
Introduction

Since 1989, almost all underground coal mines have
been abandoned and few remain near Samcheok City,
Korea. The occurrence of ground subsidence around the
abandoned coal mines has recently become a serious
problem. However, quantitative assessment of predicted
ground subsidence areas is difficult, especially in coal
mining areas where the structures of the geology and

mining are very complex. A method that predicts the
probability of ground subsidence empirically, within
surprisingly narrow limits considering the form of the
input data, has been suggested (Goel and Page 1982)
using: (1) the intact strength of the rock, (2) the stress
field, (3) the geological structure of the rock, (4) the
depth of the mining horizon, (5) the extent of the mined
area, and (6) the volume extracted per unit area of
mining. The National Coal Board has published a basic
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Abstract This study constructs a
hazard map for ground subsidence
around abandoned underground
coal mines (AUCMs) at Samcheok
City in Korea using a probability
(frequency ratio) model, a statistical
(logistic regression) model, and a
Geographic Information System
(GIS). To evaluate the factors re-
lated to ground subsidence, an im-
age database was constructed from a
topographical map, geological map,
mining tunnel map, Global Posi-
tioning System (GPS) data, land use
map, lineaments, digital elevation
model (DEM) data, and borehole
data. An attribute database was also
constructed from field investigations
and reports on the existing ground
subsidence areas at the study site.
Nine major factors causing ground
subsidence were extracted from the
probability analysis of the existing
ground subsidence area: (1) depth of
drift; (2) DEM and slope gradient;
(3) groundwater level, permeability,
and rock mass rating (RMR); (4)

lineaments and geology; and (5) land
use. The frequency ratio and logistic
regression models were applied to
determine each factor’s rating, and
the ratings were overlain for ground
subsidence hazard mapping. The
ground subsidence hazard map was
then verified and compared with
existing subsidence areas. The veri-
fication results showed that the lo-
gistic regression model (accuracy of
95.01%) is better in prediction than
the frequency ratio model (accuracy
of 93.29%). The verification results
showed sufficient agreement between
the hazard map and the existing data
on ground subsidence area. Analysis
of ground subsidence with the fre-
quency ratio and logistic regression
models suggests that quantitative
analysis of ground subsidence near
AUCMs is possible.
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technique to determine the estimated area influenced by
ground subsidence based on the height of the cavity, the
width of the mined panel, and the angle of inclination of
the coal seam (National Coal Board 1975). The method
used to predict the subsidence area is very dependent on
the structure of the local geology and the coal-mining
method used, and the empirical methods discussed on
top were developed for conditions involving horizontal
coal seams and long wall mining, which are predominant
in Europe. However, in Korea, due to the complicated
geologic structure, there are coal seams of various
widths and irregularly inclined coal seams and strata, so
the slant-chute block caving method has been used. As a
result, a sinkhole type of subsidence is usual, and
therefore a different estimation of ground subsidence is
necessary. Table 1 shows the factors that commonly
affect sink-hole-type ground subsidence over time (Coal
Industry Promotion Board [CIPB] 1997).

The aim of this study was to assess and predict
ground subsidence for hazard mapping near an aban-
doned underground coal mine (AUCM) area using a
Geographic Information System (GIS). To choose a
study area, field investigations and reports related to
ground subsidence were carefully considered. A site
called Simpori was chosen, where 48 indications of
ground subsidence have been identified near an AUCM
at Samcheok City. The study site is between longitudes
129�00́ and 129�03́ and latitudes 37�11́ and 37�12́. The
coal resource of South Korea consists almost entirely of
anthracite, 85% of which was deposited during the up-
per Paleozoic era and the lower Mesozoic era in the
Jangseong Formation of the Pyeongan Supergroup
(Geological Society of Korea 1999). The study site is
around the Hanyang Gallery on the Jangseong and
Keumcheon Formation. The Oship Fault, Youngdong
railroad, and no. 38 local road pass along the study area
(CIPB 1999). The location map of this study site with
ground subsidence areas is given in Fig. 1.

Spatial database and methodology

Many studies have identified important factors that
contribute to ground subsidence around coal mines,
including (CIPB 1997; Waltham 1989): depth and height
of the mined cavities, excavation method, degree of
inclination of the excavation, scope of mining, structure
of the geology, flow of groundwater, and the mechanical
characteristics of the rock mass rating (RMR). There-
fore, the factors related to the occurrence of ground
subsidence were collected in a vector-type spatial data-
base. These included a 1:50,000 scale geological map,
1:5,000 scale topographic maps, 1:5,000 scale land use
maps, 1:1,200 scale mined-tunnel maps, and borehole
data. The data layers are shown in Table 2.

