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Abstract

Three lava flows (hereafter, flows A, B, and C) from Salina Island (Italy) consist of basaltic andesitic enclaves dispersed in a
dacitic matrix. Enclaves represent 8–12 vol.% of the erupted magma. The number of enclaves and the surface covered by the
enclaves at each outcrop do not vary significantly with the distance from the vent in the flows A and B. These feature reflect the
dynamics of magma mingling within the reservoir and not the kinematics of the lava flow. In the flow C, these parameters vary
irregularly. The statistical entropy S(t) of the enclaves, which is a measure of their spatial distribution (dispersion), is estimated
in outcrops located at different distance from the vent. The Kolmogorov–Sinai entropy rate k, which describes the variations of
S(t) with time, is also determined. In the lava flow A, S(t) increases linearly with time t for 0b tb0.4; k is 0.04. For tN0.5, S(t)
attains its maximum value and maintains constant with increasing t. In the lava flow B, S(t) linearly increases with t, and k is
0.01. In the lava flow C, there is not correlation between S(t) and t. The comparison between the results from the analysis of the
Porri enclaves and those from numerical experiments on the variation of S(t) in chaotic advective mixing systems and from
previous experimental models on magma mixing, allow us to draw some conclusions on dynamics of the basaltic andesite–
dacite mingling in the magma chamber. Fully chaotic magma mingling systems show three evolution stages. An initial stage,
which is unknown because of the disruption of the initial configuration of the interacting magmas, a second stage characterized
by a linear increase of the statistical entropy with time, and a third stage, in which the uniformity of the system is reached, and
the entropy does not vary with increasing time. A system in which the uniformity is never attained, is characterized by irregular
variations of S(t) with time. In the flows A and B, the relations between S(t) and t are consistent with those of a fully chaotic
dynamics possibly associated to convection. The basaltic andesite was uniformly distributed in the dacitic host due to the
occurrence of convective movements driven by the injection of the basaltic andesite within the dacitic chamber. The mingling
system recorded by the lava flow A evolved with a higher rate with respect to that of the flow B. This suggests that chaotic
advection (stirring and folding) is more efficient in the magmatic system A than in B. On the contrary, the mingling system C is
characterized by a non-uniform distribution of the basaltic andesite within dacite. This reflects the occurrence of a dynamics in
which stirring and folding processes do not operate efficiently and are unable to uniformly distribute the dispersed phase within
the continuous one. The decrease of k from A to B, and the lack of a measurable k in C, along with the observation that A and
B were emitted before C, indicate that the efficiency of advective movements within the Porri magma chamber declined with
decreasing time. Mingled magmas characterized by a homogeneous spatial distribution of enclaves or an initially
inhomogeneous distribution evolving towards a homogeneous one are indicative of efficient advection processes that may
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favor magma mixing. Mingled magmas characterized by an inhomogeneous distribution of enclaves suggest low dynamical
interaction between the two end-members. Magma mixing is not allowed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Enclaves have been recognized in plutonic and
volcanic rocks, and their occurrence indicates the
physical interaction (mingling) between magmas of
different composition [1–4]. Geochemical and structural
studies on enclaves are abundant [4–8] and references
therein], and allow us to reconstruct the processes
responsible for the mingling of magmas, which include:
injection of mafic magma into a silicic one, disruption of
the stratification of a magma chamber during eruption,
vesiculation of a mafic magma within a densely
stratified reservoir, floating of a layer of mafic magma
into a more evolved magma due to vesiculation, or to
coupled vesiculation and crystallization, and disruption
of a solid layer of mafic magma.

According to results from fluid-dynamical experi-
ments on immiscible liquids [9,10], recent studies
suggest that chaotic advection, i.e., efficient stirring/
stretching and folding, plays an important role in the
dynamics of magma mingling [11–13]. The main
evidence of chaotic advection is the coexistence, within
the same magmatic body and at different length scales
(10−4–1 m), of enclaves characterized by a fractal
structure and by morphological features similar to those
recognized in chaotic systems, i.e., vortexes, folds and
stirring structures. However, natural dynamical systems
are not necessarily chaotic. Also, they may be
characterized by different degrees of chaos [14,15]. In
statistical mechanics, the degree of chaos of a dynamical
system can be estimated analyzing the time evolution of
two key-parameters [16–22]: the statistical entropy S,
which is a measure of the spatial distribution (disper-
sion) of a system, and the Kolmogorov–Sinai entropy
rate k, which describes the dynamic instability of
trajectories in the phase space.

