
Introduction

The interest of scientists in methodologies assessing the
spatial probability of future landslides is testified by the
exponentially growingmass of papers proposingmethods
and applications for landslide susceptibility zonation.

As the methods are too many for a detailed analysis
and the related papers too many to be listed, we refer the
reader to the papers of Soeters and van Westen (1996),
Aleotti and Chowdhury (1999) and Guzzetti et al. (1999)
for thorough critical examinations of the different

techniques and exhaustive reference lists; here we will
provide no more than a schematic classification of the
methods, limiting the citations to the most recent papers.

Besides some promising applications of fuzzy logic
and artificial neural network, most used methods can be
divided into three distinct categories, even if mixed
strategies are often adopted: the deterministic (or engi-
neering, or geotechnical), the heuristic (or index) and the
statistical methods.

For studies on a regional scale, the heuristic and the
bivariate and multivariate statistical methods appear to
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Abstract Among the many GIS
based multivariate statistical meth-
ods for landslide susceptibility
zonation, the so called ‘‘Conditional
Analysis method’’ holds a special
place for its conceptual simplicity. In
fact, in this method landslide sus-
ceptibility is simply expressed as
landslide density in correspondence
with different combinations of
instability-factor classes. To over-
come the operational complexity
connected to the long, tedious and
error prone sequence of commands
required by the procedure, a shell
script mainly based on the GRASS
GIS was created. The script, starting
from a landslide inventory map and
a number of factor maps, automati-
cally carries out the whole procedure
resulting in the construction of a
map with five landslide susceptibility
classes. A validation procedure al-
lows to assess the reliability of the
resulting model, while the simple

mean deviation of the density values
in the factor class combinations,
helps to evaluate the goodness of
landslide density distribution. The
procedure was applied to a relatively
small basin (167 km2) in the Italian
Northern Apennines considering
three landslide types, namely rota-
tional slides, flows and complex
landslides, for a total of 1,137 land-
slides, and five factors, namely
lithology, slope angle and aspect,
elevation and slope/bedding rela-
tions. The analysis of the resulting
31 different models obtained com-
bining the five factors, confirms the
role of lithology, slope angle and
slope/bedding relations in influenc-
ing slope stability.
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be better suited for assessing landsliding probability
(Chung et al. 2002;Dai and Lee 2002, 2003; Dai et al.
2002; Donati and Turrini 2002; Lee et al. 2002; Santa-
cana and Corominas 2002; Zhou et al. 2002; Çevik and
Topal 2003; Fernandez et al. 2003; Lin and Tung 2003;
Ohlmacher and Davis 2003; Remondo et al. 2003; San-
tacana et al. 2003; van Westen et al. 2003; Ayalew and
Yamagishi 2004, 2005; Ayalew et al. 2004; Fernandes
et al. 2004; Ko Ko et al. 2004; Lan et al. 2004; Lee 2004;
Lee and Choi 2004; Perotto-Baldiviezo et al. 2004;
Raghavan et al. 2004; Süzen and Doyuran 2004).

In the heuristic methods, the instability factors are
ranked and weighted according to their assumed or ex-
pected importance in causing slope failures. As the
ranking and weighting rules are based on the experience
of geoscientists involved, this approach entails a sub-
stantial degree of subjectivity. For this reason, the use of
these methods is progressively diminishing, particularly
with the diffusion of the GIS technologies, which facil-
itate more efficient statistical approaches.

The statistical methods are more objective, formally
more rigorous and better suited for assessing land-
sliding probability especially at medium scales. All the
statistical methods, despite the methodological and
operational differences, are based on the common
assumption that slope-failure in the future will be
more likely to occur under those conditions which led
to past and present instability. In other words, land-
slide prediction for areas currently free of landslides is
carried out by evaluating the similarity between the
conditions in such areas and those conditions that
have led to landslides in the past. Therefore the con-
ceptual model consists in:

1. the mapping of the landslides,
2. the mapping of a set of factors which are supposed to

be directly or indirectly connected with slope insta-
bility,

3. the classification of the land surface according to the
degree of landslide susceptibility on the basis of the
detected statistical relationships between instability
factors and instability phenomena.

