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ABSTRACT

The full-waveform inversion algorithm using normalised 
seismic wavefields can avoid potential inversion errors due to 
source estimation required in conventional full-waveform inversion 
methods. In this paper, we have modified the inversion scheme to 
install a weighted smoothness constraint for better resolution, and 
to implement a staged approach using normalised wavefields in 
order of increasing frequency instead of inverting all frequency 
components simultaneously. The newly developed scheme is 
verified by using a simple two-dimensional fault model. One 
of the most significant improvements is based on introducing 
weights in model parameters, which can be derived from integrated 
sensitivities. The model-parameter weighting matrix is effective 
in selectively relaxing the smoothness constraint and in reducing 
artefacts in the reconstructed image. Simultaneous multiple-
frequency inversion can almost be replicated by multiple single-
frequency inversions. In particular, consecutively ordered single-
frequency inversion, in which lower frequencies are used first, is 
useful for computation efficiency.

INTRODUCTION

In crosshole seismic applications, typical approaches involve ray 
tomography (e.g., Peterson et al., 1985; Nolet, 1985; Humphreys and 
Clayton, 1988; Scales et al., 1988; Vasco, 1991) and more recently 
Fresnel volume tomography (e.g., Cerveny and Soares, 1992; Vasco 
et al., 1995). Traveltime tomographies using ray tracing require 
high-frequency approximation, with maximum resolution on the 
order of a wavelength (Sheng and Schuster, 2000). Because of the 
lack of resolution, however, the usefulness of ray tomography may 
be limited, if the objective is to better understand the petrophysical 
and hydrological properties of soils and rocks. Such understanding 
is important in characterising petroleum and geothermal reservoirs 
and in environmental applications of various scales.

An alternative to traveltime tomography is full-waveform 
inversion. Recent studies (e.g., Sen and Stoffa, 1991; Kormendi 
and Dietrich, 1991; Minkoff and Symes, 1997; Zhou et al., 1997; 
Plessix and Bork, 1998; Pratt, 1999; Pratt and Shipp, 1999) suggest 
that full-waveform inversion can provide improved resolution 
of velocity structures. Full-waveform analyses can be useful for 

investigating hydrological and petrophysical properties of the 
medium because waveforms are sensitive to material properties 
through which the wave propagates. There is, however, one 
major difficulty to overcome in full-waveform inversion. In field 
applications, the effective source waveform, the coupling between 
the source and the medium, and the coupling between the receivers 
and the medium, are not very well understood. The problem can 
be alleviated to some extent with a good velocity approximation 
(Pratt, 1999), but in general measured signals cannot be properly 
calibrated, rendering full-waveform inversion technically difficult 
to apply.

It is highly desirable to develop an inversion algorithm that is 
independent of knowledge of the source wavelet because of the 
uncertainties in determining the shape of the source waveform. 
Frazer et al. (1997) and Frazer and Sun (1998) suggested a new 
objective function for inversion of sonic waveforms with unknown 
source and receiver functions. Pratt (1999) and Pratt and Shipp 
(1999) showed a practical waveform inversion scheme in the 
frequency domain, reconstructing both the source signature and 
properties of the interwell medium. Recently, normalised wavefield 
data in the frequency domain were shown to be effective for source-
independent full-waveform inversion (Zhou and Greenhalgh, 2003; 
Lee and Kim, 2003); Zhou and Greenhalgh (2003) used normalised 
Fourier amplitude data, while Lee and Kim (2003) employed 
normalised real- and imaginary-component data.

In the normalised wavefield approaches, seismic data are first 
transformed into the frequency domain and a set of normalised 
wavefields is constructed. Since the normalised wavefield is 
independent of the source spectrum, their methods allow full-
waveform inversion without requiring the knowledge of source 
signature. In this paper, we further exploit the approach developed 
by Lee and Kim (2003), to install a weighted smoothness 
constraint into the inversion scheme for better resolution, and 
adopt a staged inversion approach, from low to high frequencies, 
instead of inverting all frequency information simultaneously. We 
test the staged multiple single-frequency inversion to reduce total 
inversion time.

