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Landslide susceptibility mapping in the
Damrei Romel area, Cambodia using
frequency ratio and logistic regression models

Abstract This study applied, tested
and compared a probability model,
a frequency ratio and statistical
model, a logistic regression to
Damre Romel area, Cambodia,
using a geographic information sys-
tem. For landslide susceptibility
mapping, landslide locations were
identified in the study area from
interpretation of aerial photographs
and field surveys, and a spatial
database was constructed from
topographic maps, geology and land
cover. The factors that influence
landslide occurrence, such as slope,
aspect, curvature and distance from
drainage were calculated from the
topographic database. Lithology
and distance from lineament were
extracted and calculated from the
geology database. Land cover was
classified from Landsat TM satellite

imagery. The relationship between
the factors and the landslides was
calculated using frequency ratio and
logistic regression models. The rela-
tionships, frequency ratio and logis-
tic regression coefficient were
overlaid to make landslide suscepti-
bility map. Then the landslide sus-
ceptibility map was compared with
known landslide locations and tes-
ted. As the result, the frequency ra-
tio model (86.97%) and the logistic
regression (86.37%) had high and
similar prediction accuracy. The
landslide susceptibility map can be
used to reduce hazards associated
with landslides and to land cover
planning.

Keywords Landslide - Frequency
ratio - Logistic regression -
GIS - Cambodia

Introduction

Cambodia is a part of the Indochina craton, which has
been stable since Late Triassic time. Geological hazards
such as earthquakes or volcanic eruptions are rare. But,
landslides have been observed in mountainous areas and
occur mainly in areas of steep slopes and only in the
rainy season. Because mountainous areas are not highly
low populated or in most cases, un-inhabitanted, there
are few effects of landslides on the property. However,
landslide can cause problems to road networks in the
highlands and mountain valleys. It is therefore necessary
to assess and manage areas that are susceptible to
landslides in order to mitigate any damage associated

with them. Among the many causes, landslides triggered
by heavy rainfall are the most common throughout
Cambodia. The resultant need to predict landslide
occurrences has led to the development of numerous
stochastic and process-based models, with increasing
emphasis on the use of a GIS. In this study, this is
carried out by applying the frequency ratio and logistic
regression models, with testing of the results in the
Damre Romel area, Cambodia using GIS.

Using GIS as the basic analysis tool for landslide
hazard, mapping can be effective for spatial data man-
agement and manipulation for the analysis. In this re-
gard, there have been many studies of landslide hazard
mapping using GIS. For example, Guzzetti et al. (1999)
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summarized many landslide hazard evaluation studies.
Many studies have applied probabilistic models (Jibson
et al. 2000; Luzi et al. 2000; Parise and Jibson 2000;
Rautelal and Lakhera 2000; Baeza and Corominas 2001;
Lee and Min 2001; Clerici et al. 2002; Donati and Tur-
rini 2002; Lee et al. 2002a, b; Zhou et al. 2002; Lee and
Choi 2003, Lee et al. 2004b, 2004c, Lee and Choi 2004).
One of the statistical models available, the logistic
regression models, has also been applied to landslide
hazard mapping (Atkinson and Massari 1998; Dai et al.
2001, Dai and Lee 2002; Ohlmacher and Davis 2003; Lee
2004¢), as has the geotechnical model and the safety
factor model (Gokceoglu et al. 2000; Romeo 2000;
Carro et al. 2003; Shou and Wang 2003; Zhou et al.
2003). As a new approach to landslide hazard evaluation
using GIS, data mining using fuzzy logic and artificial
neural network models have also been applied (Ercan-
oglu and Gokceoglu 2002; Pistocchi et al. 2002; Lee
et al. 2003a, b, 2004a). The difference in this study is the
application and comparison of GIS-based methods to
landslide susceptibility mapping in Cambodia.

The study area (Fig. 1) is at high altitude and repre-
sents an outcrop of continental sandstone. The latter
contains siltstone, shale, breccia and other lithological
horizons of variable thickness, which easily weather and
erode. The area was originally forested by large trees,
but these have been removed by the local population,
and only bushes remain. One formation is composed of
deeply weathered, Jurassic—Cretaceous dacite and tuff in
which the Peang Lovea Landslide has occurred. The
upper vegetated layer of dacite is weathered and broken
into blocks that unstably overlie the tuff. The landslide
happened after a heavy storm, when groundwater
destabilized the weathered tuff layer and caused the tuff
and overlying unconsolidated dacite to slide downslope.
The study area has large recent alluvium which is flat
and has no landslide. The area occupies 47% of the
study area. So, the area was eliminated for more prec-
isious landslide susceptibility analysis (Fig. 1).

