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Abstract Data interpretation is a common task in geo-
scientific disciplines. Interpretation difficulties occur es-
pecially if the data that have to be interpreted are of
arbitrary dimension. This paper describes the applica-
tion of a statistical method, called self-organizing map-
ping (SOM), to interpret multidimensional, non-linear,
and highly noised geophysical data for purposes of ge-
ological prediction. The underlying theory is explained,
and the method is applied to a six-dimensional seismic
data set. Results of SOM classifications can be repre-
sented as two-dimensional images, called feature maps.
Feature maps illustrate the complexity and demonstrate
interrelations between single features or clusters of the
complete feature space. SOM images can be visually
described and easily interpreted. The advantage is that
the SOM method considers interdependencies between
all geophysical features at each instance. An applica-
tion example of an automated geological interpretation
based on the geophysical data is shown.
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1. Introduction and objectives

The interpretation of multidimensional geophysical
data generated during geological exploration and used
for predictive modelling (e.g., underground mining
and oil/gas exploration) is a challenging task in ap-
plied geophysics. For instance, the prediction of small-
scale geotechnical hazardous structures is difficult with
surface-based methods during deep underground tun-
nel excavations. For that purpose, a series of seis-
mic measurements has been conducted in the granitic
gneisses of the Penninic gneiss zone along the 2600-m-
long and up to 1400-m-deep Faido access tunnel, an adit
to the 57-km-long Gotthard base tunnel in Switzerland
[1]. The goal of this study is to detect and later inter-
pret seismic features (e.g., seismic velocities), which are
significantly related to geological features (e.g., fracture
length). An automated seismic interpretation system
will be used for geological prediction within planned
and still unexcavated tunnel segments to mitigate the
risk during the underground excavation process.

Geophysical data have been acquired from scanlines
within tomograms and from seismograms that were ob-
tained from selected wall sections in the Faido tunnel.
Two-dimensional tomograms image the interior of the
elastic rock mass properties surrounding the tunnel,
whereas seismograms represent the amplitude records
of the acoustic waves that are generated during the
in situ measurements. Geological features result from
observations and descriptions along the tunnel sections.

Generally, the disadvantage of seismic data, mea-
sured under in situ conditions, is that the seismic fea-
tures vary randomly within the rock mass, in contrast
to laboratory experiments [2] and theoretical mod-
elling [3–6] where parameters can be kept unchanged.
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Additionally, they are complex, highly noised, and non-
linearly related to the geology. In selected field studies
[7, 8], geophysical data are interpreted by conventional
methods such as profiling or correlations. In such cases,
geophysical and geological features are compared and
evaluated pairwise (feature by feature). Thus, interpre-
tations become difficult, which may lead to ambiguous
interpretation results.

This study is built on an approach that employs
neural information processing to characterize the geol-
ogy of the granitic gneisses from all jointly used seismic
rock mass features. The principle method is termed
self-organizing maps (SOM) and was first introduced
by [9, 10]. Interpretations are based on six-dimensional
seismic feature vectors that consist of the compression-
wave and shear-wave velocities (vP, vS), the dynamic
Poisson’s ratio (ν), the shear-wave anisotropy (ξ), and,
additionally, the shape measure (S) and shape intensity
(I) of the polarization ellipsoids of the leading shear
waves [1].

The paper is organized as follows. Section 2 intro-
duces the theory of the SOM and explains different
ways of interpreting SOM images by single features and
feature clusters. Section 3 outlines and discusses the
results of the SOM classification and describes an appli-
cation example outlined in an unknown region close to
the Faido tunnel (Switzerland). Finally, Section 4 gives
a short conclusion.

2. Methods

2.1. Theoretical background

Self-organizing maps, introduced by Kohonen [9, 10],
are simple analogues to the brain’s way to organize

information in a logical manner. The main purpose of
this neural information processing is the transforma-
tion of a feature vector of arbitrary dimension drawn
from the given feature space into simplified generally
two-dimensional discrete maps. A SOM network per-
forms the transformation adaptively in a topological
ordered fashion. This type of neural network utilizes an
unsupervised learning method, known as competitive
learning, and is useful for analysing data with unknown
relationships. A SOM neural network is structured
in two layers: an input layer and a Kohonen layer
(Figure 1A). The Kohonen layer represents a structure
with a single two-dimensional map consisting of neu-
rons arranged in rows and columns. Each neuron of this
discrete lattice is fixed and is fully connected with all
source neurons in the input layer.