As each landslide type can originate under different
conditions, separate analysis should be performed for
different landslide types (Soeter and van Westen 1996;
Guzzetti et al. 1999; Remondo et al. 2003). There is a
substantial difference between bivariate and multivariate
statistical methods. The bivariate methods evaluate the
relationship between landslides and each single factor.
The misleading aspect of this procedure is that a factor
can be seen as irrelevant when considered alone but can
result determinant in combination with other variables.
In multivariate methods, on the contrary, the relation-
ship between landslides and a number of factors con-
sidered simultaneously is evaluated. The most used

multivariate techniques are the classical linear and lo-
gistic regression and the discriminant analysis.

Although these techniques generally produce satis-
factory results, they also require strict assumptions that
are frequently violated in practice. Some of them in fact
require data derived from a normally distributed popu-
lation, or similarity in variance–covariance matrices, or
assume a linearity in the relationship among variables;
others require specific measurement scale for the vari-
ables (Carrara et al. 1992). To avoid these obstacles,
distributions that differ from normality are often as-
sumed, non-linear relationships among the variables are
adopted or transformations of variables from one mea-
surement scale to another are carried out. These oper-
ations substantially complicate the process and make the
final result difficult to evaluate at least for operators who
are not well trained in the field of statistics like land-
planners and decision-makers.

Besides the above mentioned classic statistical tech-
niques, there are other less complicated and conceptu-
ally straightforward multivariate statistical approaches
for producing maps that are easy to comprehend and
assess also by non-specialists.

Among them, the so called Conditional Analysis
method (Carrara et al. 1995a, b) is conceptually simple
and highly compatible with GIS operating features. For
these reasons, we decided to adopt this method in a re-
search program aiming to produce Landslide Suscepti-
bility maps, as defined by Brabb (1984), of large areas of
the Italian Northern Apennines. As the method requires
a long and well defined sequence of operations that
makes the procedure tedious and error prone even for
well trained GIS users, a shell script, or shell program,
mainly based on GIS commands, was created. The
script, starting from a Landslide Inventory map and a
number of factor maps, automatically carries out the
entire procedure up to the construction of the final map
portraying the different probabilities of future landslide
occurrence. In the following pages, the main character-
istics of the current version of the script and its appli-
cation to the susceptibility zonation of the Baganza
torrent basin, in the Emilia sector of the Apennines, are
described.

The Conditional Analysis method

In this method, a number of data layers representing
factors which are thought to be directly or indirectly
connected with landsliding, are overlayed (or crossed, in
the jargon of the GIS used in this work) in order to
obtain all the possible combinations of the various
classes of the different factors. Each of the resulting
combinations represents a terrain unit defined as a un-
ique condition unit (UCU) (Carrara et al. 1995a, b),
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unique condition subareas (Chung et al. 1995) or unique
condition class (Bonham-Carter 1994). Subsequently,
the landslide density is computed in each UCU.
Assuming the already mentioned principle that slope
failures in the future are more likely to occur under those
conditions which led to slope failures in the past, the
computed landslide density is equivalent to the future
landslide probability. Formally, the conditional proba-
bility is given by (Carrara et al. 1995a, b):

PðLjUCUÞ ¼ ðlandslide area \UCU areaÞ
UCU area

; ð1Þ

i.e. the conditional probability of landslide occurrence
(L) given a unique combination of factors (UCU) is gi-
ven by the landslide density in that specific UCU.

The final map is constructed by defining a number of
density classes and assigning each UCU to the corre-
sponding class according to its computed density. All
methods for susceptibility zonation present some prob-
lematic aspects mainly regarding the assessment of
landslide presence, the choice of the factors to use in the
analysis and the evaluation of the reliability of the
resulting zonation. Given their importance, these as-
pects, with the solutions adopted in the proposed pro-
cedure, will be discussed in detail in the following
sections.