Theory: frequency ratio and logistic regression

The relationship between the landslide occurrence area
and the landslide-related factors could be deduced from
the relationship between areas where landslides had not
occurred and the landslide-related factors. To represent
this distinction quantitatively, one of the probability
models, the frequency ratio, were used. The frequency
ratio is the ratio of the probability of an occurrence to
the probability of a non-occurrence for given attributes
(Bonham-Carter 1994). In the case of a landslide, if we
set the landslide occurrence event to be represented by a
factor, “B*, and this factor’s attributes are denoted by
“D”, then the frequency ratio of D is the conditional
probability ratio. If this ratio is greater than 1, then the

relationship between a landslide and the factor’s range
or type is strong. If the ratio is less than 1, then the
relationship between a landslide and the factor’s range
or type is weak.

The spatial relationship between a landslide occur-
rence location and each landslide-related factor was
derived using the frequency ratio model. Therefore, the
rating of each factor’s type or range was assigned as the
relationship between a landslide and the value of each
factor’s type or range, i.e., the ratio of the number of
cells where landslides had not occurred to the number of
cells where landslides had occurred. The landslide sus-
ceptibility index (LSI) was calculated by summation of
each factor’s ratio value using Eq. (1).

LSI = Z Fr(Fr: Rating of each factor’s type or range)
(1)

Logistic regression, which is a multivariate analysis
model, is useful for predicting the presence or absence of
a characteristic or outcome based on values of a set of
predictor variables. The advantage of logistic regression
is that, through the addition of an appropriate link
function to the usual linear regression model, the vari-
ables may be either continuous or discrete, or any
combination of both types, and they do not necessarily
have normal distributions. In the present situation, the
dependent variable is a binary variable representing
the presence or absence of landslides. Quantitatively, the
relationship between the occurrence and its dependency
on several variables can be expressed as:

p=1/(1+e7) (2)

where p is the probability of an event occurring. In the
present situation, the value p is the estimated probability
of landslide occurrence. The probability varies from 0 to
1 on an S-shaped curve and z is the linear combination.
It follows that logistic regression involves fitting an
equation of the following form to the data:

z=>by+bix1 +byxs + ...+ b,x, (3)

where b, is the intercept of the model, the b; (i=0, 1, 2,
..., n) is the slope coefficients of the logistic regression
model, and x; (i=0, 1, 2, ..., n) Are the independent
variables. The linear model formed is then a logistic
regression of presence or absence of landslides (present
conditions) on the independent variables (pre-failure
conditions).

Data and methodology

Landslides may occur as a consequence of a number of
determining and triggering factors. In order to assess
susceptibility from landslide it is therefore necessary to
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Fig. 1 Study area and landslide
location with hillshade map
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identify and analyze the factors leading to a landslide.
Data preparation involved the digitization or creation of
GIS database, which include the topographical, geo-
morphological, geological and land cover data. A digi-
tized map of landslide location, which detected from
satellite imagery and field surveys was produced, and
these digital data were input into the GIS. A vector-to-
raster conversion was undertaken to provide raster data
of landslide areas. Factor maps related to landslide
occurrence were constructed in a vector-type spatial
database. These included topographic and geological
maps. A land cover map was classified from Landsat
TM satellite imagery with 30 m resolution. The resultant
GIS database included slope, aspect, curvature, distance
to drainage, lithology, distance to lineament and land
cover data. The study area was divided into a grid with
30x30 m cells, occupying 3,653 rows and 3,653 columns:
totaling 6,560,383 grid-cells (only study area) and
landslides fell into 89 of these.