The geology data were extracted from a 1:50,000 scale
geological map and the distances from lineaments were
calculated using the lineament data. Contour and survey
base points with elevation values read from the topo-
graphic map were extracted, and a digital elevation
model (DEM) was constructed. Using the DEM, the
slope gradients were calculated. There are seven classes of
land use, which were extracted from the land use map of
the National Geographic Institute. Most of the literature
maintains that the major factor in ground subsidence is
the scope of the mined cavities. Therefore, constructing a
database of the depths and widths of mined cavities was
very important. To achieve this object, (1) GPS mea-
surements were used to determine the exact positions of
mine heads; (2) these were used to vectorize a hard copy
of the mined tunnel map; and (3) the vectorized mined
tunnel map was converted to an ASCII grid file, and
subtracted with the DEM raster data. There were 37
boreholes at the study site, but some boreholes did not
have values, so an inverse distance weighting (IDW)
interpolation method was used to contour the values for
RMR, groundwater levels, and permeability factors, and
these were reclassified using GIS.

This study was conducted using GIS, a frequency
ratio, and logistic regression with factors that may cause
ground subsidence. A flow chart describing the process
of this study is shown in Fig. 2. An image database and
an attribute database for ground subsidence were con-
structed. A key assumption using this approach is that
the potential ground subsidence (occurrence possibility)
will be similar to the actual frequency of ground subsi-
dence. After the study site was selected, areas of ground
subsidence were detected at the study site by field sur-
veys. A map of existing ground subsidence was devel-
oped, and this was used to evaluate the frequency and
distribution of ground subsidence at the study site.

Frequency ratio and logistic regression models were
used to represent the distinction quantitatively. For this
analysis, the calculated and extracted factors were
mapped to a 1-m resolution grid. The raster data were

Table 1 Factors affect sink-hole type ground subsidence according
to time

Occurrence of
ground subsidence

Progress Ground
collapse

During time after
abandoned mine

• Mechanical character
of rock mass

• Flow of ground water • Mining
depth

• Flow of ground water • Structure of geology • Height
of cavity

• Structure of geology
(joint, fault, dyke)

• Rate of cubical expansion

• Caving method • Rate of mining
• Rate of caving
• Back filling
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Fig. 1 Study area near
Samcheok city, Korea

1185



converted for the statistical program used. Then, using
the frequency ratio and logistic regression models, the
spatial relationships between the ground subsidence area
and each ground subsidence-related factor, such as

topography, depth of the mined tunnel, borehole data,
geology, and land use, were analyzed with the statistical
program, and a formula for the possibility of ground
subsidence was extracted using the relationships. The
formula was used to calculate the subsidence hazard
index (SHI), which was mapped to each grid cell. Fi-
nally, the hazard map was verified using known ground
subsidence areas. Success rates were calculated for
quantitative verification. In this study, the GIS software
ArcView 3.3 and ARC/INFO version 9.0 and the sta-
tistical software SPSS 12.0 were used as the basic anal-
ysis tools for spatial management and data manipulation.

Frequency ratio approaches are based on the ob-
served relationships between distribution of ground
subsidence areas and each subsidence-related factor, to
reveal the correlation between subsidence locations and
the factors. Using the frequency ratio model, the spatial
relationships between subsidence occurrence location
and each factor’s contributing ground subsidence
occurrence were derived. The frequency ratios of each
factor’s type or range were calculated from their rela-
tionship with ground subsidence events. In the relation
analysis, the ratio is that of the area where ground
subsidence occurred to the total area, so that a value of 1
is an average value. If the value is greater than 1, it
means a higher correlation, and a value lower than 1
means a lower correlation.

Logistic regression allows formation of a multivariate
regression relation between a dependent variable and
several independent variables. Logistic regression, which

Table 2 Constructed GIS database including factors conneted with
ground subsidence of study area

Category Factors Remark

Geology Geology Type of strata
Distance from
lineaments

Bufferig of lineament

Topography DEM TIN process to get
elevation data

Slope Analyze slope by degree
Land use Land use Classification of landuse types
Mining
tunnel map

Depth of drift DEM minus sea level of drift
Height of drift Disregard this factor.