In this study, we analyze the spatial distribution of the
enclaves hosted in three lava flows from the Porri
volcano (Salina Island, Southern Tyrrhenian Sea, Italy).
We determine the statistical entropy of the enclaves
within these lavas at different distances from the vent,
and calculate k. The collected data are discussed in light
of results from numerical experiments and allow us to
(a) provide a description of the time and spatial
evolution of enclaves within their host, (b) have a
relative estimate of the degree of chaos of the magma
mingling system, and (c) discriminate between different
chaotic dynamics within the magma chamber.

The paper is organized as follows. In a first section we
describe the geological and geometrical features of the
selected lava flows and enclaves. In the second section
we present the theory on the evolution of S and k in
chaotic mixing systems using numerical experiments. In
the third section, we illustrate the analytical method used
to determine S and k in the Porri lavas using enclaves. In
the last two section, we present and discuss the results,
and summarize the most relevant conclusions.

2. Geological setting and general features of the
selected lava flows with enclaves

Salina Island (Southern Tyrrhenian Sea, Italy)
consists entirely of volcanic rocks related to the activity
of five main volcanoes emplaced between 430 and 13 ka
(Fig. 1a [23–25]). Porri volcano (865 m a.s.l.) is located
in the western part of Salina, and consists of 83 to 43 ka
old lava flows and scoria fall deposits [25]. The
composition of the Porri products ranges from basaltic
andesites to dacites [24].

Most of the Porri lavas are texturally heterogeneous.
They are characterized by the occurrence of dark
enclaves hosted in a lighter matrix (Fig. 1b). Here, we
select three of these lava flows, which outcrop in the
southern sector of the Porri volcano (lava flows A, B and
C in Fig. 1a). These lavas were emitted from the Porri
crater during the last phase of activity of the volcano,
which date back to about 43 ka. On the basis of the field
relationships, the lava flows A and B were emitted
before the flow C. Geochronological data on the
selected lavas flows are unavailable and the time
interval between the three effusive episodes cannot be
estimated. The structural and geochemical features of
the Porri lavas, as well the physical properties of the two
interacting magmas, were extensively described in
previous studies [26–29] and only the main features
are reported here.



Fig. 1. (a) Geological sketch map of Salina Island (simplified from Barca and Ventura [24]) with location of the lava flows A, B and C. (b) Field
relationships between the basaltic andesitic enclaves and the dacitic matrix in the lava flow C.
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Similar morphological, structural and geochemical
features characterize the lava flows A, B, and C. These
lavas lie on a 6° to 14° dipping substratum constituted
by older flows. Lava flows A and B have an exposed
length of about 1 km, whereas the lava flow C has a
length of about 800 m (Fig. 1a). The width of the flows
ranges between 5 and 21 m and the thickness is between
2.5 and 4 m. In sections containing the flow direction
and orthogonal to the surface on which the flow moved,
the lavas consists of three main portions. The basal and
upper portions are 0.5 to 1 m thick, and are made up of
scoriaceous breccias (a′a-type lava). The middle portion
is massive and texturally heterogeneous. Dark enclaves
(Fig. 1b) are hosted in a crystal-rich matrix pink in
colour. The enclaves of the lava flows A, B and C are
characterized by circular to ellipsoidal shapes. On the
outcrop, the size of the enclaves ranges from few mm2

to 35–40 cm2. The enclaves are vesicle-free, whereas
the vesicle content of the matrix is between 0 and 5 vol.
%. The enclaves represent 8–12% of the exposed sur-
face, and have a crystal content ranging from 15 to 20
vol.% (cpx, opx, plg, ox and ol). The glass has a
basaltic andesitic composition (SiO2=53–55.5 wt.%;
K2O=1.20–1.54 wt.%; [26,30]). The matrix in which
Table 1
Viscosity, yield strength, density, water content and temperature of basaltic