The main scarp upper edge as the landslide
representative element

One problem regards the notion of landslide in terms of
the assessment of landslide presence and the evaluation
of instability factors in correspondence with each land-
slide. As is very well known, in a landslide two geneti-
cally and morphologically distinct zones can be
identified: the depletion zone (or detachment zone, or
rupture zone), i.e. the upper part of the landslide where
the failure is effectively generated, and the accumulation
zone, i.e. the lower part which is simply affected by the
arrival of the depleted material. Since the susceptibility
assessment by statistical methods claim to identify the
conditions under which landslides were (and will be)
generated, the analysis has to be restricted to the area in
which the landslide originated, i.e. the depletion zone, as
performed in many works (Chung and Fabbri 1999;
Chung et al. 2002; Donati and Turrini 2002; Fernandez
et al. 2003; Remondo et al. 2003; Süzen and Doyuran
2004; Ayalew and Yamagishi 2005). In fact, if the whole
landslide is considered in assessing the factor combina-
tion and in computing the landslide density, the com-
binations present in the accumulation zone are
erroneously considered to be prone to landsliding.
However, the depletion zone is generally difficult to
identify completely since it is partially occupied by the
displaced material. Usually, only the higher portion of

this zone, the so called main scarp, and, in particular, its
upper edge, is clearly evident due to the slope angle
difference with the surrounding unfailed zones: at the
contact with the landslide’s crown and along the flanks
of the depletion zone. So the main scarp upper edge
(MSUE) is the most evident morphological feature of a
landslide and can easily be identified and mapped both
by aerial photographs and on the field.

It must also be considered that all the statistical
methods based on the conceptual model expressed
above, require knowledge of the factor conditions before
the landslide occurrence. With the exception of very
recent landslides, the available maps and photographs
obviously represent the situation after landsliding. Some
factors, such as the bedrock lithology, can be supposed
not to have been modified by the landslide occurrence,
so the currently observable situation at the depletion
zone, or along the MSUE, can be considered to be the
same as at time of failure. On the contrary, other fea-
tures, and in particular morphometric factors like slope
angle or aspect, are substantially modified by landslid-
ing. If it is virtually impossible to reliably reconstruct the
old topography, it nevertheless seems plausible to as-
sume that the morphometric characteristics which most
resemble those present at the failure time are those
currently observable in the immediate surroundings of
the depletion zone, i.e. along the unmodified external
belt of the MSUE. Furthermore, the MSUE has the
further advantage of a linear development that is prac-
tically independent of how much the material has shifted
in the depletion zone, so its length is strictly propor-
tional to the planimetric surface of the depletion zone, at
least for the same type of landslide. Therefore the
MSUE length provides a reliable measurement of the
landslide size.

For all these characteristics the MSUE can be con-
sidered to be an easily measurable morphological ele-
ment which is particularly representative of the genetical
part of a landslide and can be profitably used for
determining both the instability-factor combination
connected to landslide and the landslide dimension.

A similar approach has been adopted by Süzen and
Doyuran (2004) who consider a buffer around the crown
and flanks of the landslide as the best undisturbed
morphological zone representing conditions before
landslide occurrence. In the method proposed here, the
MSUEs are extracted from the main scarp in the
Landslide Inventory raster map, following the procedure
illustrated in Fig. 1. Each extracted MSUE is made up
of a linear feature with a single cell width.

For each MSUE cell, the class value of each factor is
defined. This is performed by a paired analysis of the
MSUE map and each single factor map. To each MSUE
cell is assigned the factor class value present in a cell of
the factor map located at a distance from the MSUE cell
ranging from a minimum of 0 to a maximum of 3 cells,
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as selected by the user on the basis of the type of factor
being considered. If a distance of 0 cell is adopted, the
factor values are defined in coincidence with the MSUE.
For the factors calculated considering neighboring cells,
e.g. slope angle and aspect, it is obviously necessary to
adopt a distance greater than 0. This to avoid, or at least
to limit, the probability of selecting factor values that
were calculated by using some cells on the main scarp or
on the accumulation zone. The process is illustrated in
Fig. 2 for a single landslide.

At the end of the process, a set of factor values (or
landslide factor combination, LFC) is defined for each
MSUE cell; according to the basic principle of the
Conditional Analysis method the LFC should represent
the factor combination present in the cell at the failure
time. Having adopted the MSUE to define the landslide
dimension and the landslide factor combination, the
landslide density for each UCU is obtained by dividing
the total length (in meters) of the MSUEs pertaining to
each specific LFC by the area (in km2) of the UCU with
the same factor combination as the LFC. The landslide
density is therefore expressed in m/km2 and the above
reported landslide probability (1) is modified as follows:

PðLjUCUÞ ¼ ðMSUE length \UCU areaÞ
UCU area

: ð2Þ

In the procedure five intervals are defined to classify
density values. These intervals are designed in such a
way that the mean density value represents the midpoint
of the middle class (class 3) and the classes from 1 to 4
have the same interval. The upper limit of the fifth class
is open. More precisely, calling Md the mean density,
the class interval is Ci=(2/5)Md and the five suscepti-
bility class intervals are: 0–Ci (very low), Ci–2Ci (low),
2Ci–3Ci (medium), 3Ci–4Ci (high), >4Ci (very high).