Contour (20-m interval) and survey base points that
had an elevation value read from the topographic map
were extracted, and a digital elevation model (DEM)
was constructed. Using the DEM, the slope gradient,
slope aspect and curvature were calculated. The slope
gradient of a surface refers to the maximum rate of
change in elevation across a region of the surface and the
slope aspect of a surface is the compass direction max-
imum rate of change in z in the downward direction. The
curvature is a morphological measure of the topogra-
phy. A positive curvature indicates that the surface is
upwardly convex at that cell, and a negative curvature
indicates that the surface is upwardly concave at that
cell. A value of zero indicates that the surface is flat. The
distance from drainage was calculated in 1 m intervals.
The type of geology of an area plays an important factor
in the development of landslide. So, the lithology from
the geological map was used and the distance from lin-
eament was calculated in 1 m intervals. Land cover data
was classified from a LANDSAT TM image using
unsupervised classification method and field survey. The
seven classes such as urban, water, forest, agricultural
area, grass, shrubland and barren area were extracted
for land cover mapping.

Using the detected landslide locations and the con-
structed spatial database, landslide analysis models were
applied and tested. To represent the distinction quanti-
tatively, frequency ratio and logistic regression models
were used. For this analysis, the calculated and extracted
factors were mapped to a 30 m resolution grid. The
raster data were converted for the statistical program
used. Then, using a frequency ratio and logistic regres-
sion model, the spatial relationships between the land-
slide location and each landslide-related factor, such as
topography, geology and land cover, were analyzed.
Then, in the frequency ratio model, the relationship was
used as each factor’s rating. Using the rating, the factors

have been overlaid and landslide susceptibility index was
calculated. In the logistic regression model, a formula of
landslide occurrence possibility was extracted using the
relationships. This formula was used to calculate the
landslide susceptibility index. The indexes were mapped
to represent landslide susceptibility. Finally, the sus-
ceptibility maps were tested using known landslide
locations and success rates were calculated for quanti-
tative testing. In this study, GIS software, ArcView 3.3
and ARC/INFO 9.0 NT version and statistical software,
SPSS 12.0, were used as the basic analysis tools for
spatial management and data manipulation.

Relationship between landslides and factors

The relationship between areas where a landslide has
occurred and landslide-related factors can be distin-
guished from the relationship between areas without
past landslides and landslide-related factors. To repre-
sent this distinction quantitatively, the frequency ratio
was used. The factors chosen, such as the slope, aspect,
curvature, distance from drainage, lithology, distance
from lineament and land cover were evaluated using the
frequency ratio method to determine the level of corre-
lation between the location of the landslides in the study
area and these factors. The approaches are based on the
observed relationships between each factor and the dis-
tribution of landslides.

Table 1 shows the relationship between landslide
occurrence and each factor. Topographic factors, such
as slope, aspect, curvature and distance from drainage
were used. In the case of the relationship between
landslide occurrence and slope, as the slope increases,
the landslide frequency generally increases. For example,
below a slope of 10°, the ratio was < 1, which indicates a
low probability of landslide occurrence. For slopes
above 11°, the ratio was >1, which indicates a high
probability of landslide occurrence. This means that the
landslide probability increases according to slope angle.
As the slope angle increases, then the shear stress in the
soil or other unconsolidated material generally increases.
Gentle slopes are expected to have a low frequency of
landslides because of the generally lower shear stresses
associated with low gradients. Steep natural slopes
resulting from outcropping bedrock, however, may not
be susceptible to shallow landslides. In the case of the
relationship between landslide occurrence and aspect,
landslides were most abundant on west-facing and
northeast-facing slopes. The frequency of landslides was
highest on west-facing and northeast-facing slopes, ex-
cept in flat areas and lowest on east-facing and south-
east-facing slopes. In the case of the relationship
between landslide occurrence and curvature, the concave
area has the higher probability of a landslide occurrence
than convex area. Flat areas had a low curvature value
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Table 1 Frequency ratio and logistic regression coefficient

Factor Range or type No. of Percent of No. of Percent of Ratio® Logistic
pixels in domain landslide  landslide regression
domain coefficients