NORMALISED WAVEFIELD

The source-independent full-waveform inversion algorithm 
using normalised wavefields was described in detail in Lee and 
Kim (2003). For completeness, their algorithm is briefly outlined 
here.

Let us consider a simple two-dimensional (2D) acoustic wave 
equation in the frequency domain,

(1)
 

where p is the impulse response of the scalar pressure wavefield, 
ω is the angular frequency, v is the velocity, and (x, xs) are the 
field and source positions in 2D. The source is an impulse source 
expressed as a 2D spatial delta function δ(x-xs) located at xs. The 
source is also a delta function δ(t) at t = 0 in the time domain.
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Let us assume a crosshole survey involving NS sources and NG 
receivers. Field data, in general, may be described as

Dji(t) = Rj(t) * Pji(t) * Si(t), 

 j = 1, 2, … , NG, i = 1, 2, …, NS , 

(2)

where * denotes convolution in time, Dji(t) is the pressure, Pji(t) 
is the impulse response, Rj(t) and Si(t) are the receiver and source 
functions, respectively. The pressure Dji(t) is measured at the j-th 
receiver position due to a source Si(t) at the i-th source position. The 
source function includes the source-medium coupling, therefore 
being an effective source. The receiver function Rj(t) includes the 
medium-receiver coupling as well, but is ignored in the following 
analysis.

If we take the Fourier Transform of equation (2), for which

FT{(D, P, S)(t)} → (d, p, s)(ω) ,
we have

                              dji(ω) = pji(ω)si(ω), (3)

where ω is the angular frequency equal to 2π times the temporal 
frequency f. Next, to define the normalised wavefield, we first 
select a reference receiver, say with j = 1. The normalised 
wavefield tji is defined in such a way that tji = dji / d1i, j = 2, 3, … , 
NG , and so has the property of generating data at the j-th receiver 
position when it is multiplied by data from the reference point. 
Using equation (3), we obtain

             
(4)

Since the source spectrum cancels out itself, the normalised 
wavefield is the same as the normalised impulse response of the 
medium. In the normalised wavefield approach, the functional 
to be minimised is the misfit in the normalised wavefield, not in 
the pressure wavefield, and therefore the source function is not 
involved in the inversion process (Lee and Kim, 2003).

INVERSION SCHEME

The seismic inverse problem can be expressed as

                                    ∆d = J∆m , (5)

where ∆d is the vector of differences between measured and 
modelled data (normalised wavefields), ∆m is the vector of 
corrections to the initial model m0, and J is the Jacobian matrix 
(the matrix of partial derivatives of modelled responses with 
respect to model parameters). A common approach for model 
parameterisation is to divide a model into many blocks of 
unknown velocities.

As in most geophysical inverse problems, a roughness (the 
reciprocal of smoothness) term should be introduced to stabilise 
the inversion process of equation (5) (Tikhonov and Arsenin, 
1977). For the smoothest inversion, our objective function to be 
minimised is

  
   (6)

where ||•|| denotes the Euclidean norm, Wd and Wm are data and 
model weighting matrices, respectively, λ is a Lagrange multiplier, 
ε is a positive constant, and L is a finite-difference operator to 

quantify model roughness (e.g., Sasaki, 1989; deGroot-Hedlin and 
Constable, 1990).

In equation (6), the regularisation parameter λ controls the 
trade-off between data misfit and model roughness (Tikhonov and 
Arsenin, 1977; Parker, 1994). Larger values of λ result in smooth 
and stable solutions, at the expense of resolution. In contrast, 
as λ gets smaller, the inverse problem becomes closer to an ill-
conditioned least-squares problem, resulting in an erratic model 
(e.g., Parker, 1980). An additional way to constrain the inverse 
solution is to introduce weights. The data-weighting matrix Wd 
usually contains information on the importance of one data point 
with respect to the others. In this way, for example, the data of 
better quality will have a larger weight than the data of poor 
quality. In the same way that we introduced the weights for data, 
we can also introduce weights for model parameters to selectively 
relax the smoothness constraint.