If a single neuron in the Kohonen layer is excited by
some stimulus, neurons in the surrounding area are also
excited. That means for the given task of interpreting
multidimensional geophysical data, each seismic fea-
ture vector Ex, which is presented to the six neurons
of the input layer, typically causes a localized region
of active neurons against the quiet background in the
Kohonen layer. The degree of lateral interaction be-
tween a stimulated neuron j (Ex) and neighbouring
neurons is usually described by a Gaussian function
(Figure 1B):

hk, j (Ex) = exp

(
−

d2
k, j (Ex)

2σ 2

)
. (1)

d is the lateral neuron distance in the Kohonen layer,
σ is the effective width that changes during the learn-
ing process, and h is the activity of the neighbouring

A)

layer of
source nodes

n-dimensional

2-dimensional

Kohonen layer
(discrete map)

1
2

n

weight

re
du

ct
io

n
of

di
m

en
si

on
al

ity

1
2

m
1

2

m B)

0.2

0.4

0.6

0.8

1.0
hj,i

2σ
0.61

h j,i 2σ( j,i
2

d (= exp

0 j,id

Figure 1 (A) Illustration of an SOM neural network. The SOM
projects the information of an n-dimensional feature space into
a two-dimensional lattice of neurons, whereby the dimensions
are reduced. n (seismic) features of a feature vector, also called
input vector, {vP, vS, ν, ξ, S, I}, are represented to n source nodes.
After training and classification, the feature vectors can be seen

in the Kohonen lattice as active neurons. The Kohonen layer
typically consists of a localized region of active neurons against
the quiet background. The size of the black spheres in picture
(B) shows the neuron activities. The degree of lateral interaction
between stimulated neuron and neighboring neurons is usually
described by a Gaussian function.
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neurons. Feature vectors occur in the Kohonen layer
in the same topological order as they are presented by
the metric (similarity) relations in the original feature
space, while performing a dimensionality reduction of
the original feature space.

Before the self-organizing procedure begins, the link
values, called weights,

Ewk = {w(k,vP), w(k,vS), w(k,ν), w(k,ξ), w(k,S ), w(k,I )}
T (2)

are initialized as random values. Ewk connects the n input
layer neurons to the l neurons in the Kohonen layer. n is
the dimension of the input space (seismic feature space:
{vP, vS, ν, ξ, S, I}), and l is the number of all Kohonen
neurons with k = 1, 2, . . . , m, . . . , l.

Learning occurs during the self-organizing procedure
as feature vectors

Ex = {vP, vS, ν, ξ, S, I}T , (3)

also called input vectors, are presented to the input
layer of the network. The neurons of the Kohonen
layer compete to see which neuron will be stimulated
by the feature vector Ex. The weights Ewk are used to
determine only one stimulated neuron in the Kohonen
layer after the winner-takes-all principle. This principle
can be summarized as follows: for each Ex, the Koho-
nen neurons compute their respective values of a dis-
criminant function (i.e., Euclidean distance ‖Exi − Ewk‖).
These values are used to define the winner neuron.
That means the network determines the index j of that
neuron, whose weight Ewk is the closest to vector Exi by

j (Exi )=arg min
k

‖Exi − Ewk‖ | k=1, 2, . . . , m, . . . , l. (4)

The particular neuron is declared winner of the com-
petition. Afterwards, the learning procedure modifies
the weights Ew j of the winner neuron and the winners
neighbourhood.

Ewk(t + 1) = Ewk(t) + η(t) hk, j (Ex)(t) (Exi (t) − Ewk(t)) , (5)

where η(t) is the learning-rate parameter during the
calculation step t , and hk, j (Ex)(t) is the neighbourhood
function centred around the winning neuron j (Exi ). The
neighbourhood function or Gaussian function deter-
mines how much the neighbouring neurons become
modified (Equation 1 and Figure 1B). Neurons within
the winners neighbourhood participate in the learning

process. During the self-organizing process, the neigh-
bourhood size σ decreases until its size is zero. In
this case, only the winning neuron is modified each
time an input vector is presented to the network. The
learning rate η – the amount each weight can be modi-
fied – decreases during the learning as well. Once the
SOM algorithm has converged, two-dimensional fea-
ture maps of Kohonen neurons display the following
important statistical characteristics of the represented
feature space [10].