Magma Viscosity
(Pa s)

Yield strength
(Pa)

Dacite 1.35 106 85
Basaltic andesite 1.20 104 (5.3 103) 33

Values in parentheses refer to 1050 °C. Data from Colleta, De Rosa et al., V
the enclaves are hosted has 45–51 vol.% of crystals
(cpx, opx, plg, ox and amph) and a high-potassium
dacitic glass composition (SiO2=61.25–64.11 wt.%;
K2O=2.32–2.61 wt.%; [26,30]).

According to Colleta, De Rosa et al., and Ventura
[26–30], the enclaves of the Porri lavas reflect the
arrival of a basaltic andesite in a shallower reservoir
where a resident, crystallizing high-potassium dacitic
magma is stored. Following Zanon [31], the shallower
storage zone is located between 1.3 and 2.8 km, while
the deeper magma comes from a depth larger than
12 km. The lack of mixing (hybridization) processes
between the basaltic andesite and the high-potassium
dacite is due to the different rheological properties of
the two magmas (Table 1) [29,30]: the ratio between
the viscosity of the basaltic andesite and that of dacite
is ∼10−2, and the ratio between the yield strengths is
∼0.38 [29].

As already recognized in other lavas from the Porri
and other volcanoes [29,32], the smaller enclaves of the
lava flows A, B and C are less deformed of the larger
ones. According to Williams and Tobish [33], the
deformation of a drop is proportional to the Capillary
number, which is the ratio between the viscous stress
andesite (enclaves, dispersed phase) and dacite (continuous phase)

H20
(wt.%)

Density
(kg/m3)

Temperature
(°C)

2.0 2570 950
0.5 3200 (2900) 950 (1050)

entura et al., and Ventura [26–30].
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and the interfacial tension. This number is, in turn,
proportional to drop size. As a result, smaller drops
deform less than the larger ones. Also, freezing
processes may affect the enclaves, and the smaller
enclaves form a chilled margin earlier than the larger
ones [32]. We cannot establish which of these two
processes prevails within the selected Porri lava flows
A, B, and C. However, as suggested by Ventura [29],
and independently from the drop size and presence or
not of chilled margins, the trajectories of the basaltic
enclaves in the dacitic magma are imposed by the
kinematics of the host. On the basis of these observa-
tions, and taking into account that the enclaves represent
a low fraction (0.08–0.12) of the lavas, the enclaves are
passive markers whose spatial distribution in controlled
by the flowing matrix.

3. Statistical entropy and entropy rate in chaotic
advection

A convenient numerical description of a conservative
(constant volume), advective mixing system is the
‘standard map’, also known as Taylor–Greene–Chir-
ikov map [22]. The map is defined by the following
iterative rule:

xnþ1 ¼ xn þ ynþ1 ½mode I� ð1aÞ
ynþ1 ¼ yn þ a=2ksinð2kxnÞ ½mode I� ð1bÞ

where a is a control parameter. xn, yn and xn+1, yn+1 are
the coordinates of a particle at the dimensionless time
t=n and t=n+1, respectively. Eqs. (1a,b) forms a two-
dimensional system where the [mod 1] statement means
that the domain of the system is periodic between zero
and one (0b (x,y)b1). In the map, the amount of chaotic
advection increases with a [17–19]. In particular, in-
creasing a values correspond to increasing the efficiency
of stretching and folding processes. As pointed out by
Perugini et al. [12], the flow scheme of Eqs. (1a,b) is
useful for simulating advection during fluid mixing and,
in particular, during mixing of magmas because a
variety of flow behaviors in pipe-flows, shear flows,
convective flows, can be obtained by varying para-
meter a.