In this paper, the landslide mean density was con-
sidered a convenient reference value to define the sus-
ceptibility of an area and the subdivision in five classes a
reasonable compromise between an effective suscepti-
bility differentiation and the readability of the map
(Chung et al. 1995; Nagarajan et al. 2000; Çevik and
Topal 2003; Ayalew et al. 2004; Perotto-Baldiviezo et al.
2004; Ayalew and Yamagishi 2005). However, this
choice hampers the comparison with the susceptibility of
other areas having a different mean density, even if ob-
tained following the same procedure.

Factor choice and factor class definition

Theoretically, any geological, geomorphological, cli-
matic and vegetational characteristic, or factor, can be
introduced into the analysis, on condition that it can be
expressed in some measuring scale (continuous, cate-
gorical or nominal), has spatial variability and is defined
all over the study area. In practice, as data acquisition
may be a very costly and time-consuming operation, the
analysis is usually limited to those factors that are
known, from previous works on the subject, or at least
suspected, to be directly or indirectly connected to
landsliding.

A further limitation is connected to the age of for-
mation of the landslides to be analyzed. In fact, as above
mentioned, the statistical methods require the knowl-
edge of the conditions at the failure moment. If old
landslides are introduced in the analysis, only time-
invariant (or quasi-static, long-term, permanent, intrin-
sic, stationary) conditioning factors, like geological or
morphometric characteristics, that may be supposed to
change over a geomorphological time scale, can be used
in the analysis (Lopez and Zink 1991; Atkinsons and
Massari 1998; Binaghi et al. 1998; Guzzetti et al. 1999;
Zêzere et al. 1999; Dai and Lee 2002; Zhou et al. 2002;
Çevik and Topal 2003). Time-variant (dynamic, extrin-
sic, or transient) factors, like landuse, human activity or
even climatic conditions, that may vary rapidly in re-
sponse to environmental changes or economical needs,
can be used only for recent or very recent landslides. The
introduction of post-landslide conditions can completely

Fig. 1 Process adopted to extract the main scarp upper edge
(MSUE) from a mapped landslide main scarp. In a, a landslide
with different category values assigned to the main scarp area (dark
gray) and to the accumulatione zone (light gray) is shown. The area
external to landslide is grown by one cell along its margins,
producing the effect of adding a cell belt along the inner landslide
perimeter, as shown in (b). The MSUE is defined by the eight cells
common to the main scarp of map (a) and to the grown area of
map (b), as shown in (c)
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reverse the resulting role of a factor, as pointed out by
Atkinson and Massari (1998) for reforested areas.

Some problems may also be related to the definition
of the factor classes. In the Conditional Analysis method
small area classes should be avoided, in order to limit the
presence of UCU of small dimensions resulting from the
overlay of data layers. Small UCUs have little statistical
significance although they can represent rare but physi-
cally meaningful conditions. In the case of categorical
variables, like for example lithology or landuse, the

classes are automatically defined by the original differ-
ences of the mapped categories possibly grouped
according to some common characteristic.

In the case of continuous variables, as for example
slope angle, the subdivision in a convenient number of
classes is a user choice and different techniques have
been proposed by different authors as described in detail
in Süzen and Doyuran (2004). In this work we adopted a
subdivision of the factor values in equal interval classes.
This method is sufficiently objective and generally pro-

Fig. 2 Factor value definition
for the MSUE cells. In a, a
landslide with the main scarp
cells highlighted is shown. If
distance of 0 is adopted, the
factor values are defined in
coincidence with the MSUE
cells, as shown in (b). For
distances greater than 0, a fac-
tor cell must be outside the
landslide area in order to be
selected. In c, with a search
distance of 1 cell, a 3·3 cell
moving matrix centred on the
MSUE cells is used and the
factor cells are selected along
the external belt immediately
adjacent to the MSUE. In d,
with a distance of two cells, the
moving matrix has a 5·5 cell
size and the landslide area is
grown of one cell along the
perimeter. In e, a 7·7 matrix
and a landslide area grown by
two cells are used. When a
moving matrix is used, like in c,
d and e,the factor cell search
proceeds clockwise beginning
with the vertical and horizontal
cells, then along the diagonal
ones. Note that in d and e, the
lowest factor cell is selected for
both the lowest MSUE cells
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duces classes of similar sizes which are ample enough to
be statistically meaningful.