Property 1. Approximation: A feature map represented
by a set of weights in the Kohonen layer provides a good
approximation to the input space.

Property 2. Topological ordering: The two-dimensional
feature map is topologically ordered in the sense that
similar Kohonen layer neurons correspond to similar
feature vectors of the higher dimensional input space.

Property 3. Density matching: The feature map reflects
variations in the statistics of the distribution of the
original feature space: regions in the input space from
which sample vectors are drawn with a high probability
of occurrence are mapped onto larger domains in the
Kohonen layer, and therefore with better resolution
than regions in the input space where sample vectors
are drawn with a low probability of occurrence.

An SOM neural network is trained when, on each
location along the seismic profiles, a feature vector Exi =

{vP, vS, ν, ξ, S, I} | i = 1, 2, 3, . . . , 729 is drawn and pre-
sented to the SOM network. The memory of the trained
network is finally based on 729 six-dimensional seismic
feature vectors. The structure and network parameters
can be described as follows:

represented feature space: R6
{vP, vS, ν, ξ, S, I}T

number of input neurons n: 6
number of feature/input vectors: 729 in situ data
number of Kohonen neurons m: 100 (10 by 10 lattice)
number of weights l: 600
number of iterations tF : 5000
initial learning rate η(t = 0): 0.5
final learning rate η(tF ): 0.01
initial neighbourhood size
σ(t = 0):

5

final neighbourhood size σ(tF ): 1 decreasing every
1000 iterations
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2.2. Mapping of single features

After the learning procedure is finished, the stored in-
formation of the six-dimensional seismic feature space
can be visualized as the two-dimensional feature maps
of the Kohonen layer. Again, each Exi that is presented
to the trained network stimulates a specific neuron in
the Kohonen layer. The network determines the index
j of that neuron, whose weight Ewk is closest to vector
Exi by

j (Exi ) = arg min
k

‖Exi − Ewk‖ | k = 1, 2, . . . , 100. (6)

Neuron j represents Exi as best as possible and be-
comes active in the Kohonen layer (Figure 2). For each
active neuron that is related to Exi , single seismic or ge-
ological features can be imaged as a single component
plane [12] within the Kohonen layer. Therefore, each
feature is divided into four classes or logic sets: very
low (v.l.), low (l.), high (h.), and very high (v.h.). The
definition of the classes was based on the probability
density kernels of each feature (Figures 3 and 4). The
kernel densities were determined by a non-parametric
technique of probability density estimation [13]. Classes

instead of real values were used, only due to practical
reasons of communication between cross-disciplinary
co-workers on the building site of the Faido tunnel. It
is easier to understand; for example, the shear-wave
velocity is very low than vS, which is 2.6 k m/s, especially
when the relations between the features are unknown
and the feature spaces are highly noised. The class
boundaries result from the descriptive kernel para-
meters: minimum (Min), first quartile (P25%), second
quartile (P50%), third quartile (P75%), and maximum
(Max). The geological features are latent (to inter-
preted) variables. They can also be visualized in the
SOM feature maps, but they do not build up the stored
information of the SOM feature maps.

2.3. Mapping of feature clusters

This approach shows differences between homoge-
neous units (clusters) within the rock mass along the
tunnel from a global perspective, whereas six seismic
and eight geological features built up 14-dimensional
vectors Ey. The eight geological rock mass features are
uniaxial compressive strength of the rock σc, water flow