As an example, consider a unit square whose
space is occupied by an initial, very localized,
distribution of 5000 particles (Fig. 2, top), and
analyze the time evolution of these particles in the
phase space by setting a=1, a=5, and a=10 in Eqs.
(1a,b). According to the Liouville's theorem [22], the
number of particles in the phase space is constant
with time.
Results of the numerical experiments are reported in
Fig. 2. For a=1 (Fig. 2a), the distribution weakly
stretches and folds. The distribution is strongly
anisotropic and the particles never homogeneously
occupy the available phase space. For a=5 (Fig. 2b),
the amount of stretching and folding increases with
respect to the configurations with a=1. As the time
(iteration) increases, the points tend to occupy the
available phase space, but zones characterized by higher
concentrations may be easily recognized. For a=10
(Fig. 2c), the amount of stretching and folding is larger
with respect to that observed in the maps with a=1 and
a=5 at iterations 2 and 4. As the time increases, the
distribution occupies the whole phase space.

The statistical entropy S of the distributions reported
in Fig. 2 is calculated using the procedure adopted by
Baranger et al. [19]. The phase space is divided into a
grid M=10×10 cells and the entropy S(t) is determined
by:

SðtÞ ¼ −
XM

i

piðtÞlogpiðtÞ ð2Þ

where pi(t) is the probability that the state of the
system falls inside cell ci of the phase space at time t.
Note that S(t) may be positive or negative. Fig. 3
shows the variation of the statistical entropy with time
of the standard maps depicted in Fig. 2 and an
additional map with a=2. For the maps with a=5 and
a=10, there is a linear increase of the entropy from
the initial stage up to iterations 4 and 3, respectively
(dashed lines in Fig. 3). The slope of this linear
portion of the curves is the Kolmogorov–Sinai
entropy rate k=dS / dt, which is a measure of the
mixing properties of chaotic systems, being propor-
tional to the rate of the system to reach the
homogeneity of the phase space [17]. At iterations
larger than 7, the curve for a=10 reaches a constant,
maximum value (S(t)=20), and the phase space is
homogenously occupied. In this system, the chaotic
advection plays an important role because, after few
iterations, the spatial uniformity is achieved. It is
worthy of note that the maximum value of the entropy
of a chaotic dynamical system is a function of the
number of points within the system and of the initial
distribution. The curve with a=5 approaches asymp-
totically a constant value, which, however, is never
attained. The phase space is near to be uniform, but
the complete homogenization is not attained. For a=2,
S(t) increases non-linearly up to iteration 9, and
irregularly vary between −1.39 and −2.46 (Fig. 3).
The curve of variation of the entropy with time for
a=1 (Fig. 3) shows irregular oscillations of S(t) with



Fig. 2. Time evolution of an initial configuration of 5000 particles (top, left) using the ‘standard map’ (Eq. (1a,b)), with (a) a=1, (b) a=5, and (c) a=10.
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Fig. 3. Time evolution of S(t) in the standard map with a=1, a=2,
a=5, and a=10. Dashed line marks the linear portion of the curves.
Continuous lines are spline interpolations.

133G. Ventura et al. / Earth and Planetary Science Letters 243 (2006) 128–140
time, and a positive (or negative) linear relation
between S(t) and t cannot be defined. An asymptotic
trend is also lacking. These features indicate that, for
a=1, the mixing system is far from the uniformity
[21], and chaotic advection does not play an important
role.

Results from Fig. 3 and theoretical studies [16–21]
show that the time evolution of the statistical entropy in
chaotic, conservative mixing systems follows three
main stages: (1) in the first stage, at the beginning of
the mixing process, S(t) is dependent on the details of
the dynamical system and of the initial distribution; (2)
in the second stage, as the mixing process advances, S(t)
is a linear increasing function whose slope is k; (3); in
the third stage, S(t) tends asymptotically toward a
constant value for which the distribution is uniform.
This three-stage evolution characterizes a strong chaotic
regime, where a significant portion of the available
space or the whole space is characterized by a spatial
uniformity. In a such system, stirring and folding
processes operate efficiently and distribute homoge-
nously the dispersed phase within the continuous one. In
a regime where only a small portion of the available
phase space is characterized by chaotic mixing, the
statistical entropy varies irregularly with time. Stirring
and folding processes do not operate efficiently and the
dispersed phase remains concentrated in the some
portions of the available space.
4. Analytical methods

The procedure adopted for the estimate of the
statistical entropy and entropy rate using enclaves
from the Porri lava flows A, B, and C, may be
summarized in the following points.