Minimisation of equation (6) produces a system of linear 
equations in the form of a normal equation

              
 (7)

or in the form of an observation equation

               
 

 
(8)

where I denotes the identity matrix. The solution obtained from 
equation (8) is known to be more accurate than the solution 
obtained via equation (7) (e.g., Lines and Treitel, 1984). The vector 
∆m is added to the initial vector m0 to update the parameters. The 
procedure is repeated until the misfit between measured and 
modelled data is reduced to an acceptable level. The rms misfit 
Ed is given by
 

                                     
(9)

where N is the number of data. To quantify inversion results we 
also introduce a model error defined by

                                    
(10)

where ∆mx indicates the difference between the inverted model 
and the true model, and M is the number of model parameters.

The Gauss-Newton method involves the generation of partial 
derivatives of forward solutions with respect to model parameters. 
For each frequency and source the sensitivity function J is a 
[2×(NG-1)]×M rectangular matrix. For example, for the i-th source 
at a fixed frequency, the entry in the Jacobian matrix corresponding 
to the j-th receiver and the q-th model parameter is

                       

(11)

Here, the sensitivity is a function of the partial derivatives of 
impulse responses which are independent of the source spectrum 
(see Appendix). Therefore, the full-waveform inversion of seismic 
data does not require the knowledge of the actual source waveform, 
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and this feature is the essence of the inversion algorithm using 
normalised wavefields (Lee and Kim, 2003).

NUMERICAL EXAMPLE

1. Model

The model used for clarifying the algorithm to be described in 
this paper is the same as the one in Lee and Kim (2003), a broken 
dipping fault in a background of 3000 m/s constant velocity as 
shown in Figure 1(a). The fault consists of a 6 m thick low velocity 
(2500 m/s) layer overlain by another 6 m thick high velocity 
(3500 m/s) layer. A grid set consisting of 200 by 260 elements of 
uniform cell size, 3 m by 3 m, has been used to compute pressure 
wavefields using a finite-element modelling scheme.

A crosshole configuration is used for the exercise, with 
the source borehole at x = - 45 m and the receiver borehole at 
x = 45 m. A total of 21 line sources are used with an equal vertical 
separation of 9 m, and the same number and separation are used for 
the receivers. For each source, the pressure wavefields computed at 
the 21 receiver positions have been normalised by the first pressure 
wavefield, resulting in 20 normalised wavefields.

In contrast to the time-domain inversion that theoretically 
requires all frequencies at once, a limited number of frequencies 
is sufficient for a reasonably stable and accurate inversion in the 
frequency domain (Pratt, 1999); too few frequency components 
will result in an unstable inversion or possibly a local minimum, 
while too many frequencies will simply increase redundancy and 
waste computer resources and time. We reduce the number of 
frequencies from ten in Lee and Kim (2003) to six: 10, 20, 40, 60, 
80, and 100 Hz. Prior to inversion, 5% Gaussian noise was added 
to the synthetic data.

2. Weighted Regularised Inversion

In regularised inversion, we employ the Occam approach, first 
proposed by Constable et al. (1987) (see also deGroot-Hedlin 

and Constable, 1990; Parker, 1994), to determine an optimum 
Lagrange multiplier λ during the course of an inversion. The 
unique feature of the Occam approach is that the parameter λ is 
used in each iteration both as a step length control and a smoothing 
parameter. That is, the observation equation (8) is solved for a 
series of trial values of λ, and for each λ the misfit defined by 
equation (9) is evaluated by solving the forward problem, equation 
(1). The Occam process thus chooses a model with the minimum 
misfit as the basis for the next iteration. The minimisation can be 
carried out by a simple 1D line search.