Figure 2 Classification
scheme of an SOM neural
network. Six-dimensional
seismic feature vectors Ex
were drawn along a seismic
profile in the tunnel (here,
profile 2360–2433 m). Several
tunnel locations can be seen:
2380, (2386), 2394, (2402),
2406, and 2422 m. Every Ex is
presented to the network.
The classification is done
when a neuron in the
Kohonen lattice (right, top)
is stimulated. This neuron
is active (black) and can be
imaged in the lattice (right,
bottom). All active neurons
that can be seen are related
to every Ex. The white trace
in the black region (right,
bottom) shows schematically
which neurons become active
when the profile (left)
is being crossed. 2,5
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Figure 3 Distribution
of the probability densities
(kernels) of the six seismic
parameters. The linguistic
classes are very low (black),
low (dark gray), high (light
gray), and very high (white).
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Q into the tunnel, total fracture spacing st , fracture
persistence p, fracture aperture e, fracture roughness
r , fracture infilling f , and schistosity dipping ss. Then,
the membership vectors that belong to a cluster are
projected onto the Kohonen layer. The cluster labels
are also latent (to interpreted) variables. They can
also be visualized in the SOM feature maps, but they
do not build up the stored information of the SOM
feature maps.

It is assumed that all features are equally important
for the clustering. Therefore, each feature is normal-
ized, so that its mean value averaged over the entire
feature vectors Eyi , i = 1, . . . , 729 is close to zero [14].
Once all Ey are normalized, they could be partitioned
into a preferred number of clusters. Two constrains are
formulated to find a representative number of clusters:

– high average quality of separation of all clusters
– high quality of separation of each single cluster

A partitioning method, called pam [15, 16], is used to
separate k clusters of the 14-dimensional feature space.
The clusters are constructed by assigning each feature
vector to the nearest cluster. The goal of pam is to find
k representants (cluster mean values) that minimize the
sum of the dissimilarities of the vectors to their closest
representant. A silhouette width s(i) is determined as
an indicator for the separation quality of every Ey(i). The
pam algorithm can be summarized as follows:

– Calculate the average dissimilarity a(i) between
Ey(i) and all other vectors of a cluster to which Ey(i)
belongs.

– Calculate for all other clusters C the average dis-
similarity d(i, C) of Ey(i) with respect to all vectors
of C.

– The smallest of these d(i, C) becomes b(i) = minC

d(i, C). It can be seen as the dissimilarity between
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Figure 4 Distribution
of the probability densities
(kernels) of the eight
geological parameters. The
linguistic classes are very low
(black), low (dark gray), high
(light gray), and very high
(white). Q, r , and f can only
be subjectively measured [11].
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Ey(i) and its neighbour cluster, i.e., the nearest clus-
ter to which it does not belong.

– Finally, calculate the silhouette width s(i) =
b(i)−a(i)

max(a(i),b(i)) , as an indicator for the separation
quality of a Ey(i).

Feature vectors with a large s(i) (almost 1) are very
well separated, a small s(i) (around 0) means that the
observation lies between two clusters, and observations
with a negative s(i) are probably placed in a wrong
cluster.
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3. Results and discussion

3.1. Seismic and geological features

First, each seismic feature is visualized within the Koho-
nen layer (Figure 5) by its semi-quantitative class values
(see Section 2.2). The class distributions of vP, vS, and ν

(ν is a function of vP and vS) and of S and I have more or
less a similar shape, whereas the shape of the ξ image is
very different. Classes of a single feature, subjectively
and logically defined, describe the data manifold in-

dependently from other features as single component
planes.

Further, each geological feature is also visualized as
a function of all combined seismic features within the
SOM (Figure 6). The following geological features are
mapped: uniaxial compressive strength of the rock σc,
water flow Q into the tunnel, total fracture spacing
st , fracture persistence p, fracture aperture e, fracture
roughness r , fracture infilling f , and schistosity dipping
ss. Each geological feature map can be described by all
seismic features within the SOM, whereby the overview

Figure 5 SOM mapping
results in the Kohonen lattice
based on the six seismic
feature classes. Areas
are labeled such as vp l.

2 ,
consisting of the name of the
variable (vp), the superscript
with name of the class
(l. low), and the subscript
with the number of this area
(2). The classes are derived
from quantiles of the
probability density
distributions (Figure 3): v.l.,
very low (black); l.,
low (dark gray);
h., high (light gray);
and v.h., very high (white).
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Figure 6 SOM mapping
results of geological features
in the Kohonen lattice (10×10
neurons). Areas are labeled
such as σ h.