1. We select outcrops of the lava flows at different
distance from the vent. These outcrops are vertical
sections that are orthogonal to the substratum on
which the flow moved and contain the flow direction.
Each outcrop measures at least 1×1 m. The number
of outcrops satisfying these criteria is 23 for the lava
flow A, 18 for the flow B, and 21 for C.

2. Where possible, we take photos of the outcrop using
a digital camera (Fig. 4a), and correct distortion
effects throughout orthorectification. Then, the
enclaves with linear sizeN 2 cm are selected and
the x and y coordinate of each enclave is recorded
within a 1×1 m reference square (Fig. 4b) using the
Scion Image 4.02 software by Scion Corporation.
Where not possible, the coordinates are taken directly
in the field using the same reference square. Errors
between the two procedures of acquisition are less
than 2.5 and 3.2 cm for the x and y coordinate,
respectively. A map of the x–y position of the
enclaves within the reference square is then con-
structed (Fig. 4b), and the number of points
(enclaves) within each square is measured. The
surface covered by the enclaves has been also
measured.

3. For the determination of S(t), we divide each 1×1 m
square in 20×20 cm cells (Fig. 4b), and count the
number of points within each cell. Since the value of
S(t) (Eq. (2)) depends on the number of points, we
normalize pi(t). The normalized probability pni(t)
within each cell is:

pniðtÞ ¼ ðnc=ntotcÞ=M ð3Þ

where nc is the number of points within a cell, ntotc is
the total number of points within the 1×1 m square,
and M=25 is the number of cells within the square
(see Fig. 5b).

4. For the determination of the entropy rate, which is the
variation of S(t) with t, we convert the distance of the
outcrops from the vent in dimensionless time using
velocity. To have a quantitative estimate of the flow
velocity V of the three lavas, we use the Jeffrey's
equation:

V ¼ qgd2sinh=3g ð4Þ



Fig. 4. Example of the procedure adopted to map the enclaves within a 1×1 m outcrop. (a) Digital photo of the outcrop (lava flow C, 450 m from the
vent). (b) Gridding of the outcrop and x–y position of the enclaves with linear size≥2 cm. nctot is the number of enclaves in the outcrop, andM is the
number of cells in the grid.
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where ρ is the density of the magma (crystals plus
melt), g is the acceleration of gravity, d is the
thickness of the lava flow, θ is the underlying
slope, and η is the viscosity of the magma. We
apply Eq. (4), which is valid only for Newtonian
fluids and not for Bingham fluids, because: (a)
some parameters required for Bingham fluids, e.g.,
the critical thickness before the flow will move,
cannot be estimated for the Porri lavas, (b) the time
of emplacement will be expressed as dimensionless
time (see below). To determine V using Eq. (5), the
viscosity and the density of the Porri lavas are
determined using a subroutine of Conflow [34]. We
select a dacitic composition, 50 vol.% of crystals, a
temperature of 950 °C, and H2O=2 wt.% [30]. The
obtained viscosity is 1.35 106 Pa s, and the density
is 2570 kg m−3. Using d=3 m and θ=10°, V is
∼25 m/h. Because of the near constant thickness of
the three selected Porri lavas and lack of abrupt
changes in the underlying slope, we assume that
the velocity of the three flows was constant during
the emplacement. The value of velocity determined
using Eq. (5) suggests that the lavas A and B
emplaced in about 40 h, whereas the flow C
emplaced in about 32 h. The dimensionless time tn
is estimated as:

tn ¼ ðl=V Þ=te ð5Þ
where l (m) is the distance from the lava flow front
of each outcrop, V=25 m/h, and te=40 h. The
calculated normalized entropy Sn(t) of each map is
then:

SnðtÞ ¼ −
X25

i

pniðtnÞlogpniðtnÞ ð6Þ

The above described normalization procedure allow
us to compare values of the entropy from different
outcrops, and of entropy rates from the three selected
lava flows.
5. Results

