1f½2ðS2=L2Þsinh�=½sinhþ 2ðS2=L2Þcosh�g
ð11Þ

where θ is the angle of the tangent to the locus of
maximum tensile stress (see Fig. 6). As discussed above,
given the self-similarity of the shape of the elastic stress
fields around isolated cracks, the angle θ is effectively a
constant (for a given material). Therefore, in a crack
interaction model with prescribed tensile microcracks, to
explain any variation in shear failure plane orientation, we
need variations in other parameter values. For a given
rock with an initial distribution of microcracks where
S1=S2, i.e. microcracks evenly spaced in all directions,
the critical factor governing the orientation of the shear
plane is the crack length. If L2≫L1, the angle β2 will be
Fig. 8. Comparison of model predictions with field data. Faults measured in T
lower-hemisphere equal-area stereonets with fracture planes plotted as poles
The conical envelopes have been plotted as small circle girdles (bold) about th
of 90°–64° i.e. a maximum deviation from the vertical of 26°. The faults w
less than β1, and as L2 increases, the shear failure plane
will change orientation towards parallelism with σ2.
Therefore, if the tensile microcracks propagate such that
L2 increases with respect to L1 (b≫a), our 3-D model
predicts the formation of apparently conjugate shear frac-
ture planes, each containing the σ2 direction. Similarly,
oblique (e.g. polymodal or quadrimodal) shear fractures
result from the interaction and coalescence of cracks of
approximately equal length, i.e. ‘penny-shaped’ cracks
with L2=L1. Lastly, if the initial cracks propagate in both
directions, leading to high values of both L1 and L2 for
given values of S1 and S2, minimal interaction results in
very low values of β1 and β2 and the formation of stepped
en echelon joints.

In this elastostatic model with prescribed initial cracks,
the rheology of the material, in the form of the elastic
moduli, does not exert a direct control over the orientation
of the shear failure plane in 3-D. From the equations
describing the angles (β1 and β2) between the failure plane
and the remote principal stresses, it is the spacing (S ) and
the dimensions of the interactingmicrocracks (L=2a) that
control the orientation of the shear failure plane in 3-D.

5.5. Comparison of modelling results and field data

Interpretation of brittle shear fracture data measured at
Gruinard Bay is shown in Fig. 8a–c. The conical bounding
envelopes for predicted shear fracture orientation trace out
small circles on a stereonet. The bounding cones delimit
zones of likely fracture plane orientation, and show very
close fit between model predictions and field data. In the
laboratory results of Reches and Dieterich [[26], their Fig.
5], their fracture data are also limited by a bounding
envelope of just over 25°.

The field data in Fig. 8c cluster into four groups that
show a quadrimodal pattern with orthorhombic symme-
try. This higher-order symmetry is not predicted by our
riassic sandstones around Gruinard Bay, NW Scotland. All plots show
and great circles. The square symbol marks the pole to the mean plane.
e mean fracture direction, with apical angle 52° (2×26°) and a dip range
ere measured at Laide waterfall (a), Laide jetty (b) and Udrigle (c).
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model, but is explained by the slip model of Reches. Our
future work will model the interactions of cracks of gen-
eral ellipsoidal shape (a>b>c), rather than the spheroidal
shapes (a=b>c) used in this study. We suspect that the
orthorhombic symmetry of the stress field associated with
true ellipsoidal cracks may impart significant changes to
the 3-D form of the locus of maximum tensile interaction,
as might the remote stress (strain) state or elastic aniso-
tropy in the rock. These factors, absent in the current
model, may promote the development of more ordered
fracture sets such as quadrimodal arrays (Fig. 8c).We also
note that natural and experimentally produced polymodal
fault patterns often contain anastomosing and curvi-planar
fracture surfaces. This variation in the orientation of
macroscopic shear surfaces (Fig. 8a–b) may be controlled
bymutually interactingmicrocracks preferentially located
on the curvi-planar locus of maximum tensile interaction
(Fig. 6b).