Almost 0.8 –1 m
along study area

Boreholea RMR IDW interpolated from
22 bore holes

Ground water
level

IDW interpolated from
12 bore holes

Permeability IDW interpolated from
15 bore holes

aThirty-seven boreholes from investigation in Coal Industry Pro-
motion Board (1999), some boreholes do not have value of relating
factors
Abbreviations: GIS Geographic Information System; DEM digital
elevation model; RMR rock mass rating; IDW inverse distance
weighting; TIN triangulated irregular network

Fig. 2 Flow chart of study
methodology
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Table 3 Frequency ratio and coefficient value of each factor

Factor Class No. of pixels
in domaina

Percentage of
domain

No. of ground
subsidenceb

Percentage of
ground subsidence

Ratioc Logistic
regression
coefficients

Slope
(Unit: degree)

0–9 39,415 10.31 62 2.12 0.21 )0.034
10–13 48,432 12.67 1,113 38.08 3.01
14–16 40,298 10.54 328 11.22 1.06
17–19 37,738 9.87 330 11.29 1.14
20–22 40,135 10.50 394 13.48 1.28
23–25 39,177 10.25 200 6.84 0.67
26–28 39,788 10.41 123 4.21 0.40
29–32 39,975 10.46 280 9.58 0.92
33–37 33,314 8.72 29 0.99 0.11
38–65 23,962 6.27 64 2.19 0.35

Distance from Drift
(Unit: m)

0–2 48,303 12.64 808 27.64 2.19 )0.095
3–7 44,382 11.61 965 33.01 2.84
8–14 37,867 9.91 845 28.91 2.92
15–25 38,488 10.07 190 6.50 0.65
26–39 36,894 9.65 50 1.71 0.18
40–54 36,401 9.52 51 1.74 0.18
55–73 36,494 9.55 14 0.48 0.05
74–100 35,338 9.25 0 0.00 0.00
101–154 34,283 8.97 0 0.00 0.00
155–318 33,784 8.84 0 0.00 0.00

Depth of drift
(Unit: m)

0 334,059 87.40 2,048 70.07 0.80 0.001
3–57 9,925 2.60 831 28.43 10.95
58–122 4,925 1.29 0 0.00 0.00
123–139 5,200 1.36 10 0.34 0.25
140–152 5,075 1.33 0 0.00 0.00
153–159 4,750 1.24 8 0.27 0.22
160–169 4,775 1.25 23 0.79 0.63
170–182 4,900 1.28 3 0.10 0.08
183–196 4,500 1.18 0 0.00 0.00
197–237 4,125 1.08 0 0.00 0.00

Depth to ground water level
(Unit: m)

15–27 39,009 10.21 1,527 52.24 5.12 )0.079
28–32 40,303 10.54 878 30.04 2.85
33–37 42,184 11.04 518 17.72 1.61
38–47 39,508 10.34 0 0.00 0.00
48–56 37,364 9.78 0 0.00 0.00
57–69 39,005 10.20 0 0.00 0.00
70–79 38,340 10.03 0 0.00 0.00
80–87 36,498 9.55 0 0.00 0.00
88–98 35,777 9.36 0 0.00 0.00
99–160 34,246 8.96 0 0.00 0.00

Geology Hongjeom series 67,026 17.54 0 0.00 0.00 )12.583
Sadong series 315,208 82.46 2,923 100.00 1.21 0

Landuse Field 64,212 16.80 1,063 36.37 2.16 17.296
River 2,395 0.63 28 0.96 1.53 16.147
Road 24,795 6.49 42 1.44 0.22 15.544
Hybrid land 12,841 3.36 51 1.74 0.52 14.897
Right-of-way 38,709 10.13 114 3.90 0.39 15.865
Wood land 236,795 61.95 1,625 55.59 0.90 0
Plot 2,487 0.65 0 0.00 0.00 14.777

Dem
(Unit: m)

371–415 39,372 10.30 441 15.09 1.46 )0.036
416–441 38,381 10.04 2,029 69.41 6.91
442–455 39,297 10.28 206 7.05 0.69
456–474 40,029 10.47 172 5.88 0.56
475–490 39,317 10.29 75 2.57 0.25
491–510 37,941 9.93 0 0.00 0.00
511–528 37,817 9.89 0 0.00 0.00
529–552 37,047 9.69 0 0.00 0.00
553–584 36,690 9.60 0 0.00 0.00
585–653 36,343 9.51 0 0.00 0.00
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is one of the multivariate analysis models, is useful for
predicting the presence or absence of a characteristic or
outcome based on values of a set of predictor variables.
The advantage of logistic regression is that through the
addition of an appropriate link function to the usual
linear regression model, the variables may be either
continuous or discrete, or any combination of both types
and they do not necessarily have normal distributions.
In the case of multi-regression analysis, the factors must
be numerical, and in the case of a similar statistical
model, discriminant analysis, the variables must have a
normal distribution. In the present situation, the
dependent variable is a binary variable representing
presence or absence of ground subsidence. Where the
dependent variable is binary, the logistic link function is
applicable (Atkinson and Massari 1998). For this study,
the dependent variable must be input as either 0 or 1, so
the model applies well to ground subsidence possibility
analysis. Logistic regression coefficients can be used to
estimate ratios for each of the independent variables in
the model.