Topographic slope 0 343,847 5241 8 8.99 0.17 0.0330

(degree) 1 693,982  10.58 5 5.62 0.53
2-3 392,790 5.99 0 0.00 0.00
4-6 359,004 5.47 9 10.11 1.85
7-9 310,386  4.73 8 8.99 1.90
10-12 288,298  4.39 11 12.36 2.81
13-16 341,098 5.20 13 14.61 2.81
17-20 289,975  4.42 7 7.87 1.78
21-25 257,371 3.92 19 21.35 5.44
25< 189,062  2.88 9 10.11 3.51
Topographic Flat 2,739,287  41.75 4 4.49 0.11 —1.5888
aspect N 358,915 5.47 6 6.74 1.23 —-0.1311
NE 660,304 10.07 20 22.47 2.23 0.5998
E 640,678 9.77 12 13.48 1.38 0.0009
SE 564,204  8.60 8 8.99 1.05 —-0.1305
S 417,839  6.37 11 12.36 1.94 0.3293
SW 460,592  7.02 9 10.11 1.44 —-0.0279
\W% 363,967 5.55 12 13.48 2.43 0.2974
NwW 354,597 5.41 7 7.87 1.46 0
Topographic curvature  Concave (—) 1,509,847  23.01 39 43.82 1.90 0.2365
Flat (0) 3,538,785  53.94 18 20.22 0.37 0.1474
Convex (+) 1,511,751  23.04 32 35.96 1.56 0
Distance from 0-120 697,633 10.63 1 1.12 0.11 0.0002
drainage (river) (m) 123-241 653,039 9.95 2 2.25 0.23
247-381 657,598  10.02 10 11.24 1.12
384-524 652,275 9.94 4 4.49 0.45
530-690 654,737  9.98 9 10.11 1.01
692-882 658,428  10.04 11 12.36 1.23
885-1,116 650,262 991 11 12.36 1.25
1,120-1,431 645,745 9.84 11 12.36 1.26
1,432-1,910 645,524  9.84 10 11.24 1.14
1,911-5,512 645,142  9.83 20 22.47 2.29
Distance from 0-216 660,025  10.06 14 15.73 1.56 —-0.0001
lineament (m) 218-450 656,577 10.01 14 15.73 1.57
453-700 656,029  10.00 11 12.36 1.24
702-989 656,722 10.01 12 13.48 1.35
990-1,320 657,891  10.03 10 11.24 1.12
1,321-1,741 655,189  9.99 13 14.61 1.46
1,742-2,312 655,517  9.99 3 3.37 0.34
2,313-3,156 654,214  9.97 8 8.99 0.90
3,1574.,857 654,223 9.97 1 1.12 0.11
4,858-42,738 653,996  9.97 3 3.37 0.34
Geology (rock type) Andesite 2,075 0.03 0 0.00 0.00 -0.2675
Black shale, sandstone and Jaspers 51,954 0.79 2 2.25 2.84 10.8132
Claystone 263,108  4.01 8 8.99 2.24 11.3244
Conglomerate 37,558 0.57 2 2.25 3.93 11.5496
Diorite and gabbros 9,190 0.14 0 0.00 0.00 3.0323
Eluvial sand 310,545  4.73 1 1.12 0.24 9.5934
Fine grained granite 83,389 1.27 1 1.12 0.88 9.9905
Granite 57,495 0.88 0 0.00 0.00 0.2236
High alumina granite 785 0.01 0 0.00 0.00 0.6726
Hornfelse 5,975 0.09 0 0.00 0.00 0.9703
Jaspers 695 0.01 0 0.00 0.00 0.6641
Lateritic pisolith and crust 7,737 0.12 0 0.00 0.00 1.2249
Limestone 22,789 0.35 3 3.37 9.70 12.4811
Metaconglomerate 1,300 0.02 0 0.00 0.00 —-1.1451
Old alluvium 3,733,958  56.92 13 14.61 0.26 9.662
Quartzite 381,075 5.81 28 31.46 5.42 11.5771
Rhyolite 256,009  3.90 5 5.62 1.44 10.6383
Sandstone and microbreccias 70,194 1.07 1 1.12 1.05 9.8804
Sandstone, shale and marl 116,964 1.78 2 2.25 1.26 9.9791
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Table 1 (Contd.)

Factor Range or type No. of Percent of No. of Percent of Ratio® Logistic
pixels in domain landslide landslide regression
domain coefficients

Sandstone 1,089,722 16.61 21 23.60 1.42 10.3545
Shale 53,169 0.81 2 2.25 2.77 11.1684
Shale and sandstone 1,768 0.03 0 0.00 0.00 —-0.5815
Tuff and volcanic breccias 219 0.00 0 0.00 0.00 0.9929
Undiscriminated plutonic rock 2,710 0.04 0 0.00 0.00 0
Land use Urban 1,062 0.02 0 0.00 0.00 —-10.6018
Agriculture 1,320,770 20.13 4 4.49 0.22 —-3.0640
Grasslands 393,791 6.00 0 0.00 0.00 —11.7395
Shrublands 1,089,383 16.61 15 16.85 1.01 —-2.7208
Forest 3,739,591 57.00 69 77.53 1.36 -3.0570
Water 4,730 0.07 0 0.00 0.00 —-11.7062
Soils and rocks 11,056 0.17 1 1.12 6.67 0

4 % landslide/% domain

of 0.29. The reason for this is that following heavy
rainfall, a concave slope contains more water and retains
this water for a longer period.