Results of the analysis of the enclaves occurring in
the lava flows A, B, and C are shown in Figs. 5 and 6. In
the lava flows A and B (Fig. 5a,b), the number of
enclaves within each 1×1 m square is nearly constant
with the distance from the vent. The variation range is
41–52 m−2 (arithmetic mean=48 m−2) in the flow A,
and 64–73 m−2 (arithmetic mean=69 m−2) in the flow
B. The surface area covered by the enclaves in each
outcrop is between 872 and 955 cm2 (arithmetic
mean=910 cm2) in the flow A, and between 965 and
1144 cm2 (arithmetic mean=1047 cm2) in the flow B.
The average surface area of a single enclave within each
1×1 m square is 18 cm2 in the flow A, and 15 cm2 in the
flow B. In the lava flow C (Fig. 5c), the number of
enclaves varies irregularly between 25 and 78 m−2

(arithmetic mean=46 m−2). The surface covered by the
enclaves varies also irregularly, and it is between 392



Fig. 5. Variation in the number of the enclaves/m2, surface covered by the enclaves, and average surface of a single enclave, with the distance from the vent in (a) lava flow A, (b) lava flow B, and (c)
lava flow C. Location of the lava flows is in Fig. 1a. The linear interpolations with the 95% confidence are also reported.

135
G
.
Ventura

et
al.

/
E
arth

and
P
lanetary

Science
L
etters

243
(2006)

128–140



Fig. 6. Sn(t) vs. tn in (a) lava flow A, (b) lava flow B, and (c) lava flow C. Linear interpolations with the 95% confidence and 2σ are also reported. The
distribution of enclaves with linear size≥2 cm (open circles) within selected 1×1 m outcrops (squares) is shown.
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and 1176 cm2 (arithmetic mean=837 cm2). The average
surface covered by a single enclave is between 12 and
26 cm2.

The data reported in Fig. 5 show that the values of the
geometric parameters of the enclaves from the Porri
lavas A and B do not vary appreciably with the distance
from the vent (Fig. 5a,b). On the contrary, the
parameters of the flow C vary significantly.

Fig. 6 shows the calculated relationships between
Sn(t) and tn. Sn(t) values are between 0.360 and 0.379
in the lava flow A, between 0.366 and 0.378 in lava
flow B, and between 0.348 and 0.373 in lava flow C.
These values are smaller than those reported in Fig. 3,
where S(t) is between −85 and 20. This because the
number of points (5000 points) used in the numerical
experiments (Fig. 3) is larger than that measured in the
field (maximum number 78; Fig. 6). In addition, the
entropy values reported in Fig. 6 are calculated using
Eq. (2), i.e., a non-normalized form of S(t). On the
contrary, the entropy values shown in Fig. 6 are
determined using a normalized form of entropy (Sn(t)
in Eq. (6)). The reason for the use of a normalized
form of entropy to measure the spatial variability of
enclaves has been already specified in Section 4.
Anyway, the values of Sn(t) calculated for the lava
flows A, B, and C are significant within the standard
deviation (2σ), as shown in Fig. 6.

In the lava flow A, two main trends may be
recognized (Fig. 6). For tnb0.4, Sn(t) increases follow-
ing a straight line from 0.36 to 0.377. Sn(t) / tn is 0.04.
For tnN0.5, Sn(t) maintains a nearly constant value (Sn
(t)∼0.379). In the lava flow B, Sn(t) increases linearly
with tn. Sn(t) / tn is 0.01. In the lava flow C, unambiguous
correlations between Sn(t) and tn are lacking.

6. Discussion

Results of the analysis of the enclaves of the
selected Porri lava flows indicate that, in the flows A
and B, there is not variation of the number of enclaves
with the distance from the vent (Fig. 5a,b). This
implies that significant fragmentation phenomena were
lacking during the emplacement of these flows, at
least at the scale of observation (10−2–100 m). We
conclude that the lava flow kinematics, which is that
of a laminar shear flow did not play a major role in
the fragmentation of the enclaves, and the observed
statistical features in the flows A and B reflect the
dynamics of the mingling process between the basaltic
andesite and dacite in the reservoir. The virtually
constant values of the surface covered by the enclaves,
and of the average surface of a single enclave with the
distance from the vent suggest that the fraction of the
basaltic andesite in the dacite–basaltic andesite mixture
did not change during mingling. Therefore, the basaltic
andesitic magma was uniformly distributed within the
dacitic magma chamber. These observations indicate
that the relations between Sn(t) and tn in the flows A
and B (Fig. 6) cannot be ascribed to variations in the
fragmentation of the enclaves or to the kinematics of
lava flow.