1 , consisting of the
name of the variable (σ ),
the superscript with name
of the class (h., high), and the
subscript with the number
of this area (1). The classes
are derived from Figure 4: v.l.,
very low (black); l., low (dark
gray); h., high (light gray);
and v.h., very high (white).

uniaxial compressional strength σc

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10 σv.h.

l.σ
h.
2σ

v.l.σ

3σh.

1σh.

water inflow Q

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10 l.
3Q

h.Q

Ql.
5

Q4
l.

2Q
l.

1Ql.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

fracture distance st

h.s

v.h.s
l.s

v.l.s

fracture persistence p

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

l.p

h.
3p p

4
h.

1p
h.

2p
h.

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

fracture aperture e

l.e

h.e

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

fracture infilling f

h.
f

l.f

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

fracture roughness r

h.r

1
r l.

2
r l. r l.

2

schistosity dipping ss

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

v.h.
ss1

h.ss

l.ss

ss 2
h.

v.l.
ss 1

ssv.l.
1

of the features is remained. Some of the geological
feature maps (e.g., σ ) have similar class distributions
like the seismic features (e.g., vP).

Different states of a geophysical feature should de-
scribe different geological situations in the rock mass.
For example, the neurons in the SOM image (Figure 5)

with lattice coordinates (1–2, 10) and (9–10, 4–5) de-
scribe two different geophysical situations because the
neurons are distant within the image (see property 2
in Section 2.1). Significant geological features are also
different in these regions such as rock fracturing st ,
fracture length p, and water inflow Q (Figure 6). The
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main reason for the different seismic patterns is that
both rock mass regions show brittle deformed fault
zones of different tectonic genesis and geometry [1, 17].

Table 1 shows average differences between these re-
gions comparing clusters 2 and 9. Thus, both rock mass
regions can be described, and the overview of the com-
plete multidimensional feature space is guaranteed. For
example, the heterogeneous distribution of Poisson’s
ratio ν (Figure 5) shows that the influence of vS domi-
nates for very low vS values. The influence of vP to
the ν values dominates for high to very high vP values.
The fracture distance st and the existence of water Q
are responsible for the seismic feature vectors. This
result confirms theoretical analyses of [5, 6] that for
dry rock, the P-wave velocity decreases more rapidly
with the crack density than the S-wave velocity; in
contrast, for a completely saturated rock, vS and vP

decrease uniformly with the crack density, but vS

initially decreases about twice as fast than vP. Inter-
pretations based on correlations would be prone to
discover this result under in situ conditions. Correlation
coefficients between the features are very small, e.g.,
Corr(vP, Q) = 0.21, Corr(vS, Q) = 0.57, Corr(ν, Q) =

−0.30, Corr (vP, st ) = 0.38, Corr (vS, st ) = 0.52, and
Corr(vP, st ) = −0.15. Another example shows that fea-
ture maps of the fracture length p and of the water
existence Q (Figure 6) have physically reliable rela-
tionships. Long fractures rise the hydraulic conductivity
and hence the water flow into the tunnel. The feature
maps between p and Q show this relationship very well,
whereby both images were independently generated by

the SOM network, which is, again, only based on the
geophysical features.

3.2. Multidimensional feature clusters

Another way to get access to the multidimensional
feature space is to project clusters onto the Kohonen
layer (see Section 2.3). Clusters, derived from objective
partitioning methods, describe homogeneous units in
the data manifold of all combined features.

Active neurons (black) are plotted for each cluster
within the SOM (Figure 7). Feature vectors of sim-
ilar clusters are related to active neurons in similar
SOM regions. Active neuron areas of each cluster are
polymorphic-shaped and have partially dispersed distri-
butions with small overlaps. But they are still separated
from regions of other clusters. Some clusters show the
same arc-shaped structures like the feature maps based
on single classes (Figures 5 and 6).

The number of clusters depends on the observer’s
subjectivity (precision), the interpretation overview,
and the separation quality of the clusters. There is
no objective number of clusters to describe the data
manifold as best as possible (author’s opinion). Gener-
ally, with an increasing cluster number (k → 729), the
precision and the separation quality increase, whereas
the overview decreases. When the number of clusters
becomes too large, the overview of the clusters gets
lost. The separation quality is given by the silhouette
width (Figure 8). The average and the minimum cluster
silhouette width increase strongly until the number of

Table 1 Homogeneous rock mass units to describe the rock mass quantitatively by using all seismic and all geological features in
combination.