Analysis was carried out to assess the influence of
drainage on landslide occurrence. For this purpose, the
distance to a drainage was identified by buffering. In the
case of the relationship between landslide occurrence and
distance from drainage, as the distance from a drainage
increases, the landslide frequency generally increases. At
a distance of >about 500 m, the ratio was > 1, indicat-
ing a high probability of landslide occurrence, and at
distances <about 500 m, the ratio was <1, indicating a
low probability. This can be attributed to the fact that
terrain modification caused by gully erosion and under-
cutting may influence the initiation of landslides.

In the case of the relationship between landslide
occurrence and lithology, the frequency ratio was higher
in shale, sandstone, claystone, conglomerate, limestone,
rhyolite and quartzite, at >2.00. In the case of the
relationship between landslide occurrence and time
stratigraphic unit, the frequency ratio was higher in
Ante-Permian, Cambrian-Silurian, Cambrian-Upper
Silurian Devonian-Carboniferous Jurassic-Cretaceous,
Lower-Middle Triassic, Permian, and Triassic Upper
Jurassic-Cretaceous, at >2.00.

In the case of the relationship between landslide
occurrence and distance from a lineament, the closer the
distance was to a lineament, then the greater was the
landslide-occurrence probability. For distances to a lin-
eament of about <2,500 m, the ratio was > 1, indicating
a high probability of landslide occurrence, and for dis-
tances to a lineament of about >2,500 m, the ratio was
<1, indicating a low probability landslide occurrence.
This means that the landslide probability decreases with
increasing distance from a lineament. As the distance
from a lineament decreases, the fracture of the rock
increases, and in addition, the degree of weathering
increases.

In the case of the relationship between landslide
occurrence and land cover, landslide occurrence values
were higher in forest and shrublands areas, and lower in
urban, agriculture and grasslands areas. The reason for
this is that landslides occurred mainly in mountainous
areas simply correlate to slope.

Application of the frequency ratio and logistic
regression models

For calculation of the frequency ratio, the area ratio for
landslide occurrence and non-occurrence was calculated
for the class or type of each factor, and an area ratio for
the class or type of each factor to total area was calcu-
lated. So, frequency ratios for the class or type of each
factor were calculated by dividing the landslide occur-
rence ratio by the area ratio. The frequency ratios are
shown in Table 1. The frequency ratios of each factor’s
type or class were summed to calculate the landslide
susceptibility index (LSI), as shown in Eq. (4)

LSI = SLOPE, + ASPECT, + CURVATURE,
+ DRAINAGE, + GEOLOLOGY,
+ LINEAMENT, + LANDCOVER, (4)

(where SLOPE, is frequency ratio of slope; ASPECT,, is
frequency ration of aspect; CURVATURE, is frequency
ratio of curvature; DRAINAGE, is frequency ratio of
distance from drainge; GEOLOLOGY, is frequency
ratio of geology; LINEAMENT, is frequency ratio of
distance from lineament; LANDCOVER; is frequency
ratio of landcover. The frequency ratio values are listed
in Table 1; z is a parameter).

If the LSI value is high, it means a higher suscepti-
bility to landslide; a lower value means a lower suscep-
tibility to landslides. The LSI value index is shown in
Fig. 2 for interpretation. The index was classified into



853

Fig. 2 Landslide susceptibility
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equal areas and grouped into five classes for visual and
easy interpretation. The minimum value is 0.56 and
maximum value is 61.50, the mean value is 8.69 and the
standard deviation value is 9.58.

A key concept for understanding the tests used in
logistic regression is that of log likelihood. Usually,
however, the overall significance is tested using the chi-
squared test, which is derived from the likelihood of
observing the actual data under the assumption that the
model that has been fitted is accurate. It is convenient to
use —2 times the log (base e) of this likelihood (—2LL).
The log likelihood value (-2LL) here is 1996.337. Sev-
eral criteria can be used to guide entry: these include the
greatest reduction in the —2LL values.