6.1. Lava flow A

The variation of Sn(t) with tn in the flow A depicts
that of chaotic, conservative, mixing dynamical system
in a strong regime, according to results from numerical
experiments (see Figs. 3 and 6). In particular, the
positive linear correlation between Sn(t) and tn at
tnb0.4, and the near constant value of Sn(t) at tnN0.5
(Fig. 6) is consistent with the two last stages of the
evolution of a fully chaotic mixing system: a second
stage in which S(t) is a linear increasing function of
time, and a third stage in which S(t) tends asymptot-
ically toward a constant value. As ancillary result, the
slope of the straight line in Fig. 6 is the Kolmogorov–
Sinai entropy constant k=dSn(t) / tn=0.04. k is an
indirect measure of the rate of the magma mingling
system to reach the homogeneity of the phase space. In
summary, we conclude that the lava flow A records
two of the three evolution stages of a conservative
mingling (mixing) system between a basaltic andesite
and a dacite in a strong chaotic regime. From a dy-
namical point of view, this conclusion implies that (1)
the dispersed phase (basaltic andesite) tends progres-
sively to be uniformly distributed within the dacitic
host, and, according to the theory on conservative
dynamical systems [17,18], the trajectories between
early formed, nearby enclaves diverge exponentially
with increasing time. These observations suggest that,
during the effusion of the lava flow A, efficient stirring
and folding processes, i.e., convection, operate within
the Porri magma chamber. However, the high viscosity
(∼106 Pa s; Table 1) and crystal content (∼50 vol.%),
of the resident, dacitic magma do not favor convection
before the replenishment of the basaltic andesitic
magma within the dacite. As a consequence, the con-
vection within the Porri magma chamber must be
related to the dynamics of magma mixing. Results
from experimental models on magma mixing [35]
indicate that injection of a denser and less viscous
basaltic magma within a reservoir where a less dense,
more viscous and evolved liquid is stored promotes
thermal convection. The convective motions drag the
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basaltic magma towards the top of the chamber, where
the two interacting magma may mingle and, eventu-
ally, erupt. This model is able to explain the occurrence
of a chaotic dynamics, possibly related to convection,
deduced from the analysis of enclaves in the lava flow
A. At Porri, we propose that the injection of basaltic
andesitic magma in a reservoir where, following Zanon
and Nikogosian [31], a resident, crystallizing dacitic
magma was stored, induces convection that, in turn,
promotes efficient stirring and chaotic advection.

6.2. Lava flow B

In the lava flow B, the recognized linear increase of
Sn(t) with tn does not reflect the multi-stage evolution of
a mingling system (Fig. 6). As mentioned before, the
constant value of the number of enclaves with the
distance from the vent, of the surface covered by the
enclaves, and of the average surface of a single enclave
indicate that the Liouville's theorem is satisfied. This
suggests that if the magma mingling process developed
in a chaotic system, then, this system was conservative.
Following this hypothesis, the linear increase of Sn(t)
with tn in the flow B could record the second stage of a
mingling process in a conservative, fully chaotic,
dynamical system, which did not evolve to a third
stage. The calculated Kolmogorov–Sinai entropy rate k
in the lava flow B is 0.01 (Fig. 6), a value lower than that
determined for the second stage of the lava flow A.
Therefore, the dispersion of the enclaves of the flow B
in the dacitic host occurred with a lower rate with
respect to that of the flow A. This hypothesis could
explain why the dispersion of the enclaves in the flow
B did not reach the homogeneity of the phase space.
As alternative hypothesis, the mingling system of the
flow B was not fully chaotic. It was at the transition
between a strong and weakly chaotic regime, in which
the complete homogenization could be never attained
[17–19]. This means that the mingling system was at
the edge of chaos. The available data (Fig. 6) do not
consent to unequivocally favor one of the two above
reported interpretations. Anyway, the observed con-
stant increase of Sn(t) in the flow B calls for a chaotic
regime.