1 2 3 4 5 6 7 8 9

vP ( km
s ) 5.36 5.19 5.37 5.65 5.81 5.60 5.32 6.65 6.03

vS ( km
s ) 2.93 2.83 3.20 3.35 3.37 3.07 3.17 3.16 2.72

ν ( ) 0.286 0.288 0.225 0.228 0.245 0.286 0.225 0.354 0.372
ξ (%) 6.2 1.7 8.0 6.6 3.7 3.0 4.9 3.2 8.8
S ( ) 0.77 0.77 0.57 0.57 0.65 0.68 0.61 0.58 0.58
I ( ) 5.04 5.04 5.56 5.56 5.99 5.76 5.07 5.16 5.16
σc (MPa) 209 209 170 173 162 71 93 168 162
Q ( ) dry wet dry dry dry dry dry dry wet
st (cm) 21.8 11.0 29.2 17.6 51.5 29.2 29.2 51.6 0.6
p (m) 4.2 5.2 5.1 7.4 2.5 2.5 2.5 2.5 6.5
e (mm) 1.60 1.55 1.53 2.65 1.53 1.53 1.53 1.53 1.88
r ( ) rough rough rough rough very r. very r. very r. very r. very r.
f ( ) no no no hard no no no no no
ss (◦) 10 10 5 5 8 20 88 12 8

The nine clusters are represented by the 14 mean values. Figures 3 and 4 show the semantic understanding of the parameters, especially
for the ordinal variables Q, r , and f .
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Figure 7 SOM classification
results based on nine
homogeneous
seismic–geological rock mass
units (clusters). Neurons
become active (black) within
the SOM when the seismic
feature vectors, which belong
to one of the units, stimulate
the Kohonen lattice. The
white areas exemplify inactive
regions, and the gray
boundaries result from
imaging process. General
characteristics of the
homogeneous rock mass units
(Table 1) can be seen in the
feature maps: distant black
areas represent differences
between the clusters.
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clusters is nine. The average silhouette width is nearly
stable for more than nine clusters, whereas the mini-
mum silhouette width decreases slightly. Thus, a cluster
number of nine is preferred (Table 1). It can be seen
that some feature mean values of different clusters
remain nearly unchanged. Hence, their influence to the
separation is less important.

3.3. Application of a SOM network

A trained SOM network as discussed above was ap-
plied to a new tunnel segment of the multifunction
station of the Gotthard base tunnel (Switzerland) at the
intersection with the Faido tunnel, where large insta-
bilities related to a large fault zone occurred. Seismic
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Figure 8 Silhouette width s as a function of the cluster number j
with s · 100% is illustrated in (A). The average silhouette width
aveC j s of all clusters, the minimum silhouette width mini∈C j si
of a single cluster, and a representative number of clusters to
diversify the seismic–geological feature space are shown (A).

Nine clusters (see Table 1) represent the feature space well. (B)
The clustering result: the average silhouette width avei∈C9 si of
the nine clusters, the number and the plotted si of the cluster
members, the number of the cluster members, and the silhouette
width si of each cluster.
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investigations were used to characterize the local ge-
ological conditions within the non-excavated west and
east tunnels (Figure 9A). These investigations consisted
of a single 400×60 m tomographic image generated in
the so-called side tunnel south of the Faido adit.

First, a SOM network was trained (Figure 2) with
the seismic attributes vP, vS, and ν of the tomographic
images from the Faido tunnel and applied to the new
data set resulting from the 400×60 m tomographic im-
age. The other three seismic features ξ , S, and I were
neglected due to practical reasons and time constraints
imposed from the ongoing construction works. In a
second step, two engineering geological parameters, the
total fracture spacing st (Figure 9B) and the uniaxial
compressive strength σc (Figure 9C), were predicted
within the extension of the tomographic plane.