The domain to be reconstructed is 120 m by 180 m (40 by 60 
elements), containing a total of 2400 velocity parameters. The size 
of the matrix from equation (8) is modest for the test model, so 
we solve it using QR decomposition with successive Householder 
transformations. The data-weighting matrix Wd is usually a 
diagonal matrix, whose elements are equal to the reciprocals of 
data standard deviations. If we have no such information, Wd may 
be set to a diagonal matrix with its elements equal the inverse of 
the measurement (Torres-Verdin et al., 2000). In the first inversion 
exercise, we do not use model weights, i.e., Wm = I.

The first example starts with an initial guess of 2850 m/s 
uniform velocity. For this initial model, the inversion converges 
to reduce the misfit Ed from 0.297 to 0.049 after four iterations; 
synthetic data are successfully reproduced to a degree that is 
justified by the noise added. As shown in Figure 1(b), the faults 
are imaged correctly, but the images are smeared both vertically 
and horizontally, which is mainly due to the constraint of model 
smoothness imposed for stabilising the inversion. This result 
is comparable to that in Lee and Kim (2003, Figure 2(c)), who 
obtained their result with ten frequencies, clearly showing that 
there was redundancy of data. Note that not only the data misfit 
but also the Lagrange multiplier decreases as iteration continues, 
as shown in Figure 2.

In all inversion exercises except the first one, the model-
weighting matrix Wm is derived from the sensitivities of data with 
respect to model parameters. An integrated sensitivity Gj for a 
model parameter mj can be defined as (de Lugao et al., 1997)

Fig. 1. Comparison of full-waveform inversion results for a fault model. Starting model used for the inversion is a 2850 m/s uniform velocity. a) A 2D 
velocity model. b) Inversion result without model weights. c) Inversion result with model weights.
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 (12)

Using the integrated sensitivity, an element of Wm may be set to
 

     
 
                    

(13)

where c is a constant and set to an average value of Gj. Note 
that equation (13) has the same form as the Huber’s M-estimator 
(Huber, 1964; Kim et al., 1996). Since the robust non-l2 measure 
is applied to the model roughness, Wm plays a role of selectively 
making the smoothness constraint loose.

If we set λi = λWm,i
2 (i = 1, 2, …, M) and ε = 0 in equation (7) or 

(8), then it is formally equivalent to the spatially varying Lagrange 
multiplier developed by Yi et al. (2001), although they derived it 
on the basis of the Backus-Gilbert spread function. One of the 
most useful advantages of using a constant Lagrange multiplier is 
that it can be automatically determined in the inversion from the 
minimum misfit criterion described above. The effect of model 
weights is shown in Figure 1(c), which is also obtained after four 
iterations to reduce its error to 0.050, almost the same level as in 
Figure 1(b).

Although the fault images are smeared both vertically and 
horizontally, mainly due to the smoothness constraint for stabilising 
the inversion, the smearing appears to be slightly less in Figure 
1(c) than in Figure 1(b). The inversion with model weights appears 
to be of better quality than the inversion without them, displaying 
fewer artefacts especially below the faults. In fact, the final model 
error Em of 101.0 in Figure 1(c) is slightly less than that of 107.0 in 
Figure 1(b), while both data errors are nearly the same. Note that 
the model error of the initial guess is 207.7.

3. Single-Frequency Inversion

The overall quality of the inversion may be improved by adopting 
a staged approach, inverting at single frequencies sequentially 
from low frequencies to high frequencies (e.g., Song et al., 
1995; Pratt, 1999), instead of inverting all frequency components 
simultaneously. A consecutively ordered single-frequency inversion 
is particularly useful from the viewpoint of computation efficiency 
if the total number of iterations required for convergence is 
similar to that in the multi-frequency simultaneous inversion. The 
single-frequency inversion is analogous to obtaining the response 
of a single-frequency oscillator in the time domain. Yokota and 
Matsushima (2004) showed that a multi-frequency inversion can 
be carried out by multiple single-frequency inversions.