6.3. Lava flow C

In the lava flow C, the number of enclaves with the
distance from the vent, the surface covered by enclaves,
and the average surface covered by a single enclave vary
irregularly with the distance from the vent (Fig. 5c).
Also, there is not correlation between Sn(t) and tn (Fig.
6). In contrast to the lavas A and B, the above
observations indicate that the ratio between the volumes
of the basaltic andesite and that of the dacite in the flow
C changed with time (see Fig. 5). As a result, the
Louville's theorem is not satisfied for the flow C, and if
chaotic, it was dissipative mingling system [20,21].
However, the lack of correlations between Sn(t) and tn
suggests that the physical interaction between the two
magmas in the flow C occurred in a system in which
stirring and folding processes do not operate efficiently.
This may be due to: (a) decrease or termination of the
convective entrainment within the chamber related to an
abrupt decrease or stop of injection of the basaltic
andesite within the dacitic magma chamber, and/or (b)
abrupt changes in the flow dynamics during the ascent
in the conduit related to variation in the effective cross-
section of the conduit. In any case, the data from the
flow C call for a spatial and temporal inhomogeneity of
the mingling system during the eruption.

The results discussed above have some important
implications for the dynamics of heterogeneous mag-
matic systems. Mingled magmas characterized by (a) a
homogeneous spatial distribution of enclaves or (b) an
initially inhomogeneous distribution evolving towards a
homogeneous one testify the occurrence of efficient
stirring/stretching and folding processes within the
chamber. This process may easily promote chemical
homogenization (mixing), depending on the rheological
properties of the magmas. On the contrary, mingled
magmas with an inhomogeneous distribution of
enclaves are indicative of ineffective stirring/stretching
and folding. This means that the dynamical interaction
between the two magmas, and further mixing, is not
allowed.

In the case of the Porri mingling systems studied
here, the decrease of k from A to B, and the lack of a
measurable k in C, along with the observation that A and
B were emitted before C, indicate that the efficiency of
advective movements within the Porri magma chamber
declined with decreasing time.

The new, analytical approach used here for the
analysis of the magma mingling systems of three
selected lava flows from the Porri volcano should be
extended to other lavas from different volcanoes where
there is evidence of interaction between magmas of
different composition, and to plutonic environments,
where the final stages of mingling processes are
preserved. Our results refer to a 2D (surface) analysis
of enclaves, and, when possible, a 3D (volume) analysis
should be done, possibly using X-ray computed
tomography [36]. Finally, the analytical approach used
here could be extended.
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7. Conclusions

The results of the present study may be summarized
in four main points:

(1) The process of physical interaction between
magmas of different composition may be ana-
lyzed using the approach of statistical mechanics.

(2) The time variation of the statistical entropy, which
is a measure of the spatial distribution of the
dispersed magma (enclaves), can give information
on the efficiency of stirring/stretching and folding
processes within the magma chamber, and on the
dynamics of the mingling system.

(3) In a chaotic mingling system, the entropy rate may
calculated and represents a measure of the rate to
reach the spatial uniformity of the phase space.
This value could be used to compare the rates of
different mingling systems.

(4) A fully chaotic mingling system is characterized
by a three stage evolution: an early, initial stage,
which is unknown in volcanic environment, a
second stage characterized by a linear increase of
the statistical entropy with time, and a third stage,
in which the uniformity of the system is reached,
and the entropy does not vary with increasing
time.

(5) Mingled magmas characterized by a uniform
spatial distribution of enclaves or by an initially
inhomogeneous distribution that evolves towards
a homogeneous one testify the occurrence of
efficient stirring/stretching and folding processes
that may encourage chemical homogenization.
Mingled magmas with an inhomogeneous distri-
bution of enclaves indicate that these processes
does not play a major role, and the dynamical
interaction between the two magmas does not
favor further mixing.
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