6. Discussion — limitations of the model

In our model we use arrays of equally spaced, equi-
dimensional coplanar cracks in order to simplify the
illustrations of stress interaction (Fig. 7), and to allow the
derivation of simple, idealised expressions relating the
geometry of the array to the final through-going shear
plane (Eqs. (10) and (11)). In deforming rocks, the pop-
ulation of microcracks will be continually changing in
response to the applied load. The dimensions of the mi-
crocracks and their spacing will evolve through time. Our
elastostatic model with prescribed and fixed microcracks
is effectively instantaneous and serves only to illustrate
the general 3-D nature of the tensile stresses. We em-
phasize that themodelled stress patterns represent only the
local perturbation to an overall stress field, created by the
prescribed microcrack opening strain (stress), with no
remote or other driving stress being applied. The addition
of a non-hydrostatic stress to the models (e.g. by linear
superposition), with σ1>σ2>σ3, will create an asymme-
try in the distribution of tensile stress around the z-axis.
This asymmetry of the total stress field may help to
explain the experimental observations of Reches and
Dieterich [16], where the strain rate ratio, and therefore the
stress ratio, correlates with changes in orientation of the
quadrimodal fault planes.

Even allowing for these caveats, we prefer the fully
3-D solution of Eshelby to other quasi-3-D formula-
tions, such as that for flat cracks published by Kassir and
Sih [62]. These authors use a zero thickness, and there-
fore zero volume, elliptical crack geometry. Numerical
models based on these quasi-3-D formulations cannot
reproduce the ubiquitous positive dilatancy recorded in
compressive shear failure experiments and do not permit
different material properties to be prescribed within the
inclusion.

In our elastostatic model, the prescribed microcracks
do not propagate. This can be partially justified by con-
sidering rocks as heterogeneous polymineralic, poly-
crystalline aggregates in which individual mode I crack
propagation is inhibited by the frequent juxtaposition of
grains with differing material properties. This fundamen-
tal inhibition tomode I crack propagation may in fact tend
to promote interaction at the expense of propagation.

Another key issue is how the nucleus of a new oblique
shear fracture propagates into a through-going geological
fault. Theory based on linear elastic fracture mechanics
(LEFM), suggests that shear fractures cannot propagate in
their own plane (for a review with geological applications
see Petit and Barquins [63]). However, if natural shear
fractures are composite and form through the interaction
and coalescence of many tensile cracks, then the simpli-
fied geometry of a single shear crack used in LEFM
models may be an invalid and irrelevant approximation.
Propagation of a composite shear fracture may never be
strictly in-plane to any of the constituent microcracks, but
viewed at a larger macroscopic scale and allowing for
surface roughness, the shear failure surface tends to pro-
pagate in-plane. This concept is supported by the acoustic
emission (AE) data from rock deformation experiments
when viewed in discrete time slices (e.g. [24], their Fig. 7).
AE data viewed normal to the final shear fracture shows
crescentic clouds of emissions (i.e. microcracking) sur-
rounding the migrating edges of the shear plane nucleus.
Viewed along the final shear fracture, emissions are
confined to a linear band until the sample fails. Further
experimental evidence for in-plane propagation of shear
fractures is provided by the microstructural observations
of Cox and Scholz [64,65]. Torsion experiments on
granite produced a shear plane that propagated through
obliquely oriented tensile cracks.

The matrix in our numerical models is an isotropic
elastic material, and this is a limitation of the Eshelby
[55,56] method. Fracture-induced anisotropy of rocks is
well known (for a review see [66]), but there is increasing
evidence that undeformed rocks also possess significant
anisotropy in elastic properties (e.g. [67]). As mentioned
above, anisotropy in the shape of the interacting tensile
microcracks is likely to exert significant influence on the
orientation of the final through-going shear fracture. Fur-
ther work is underway to model the interactions of cracks
of general ellipsoidal (a>b>c) shape, as opposed to the
spheroidal (a=b≫c) shapes used in this study. The
expressions for the elastic field of a general ellipsoid are
only approximate and depend on elliptic integrals
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[55,56,59,60,52]. However, we believe that the initial
results from this study (see also [68]) with ‘penny-shaped’
(spheroidal) cracks and an isotropic matrix are funda-
mental and robust: the interaction, and eventual coales-
cence, of tensile microcracks is a 3-D process leading to
brittle shear failure planes oriented obliquely to all three
principal stresses.