Quantitatively, the relationship between the occur-
rence and its dependency on several variables can be
expressed as:

P ¼ 1=ð1þ e�zÞ ð1Þ

where P is the probability of an event occurring. In the
present situation, the value P is the estimated probability

of subsidence occurrence. The probability varies from 0
to 1 on an S-shaped curve and z is the linear combina-
tion. It follows that logistic regression involves fitting an
equation of the following form to the data:

Z ¼ B0 þ B1X1 þ B2X2 þ . . .þ BN XN ð2Þ

where b0 is the intercept of the model, the bi (i = 0, 1, 2,
..., n) are the slope coefficients of the logistic regression
model, and the xi (i = 0, 1, 2, ..., n) are the independent
variables. The linear model formed is then a logistic
regression of the presence or absence of ground subsi-
dence (present conditions) on the independent variables
(pre-failure conditions).

Application of the frequency ratio and logistic
regression models

To calculate the frequency ratio, the area ratio of
ground subsidence occurrence to non-occurrence was
calculated for the class or type of each factor, and an
area ratio for the class or type of each factor to the total
area was calculated. The frequency ratios for the class or
type of each factor were calculated by dividing the
ground subsidence occurrence ratio by the area ratio.
The frequency ratios are shown in Table 3. The fre-
quency ratios for the type or class of each factor were
summed to calculate the SHI, as shown in Eq. 3.

Table 3 (Contd.)

Factor Class No. of pixels
in domaina

Percentage of
domain

No. of ground
subsidenceb

Percentage of
ground subsidence

Ratioc Logistic
regression
coefficients

Permeability 400–430 39,997 10.46 1,548 52.96 5.06 )1.338
431–435 61,965 16.21 440 15.05 0.93
436 70,549 18.46 51 1.74 0.09
437–438 55,968 14.64 92 3.15 0.21
439 33,137 8.67 49 1.68 0.19
440–442 28,968 7.58 104 3.56 0.47
443–447 26,547 6.95 52 1.78 0.26
448–452 25,129 6.57 103 3.52 0.54
453–461 20,841 5.45 308 10.54 1.93
461–449 19,133 5.01 176 6.02 1.20

RMR 300–338 38,256 10.01 0 0.00 0.00 0.368
339–354 39,577 10.35 0 0.00 0.00
355–368 39,497 10.33 16 0.55 0.05
369–389 39,407 10.31 19 0.65 0.06
390–401 41,822 10.94 61 2.09 0.19
402–411 38,276 10.01 204 6.98 0.70
412–420 39,164 10.25 470 16.08 1.57
421–433 37,498 9.81 241 8.24 0.84
434–446 34,797 9.10 1,635 55.94 6.14
447–479 33,940 8.88 277 9.48 1.07

aNumber of total cells in study area: 382,234
bNumber of ground subsidence cells: 2,923
cPercentage ground subsidence/percentage domain
RMR rock mass rating
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SHI ¼
X

Fr ðwhere Fr ¼ frequency ratio of each

factor0s type or classÞ ð3Þ

A high SHI value indicates a high hazard of ground
subsidence; a lower value indicates a lower risk of ground
subsidence. The SHI is shown in Fig. 3 for visual inter-
pretation. The index is classified into four classes based
on equal areas for easy visual interpretation. The mini-
mum value is 1.27 and the maximum value is 52.21, the
mean value is 8.996 and the standard deviation is 6.773.

Using the logistic regression model, the spatial rela-
tionship between ground subsidence occurrence and
factors influencing ground subsidence was assessed. The
spatial databases for each factor were converted to
ASCII format files for use in the statistical package, and
the correlations between ground subsidence and each
factor were calculated (Table 3). Logistic regression
formulae were also created as shown in Eq. 4. Finally,

the probability of subsidence occurrence was calculated
using the spatial database, data from Table 2, and Eqs. 1
and 4:

z ¼ ð�0:034� SLOPEÞ þ ð�0:095�DISTDRIFTÞ
þ ð�0:079�WATERLEVELÞ þ ð�0:036�DEMÞ
þ ð�1:338� PERMEABILITYÞ þ ð0:368�RMRÞ
þ ð0:001�DEPTH DRIFTÞ
þGEOLOGYb þ LAND USEb þ 3:952 ð4Þ

where SLOPE is the slope; DISTDRIFT is the distance
from the drift; WATERLEVEL is the depth to the
groundwater level; DEM is the elevation; DEPTH-
DRIFT is depth of drift; PERMEABILITY is perme-
ability value; RMR is the RMR value; GEOLOGYb is
the lithology type; and LANDUSEb are the logistic
regression coefficient values listed in Table 2 and z is a
prediction parameter.