It should be noticed that all images contain class val-
ues (“very low,” “low,” “high,” and “very high”). The

labels (i.e., LeG, LuG, fissured, or cataclasites) within
the images show further descriptions of the geological
conditions (rock mass units), which are similar to those
in the Faido tunnel. The black lines in Figure 9B de-
scribe significant geological boundaries. On the image
edges, these boundaries represent the interpretation
results of the prediction together with the geological
mapping, which were outlined in a later excavation
stage. That means the predicted engineering geological
properties could be directly compared to fracture spac-
ings and rock mass strengths from tunnel wall mapping
(tunnels west and east) and additionally from core
drilling results (Figure 9B). For example, the 30-m-
long core drilling SSW1 (Figure 9B) confirmed the
prediction of st in the centre of the tomographic image.
The 100-m-long core drilling EOS1 (Figure 9) also con-
firmed the prediction of st and σc in the upper left part
of the tomographic image.

Figure 9 Interpretation
results of a tomographic
image (400×60 m) in the
Gotthard base tunnel (A).
A SOM network trained
with the seismic data, based
only on vP , vS, and ν from
the Faido tunnel, was applied
to the new seismic data set.
The total fracture spacing st
(B) and the uniaxial
compressive strength σc (C)
were predicted as class labels
(intervals). The labels
(i.e., LeG, LuG) within the
images show the gneiss
varieties similar to data along
the Faido tunnel. The
added black lines describe
significant boundaries. The
predicted spatial distribution
of st and σc corresponds well
with the geological data of the
drill cores (EOS1, SSW1)
and with the mapping results
of st , σc, and ss along the side
tunnel.
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4. Conclusion

Several reasons exist why conventional interpretation
methods such as correlations are limited to characterize
geophysical and/or geological in situ data of higher
dimensionality.

– Each geophysical feature is a realization (function)
of the multidimensional geological feature space
because the rock mass is given and the geophysical
data result from geological conditions. Interpreta-
tions become difficult, due to ambiguous interpre-
tation results, because geophysical interpretations
are always done the other way around (conclusions
from geophysical to geological features).

– High noise of geophysical data mainly due to vary-
ing in situ conditions.

– Complexity and non-linearity between geophysical
and geological features.

Pairwise correlations show relationships between
two features; they do not show the total amount of in-
formation of the observed feature spaces. Complicated
distributions of features within the maps exemplify the
complexity and non-linearity of the multidimensional
feature spaces.

Interpretations based on feature classes are advanta-
geous if detailed relationships between single features
are of interest (see Section 3.1). Nevertheless, they can
lead to complicated classification schemes such as for
the fracture spacing st :

st is very low if vS is very low or ξ is very high.
st is low if vP is low and ν is low and ξ is low
or high.
st is high if vP is high and very high and ν is high.
st is very high if vP is high or vS is high.

For general analyses from a global perspective,
SOM interpretations should base on feature clusters
(see Section 3.2). The feature maps based on clus-
ters (Figure 7 and Table 1) show similarities and dif-
ferences of the clusters with respect to the complete
geophysical–geological feature space. The cluster mean
values exemplify which features are responsible for the
characteristics of the clusters.

It could be shown that it is possible to characterize
geological rock mass properties from interpretations of
multidimensional geophysical (seismic) in situ data. The
classifications are automatically performed by an SOM.
This method is based on neural information processing
and is more powerful compared to conventional meth-
ods, such as correlations and spatial profile descriptions.
The reason is that all seismic features are jointly used
for the classification. The interrelationships of the geo-

physical features as well as their relationships to the
geological features are visualized in two-dimensional
maps. Complicated distributions of features within the
maps exemplify the complexity and non-linearity of the
multidimensional feature spaces. These feature maps
can be visually described and easily interpreted. Hence,
the overview of all features and all relationships can be
retained for each interpretation.

Classifications are performed in an automated way,
which is helpful for online predictions of geological con-
ditions in undiscovered rock mass regions (e.g., during
underground mining processes). Even if geological data
are qualitatively and quantitatively low or the geophys-
ical data are numerically limited, interpretations can
still be performed with good results, when all seismic
features are used simultaneously. For interpretations of
geophysical in situ measurements, the quantity (dimen-
sionality) of the involved features is more important
than the quantity and precision of the measurements.
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