The key results of this numerical study into shear
fracture development in 3-D suggest that further experi-
mental work is required. More systematic polyaxial
(truly triaxial) laboratory experiments, with failure dy-
namically controlled by the rate of acoustic emissions
[23], are needed to map out shear fracture nucleation and
propagation in 3-D and 4-D. In particular, we would like
to see more published measurements from polyaxial
experiments of the actual orientation of failure planes
with respect to the principal stress axes (c.f. [16]).

7. Summary

The 3-D micromechanical models of crack interac-
tions presented in this paper are an attempt to improve
on current theories of shear failure that cannot explain
the formation of contemporaneous polymodal fractures
orientated oblique to all three principal stress axes. Fail-
ure criteria that are limited to predict only conjugate
bimodal faults are two-dimensional approximations of
geological reality. Numerical modelling of the elastic
field in 3-D around isolated and en echelon arrays of
tensile cracks uses the classical formulation of Eshelby
[55,56], based on the closed form expressions by Ju and
Sun [52]. Tensile microcracks are modelled as finite 3-D
ellipsoidal voids in a linear isotropic elastic matrix, and
subjected to small opening strains. The 2-D views of the
complete 3-D elastic field match results from previous
work based on 2-D thin sheet or plane strain simpli-
fications (e.g. [32]). Lobes of high tensile stress are
formed at the ends of a tensile crack, and displaced to
either side. The loci ofmaximum tensile stress aremapped
in two orthogonal planes, and for a penny-shaped crack,
the loci are identical, forming an indented toroidal pattern
in 3-D. Tensile stress interactions between neighbouring
cracks are most likely along these loci [26], leading to en
echelon arrays of interacting cracks. The model predicts
that a 3-D population of tensile mode I microcracks, each
aligned parallel to theσ1–σ2 principal plane of the remote
stress field, will interact to form a shear fracture nucleus
that is oblique to the microcracks and oblique to all three
principal stresses. Existing experimental data confirm that
once formed in a certain orientation, a composite shear
fracture propagates broadly within its own plane, through
the coalescence of many tensile microcracks. Our fun-
damental results can successfully explain the orientation
of newly-formed quadrimodal shear fractures such as the
deformation bands observed at Gruinard Bay, Scotland
and in many other natural examples. We speculate that
published field data of apparently ‘conjugate’ bimodal
faults with a finite spread of poles in the stereonets is a
further manifestation of this oblique shear fracture phe-
nomenon (see for example [69], their Fig. 2). The spread
in orientations is often ascribed to ‘noise’, due to some
combination of measurement error, anisotropy, heteroge-
neous remote stress fields etc. Similarly, results from
many polyaxial rock deformation experiments describe
the final shear plane as ‘sub-parallel’ to σ2. We believe
that these variations in the orientation of the shear plane
may be of primary significance (i.e. not just ‘noise’), and
at least partially reflect the oblique nucleation of many
brittle shear fractures under triaxially compressive condi-
tions in the lithosphere.
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Appendix A

The corrected expressions given below are based on
those provided by [52], and have been used to
benchmark the numerical code used in this study by
reproducing the published solutions of external fields in
[59] and [58].

The signs in the first terms of the first two components
of the exterior-point Eshelby tensor need to be reversed;
so that Eq. (A.1) in [52] should read

Sð1Þ11 ðkÞ ¼ 4m0
2

a2−1

� �
gðkÞ− 2

3ða2−1Þ q
3
1ðkÞ

þ 4m0
2

a2−1

� �
q1ðgÞq22ðkÞ

and similarly, Eq. (A.2) in [52] should read

Sð1Þ12 ðkÞ ¼ Sð1Þ13 ðkÞ ¼ 4m0 þ 2a2−1
a2−1

� �
gðkÞ

þ 4m0 � 2a2

a2−1

� �
q1ðkÞq22ðkÞ
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