In single-frequency inversion, the selection of an optimal 
frequency is crucial for inversion efficiency and stability. Yokota 
and Matsushima (2004) suggested that the frequency must be 
determined so as to avoid cycle skipping. Figure 3 shows the set 
of frequencies used in this paper for multiple single-frequency 
inversion. The maximum wavenumber, kmax(f), which is closely 
related to the minimum resolvable size of the geological structure, 
is given by

                                     
(14)

where L is the ray-path length and V is the background velocity 
(Williamson, 1991). Lower frequency data should be used first for 
stable inversion.

Figure 4 shows a velocity image reconstructed from the 
multiple single-frequency inversion for the fault model shown 
in Figure 1(a). We use the same starting model with 2850 m/s 
uniform velocity as in Figure 1. The inversion is terminated 
after six iterations as shown in Figure 5; after starting from the 
lowest frequency of 10 Hz, the frequency is increased for the 
next iteration. The convergence rate and process are, respectively, 
slower and more complicated than those in multiple-frequency 
inversion (Figure 2). The final misfit is 0.059, which is slightly 
higher than 0.049 (Figure 1(b)) or 0.050 (Figure 1(c)), suggesting 
that more inversion iterations are required to obtain a fully 
converged image. The quality of the inverted model is also slightly 
insufficient; the model error in Figure 4 is 109.6, slightly higher 
than 107.0 in Figure 1(b) and 101.0 in Figure 1(c).

Fig. 2. Comparison of numbers of frequencies in convergence in rms 
misfits and the associated Lagrange multipliers, as a function of 
iteration, during the full-waveform inversion with a 2850 m/s uniform 
velocity starting model.

Fig. 3. A scheme for frequency selection, depending on the maximum 
wavenumber determined by the resolution of inversion.
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If two inversion iterations are made for each single-frequency 
step, for example, we can obtain a fully converged model (not 
shown) whose final misfit and model error are 0.051 and 106.5, 
respectively. However, such a double-loop algorithm (Yokota and 
Matsushima, 2004) takes twice the computation time compared 
with the single-loop algorithm used in Figure 4, although it is 
still faster than the multiple-frequency inversion method. Further 
research is required to determine criteria for how many iterations 
are optimum at each frequency, and which frequency is selected 
for the next iteration, in the single-frequency inversion, although 
these would be highly model-dependent.

CONCLUSIONS

A rigorous full-waveform inversion of seismic data has been 
a challenging subject partly because of the lack of precise 
knowledge of the source. To avoid potential inversion errors due to 
source estimation required in conventional full-waveform inversion 
methods, Lee and Kim (2003) developed a full-waveform inversion 
scheme using normalised wavefields. In this paper, we have 
modified their scheme to install a weighted smoothness constraint 
for better resolution and to adopt a staged approach, inverting 
normalised wavefields in order of frequency. The validity of the 
modified scheme is successfully demonstrated using a simple 2D 
synthetic model, which is the same one as used in Lee and Kim 
(2003). The inversion with model weights appears to have fewer 
artefacts than the inversion without them. The model weight for 
selectively relaxing the smoothness constraint is determined on the 
basis of integrated sensitivities. The multi-frequency simultaneous 
inversion can almost be replicated by multiple single-frequency 
inversions. In particular, the consecutively ordered single-frequency 
inversion is useful for computation efficiency. Selection of optimum 
frequency and extension to 3D problems with applications to real 
data requires further investigation.
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APPENDIX: SENSITIVITY ANALYSIS

A 2D acoustic wave equation with a source term s is given by
 

                              
(A1)

If we assume v = vb + ∆v, where subscript b indicates the 
background, the generalised Green’s function is given by

                              
(A2)

Let m = 1/v2 (= ρ/λ, where ρ is the density and λ is the wave 
length), we have

                              (A3)

                              (A4)

Taking  and letting ∆m = m–mb gives

                             (A5)

The partial derivative of i-th data due to k-th source with respect 
to a parameter mj at j-th element is

               
(A6)

Since g → p when ∆mj → 0, equation (A6) can be rewritten as
 

                  
(A7)

or from reciprocity

                       
(A8)

Consequently, we have

 
                

(A9)
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