Fig. 3 Ground subsidence
hazard map using frequency
ratio model
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The possibility of subsidence was calculated using
Eqs. 1 and 4 and a subsidence hazard map was con-
structed. The distribution of calculated possibilities is
shown in Fig. 4. The possibilities were classified into
four classes based on equal areas for easy visual inter-
pretation. The minimum value is 0.00 and the maximum
value is 0.64744, the mean value is 0.008961 and the
standard deviation is 0.03482.

Verification of ground subsidence maps

The subsidence hazard analysis results were verified
using known ground subsidence locations. Verification
was performed by comparing the known ground sub-
sidence location data with the subsidence hazard map.
Each factor used and its frequency ratio was compared.
Rate curves were created and the areas under the
curves were calculated for two cases. The rate explains
how well the model and the factor predict the subsi-

dence. Thus, the area under the curve can quantita-
tively estimate the prediction accuracy. To obtain the
relative rank for each prediction pattern, the calculated
index values for all cells in the study area were sorted in
descending order. The ordered cell values were then
divided into 100 classes at accumulated 1% intervals.
The rate verification results appear as a line in Fig. 5.
For example, in the case of the frequency model used,
the 90–100% (10%) class of the study area where the
subsidence hazard index had a high rank could explain
73% of all subsidence. The 80–100% (20%) class of the
study area where the subsidence hazard index had a
high rank could explain 85% of subsidence. In the case
of the logistic regression model used, the 90–100%
(10%) class of the study area where the subsidence
hazard index had a high rank could explain 79% of
all subsidence. The 80–100% (20%) class of the study
area where the subsidence hazard index had a high
rank could explain 96% of subsidence. To compare the
results quantitatively, the areas under the curves were

Fig. 4 Ground subsidence haz-
ard map using logistic regres-
sion model plotted against
percentage of probability
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recalculated as a total area of 1, which means perfect
prediction accuracy.

Therefore, the area under a curve can be used to as-
sess the prediction accuracy quantitatively. In the case of
the logistic regression model used, the area ratio was
0.9501, so it can be said that the prediction accuracy is
95.01%. In the case of the frequency ratio model used,
the area ratio was 0.9329, so it can be said that the
prediction accuracy is 93.29%. Overall, the logistic
regression model used showed a higher accuracy than
the frequency ratio model used.

Results and discussion

Ground subsidence is among the most hazardous of
artificial disasters. Government and research institutions

worldwide have attempted for years to assess subsidence
hazards and risks, and to show their spatial distribution.
In this study, a statistical approach to identifying haz-
ardous areas of subsidence using GIS shows consider-
able promise.

Ground subsidence maps were constructed using
frequency ratio and logistic regression models. These
showed very high prediction accuracy: 93.29 and
95.01% with the frequency ratio model and logistic
regression model, respectively. Thus, the logistic
regression model showed a better result than the fre-
quency ratio model.

The subsidence areas of this study are around rail-
road, road, and other facilities above shallow mine
workings. Therefore, the low elevation and depth of the
mined tunnel are important factors, as well as the
groundwater level. The data on groundwater levels were
obtained during field surveys, without considering the
amount of rainfall at the time. However, precipitation
history is a meaningful value and should be considered
in calculating the safety of a base rock. In further
studies, exact maps of mined tunnels, and many bore-
hole and geophysical data will be required to design an
underground model of this study area to analyze ground
subsidence more quantitatively.

The frequency ratio model is simple and the process
of input, calculation, and output is easily understood.
Moreover, because the frequency ratio value can be used
as a rating, there is no need to convert the database to
another format. A large amount of data can be pro-
cessed in a GIS environment quickly and easily. The
logistic regression model requires data to be converted
to ASCII format for use in the statistical package and
later reconverted to incorporate it into the GIS data-
base. Moreover, large amounts of data cannot be pro-
cessed by the statistical package quickly and easily.
However, the degree of ground subsidence hazard can be
analyzed quantitatively.
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