A statistical program was used to calculate the cor-
relation of a landslide event to each factor. Firstly, all
factors were constructed in the database and then lo-
gistic regression coefficients of the factors were calcu-
lated (such as those in Table 1). The coefficients of the
logistic regression model were estimated using the
maximum-likelihood method. In other words, coeffi-
cients that make the observed results most likely are
selected. Since the relationship between the independent
variables and the probability is nonlinear in the logistic
regression model, an iterative algorithm is necessary for
parameter estimation (Dai and Lee 2002). In Table 1,
there are positive associations, such as slope and nega-
tive associations, and distance from lineament. After
interpretation, Eqgs. (2) and (3), which predict the land-
slide-occurrence possibility, were created.

z = (0.0330 x SLOPE) + (0.0002 x DRAINAGE)

+ (—0.0001 x LINEAMENT,) + ASPECT,

+ CURVATURE,; + GEOLOLOGY}

+ LANDCOVER};, — 18.8654 (5)
(where SLOPE is slope value; CURVATURE is curva-
ture value; DRAINAGE is distance from drainge value;
LINEAMENT is distance from lineament value; AS-
PECT,, CURVATURE,, GEOL;, LANDCOVERj, are
logistic regression coefficient values listed in Table 1; z is
a parameter).

Finally, the probability that predicts the possibility of
landslide occurrence, for the study area, was calculated
using the spatial database, data from Table 1 and Egs.
(2) and (5). The distribution of calculated possibility is
shown in Fig. 3. The values were classified by equal
areas and grouped into five classes for visual interpre-
tation. The minimum value is 0.00 and maximum value
is 0.01112. The mean value is 0.00000543 and the stan-
dard deviation value is 0.00002506.

Testing of the landslide susceptibility maps

The landslide susceptibility analysis result was tested using
known landslide locations. Testing was performed by
comparing the known landslide location data with the
landslide susceptibility map. The comparison results are
shown in Fig. 4 as a line graph. The success rates in Fig. 4
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Fig. 3 Landslide susceptibility
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illustrate, explains how well the model and factor predict
the landslide. To obtain the relative ranks for each pre-
diction pattern, the calculated index values of all cells in
the study area were sorted in descending order. Then the
ordered cell values were divided into 100 classes, with
accumulated 1% intervals. The above procedure was also
adapted for the landslide occurred cells by comparing the
100 classes obtained with the distribution on the study
area. Then, the graph was made by connecting the two
classified value. For example, in the case of frequency
ratio model, 90-100% (10%) class of the study area where
the landslide susceptibility index had a higher rank could
explain 49% of all the landslides. In addition, the 80—
100% (20%) class of the study area where the landslide
susceptibility index had a higher rank could explain 78%
of the landslides. In the case of logistic regression model,
90-100% (10%) class of the study area where the landslide
susceptibility index had a higher rank could explain 51%
of all the landslides. In addition, the 80-100% (20%) class
of the study area where the landslide susceptibility index
had a higher rank could explain 78% of the landslides.

To compare the results quantitatively, the areas un-
der the curve were re-calculated as the total area is one
which means perfect prediction accuracy. So, the area
under a curve can be used to assess the prediction
accuracy qualitatively. The area under the curve is
shown in Fig. 4. In the case of frequency ratio model
used, the area ratio was 0.8697 and we could say the
prediction accuracy is 86.97%. In the case of logistic
regression model used, the area ratio was 0.8637 and we
could say the prediction accuracy is 86.37%.

Discussion and conclusions

In this study, a probabilistic and statistical approach for
estimating the susceptible areas of study area of
Cambodia using a GIS was applied and tested. As the
result, the frequency ratio model (86.97%) and logistic
regression model (86.37%) showed high accuracy.
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Moverover, frequency ratio model and the logistic
regression model showed a similar accuracy.

Although up until now, no study has been made on the
landslide disasters of Cambodia, such research is indi-
cated and must pay attention to three prioritized areas.
The first area is the highlands of southwestern Cambodia,
where landslides have very often damaged the road sys-
tems linking Phnom Penh to the Krong Preah Sihanouk

port town and to Koh Kong Province. The second
prioritized area is Pailin City, lying in an intermontane
plain. This urban region is rapidly developing and the
surrounding highland area will be populated in the near
future. The third area indicated for landslide study is that
surrounding the Angkor monument. Some of the ancient
temples were built on the tops of unstable hills that may
easily collapse through landsliding.
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