Model validation

Undoubtedly the only rigorous way to evaluate the
reliability of a susceptibility map in forecasting land-
slides, is to wait for future landslides and compare their
distribution with the susceptibility classes in the map
(Soeters and van Westen 1996; Ermini et al. 2005).
However, this ‘‘wait and see’’ method is clearly
impractical because many years would probably be re-
quired to generate a number of new landslides high en-
ough to allow a meaningful model validation. For this
reason, other immediate validation procedures have
been proposed by various authors. The most used, and
the most similar to the ‘‘wait and see’’ method consists in
randomly splitting the past landslides into two distinct
sets: the first set is used for the model construction
(training, learning, or development set), the second for
the model validation (validation, or test set). Concep-
tually, this second set is assigned the role of future
landslides and its distribution in the susceptibility classes
constructed using the training set is checked. In Santa-
cana and Corominas (2002), Chung and Fabbri (2003)
and Remondo et al. (2003), the basic strategies to obtain
two independent sets of landslides are clearly described
and a long list of papers dealing with validation proce-
dures is reported.

A similar approach has been introduced in the pro-
cedure used here. In the shell script, it is possible to
consider two distinct groups of landslides functioning as
training and validation sets. A validation table is con-
structed for each landslide type (see Table. 4, 5, 6, 7 as
examples), reporting for each of the five susceptibility
classes the percentage of the MSUE length of the
training set, the percentage of the MSUE length of the
validation set, and the absolute value of their difference.
The sum of the percentage differences gives an index,
here defined validation error (VE), to evaluate the model
as a whole; the smaller the index, the better the model
validation, since an higher portion of the MSUE lengths
of the validation set has been correctly assigned. The
theoretical range of VE is from 0, when all the MSUE
percentages of the validation set equal the percentages of
the training set, to 200, when all the MSUEs of the
validation set are assigned to one or more classes of the
training set having 0 value.

For a correct evaluation of the susceptibility zona-
tion, it must be considered that good validation does not
necessarily correspond to good predictive power of the
model. From a statistical point of view, the validation
process is equivalent to the construction of two distinct
models adopting two distinct landslide sets randomly
extracted from the same population. So a high similarity

between the two models merely reveals the stability, or
non casuality, of the model itself, as the result does not
change even if different landslide samples are adopted.
As regards the predictive capacity of the model, a good
validation simply means a good capacity to predict the
observed landslides, i.e. the past ones. Instead, the reli-
ability of the model in forecasting future landslides de-
rives from the assumption that future landslides will
occur at the same factor combinations and under the
action of the same, in quality and quantity, triggering
factors as in the past. The more recent the analyzed
landslides are, the higher the probability is that they
initiated in passive and active conditions analogous to
those expected in the near future. For the shallow slides
affecting the regolith that originate seasonally in sub-
stantial quantities following intense rainfall, the
assumption holds. On the contrary, the deep-seated
landslides that form more rarely and persist for a long
time may be of an antique, often unknown age and so
may have been produced in conditions that are sub-
stantially different from current ones. The introduction
of these landslides into the analysis, as usually occurs
owing to their importance in producing damage, reduces
the predictive capacity of the model by an amount that is
impossible to assess.

Good validation is a necessary but insufficient pre-
requisite for assessing the efficiency of a model. A good
model should not only be reliably from a statistical
point of view but should also be able to distinguish
between significantly different landslide density condi-
tions. So a good model should have a great spread or
dispersion around the mean density value. Two very
simple and intuitive statistical indices to quantify dis-
persion of data around the mean value exist: the mean
deviation, i.e. the average absolute deviation from the
mean, and the well known standard deviation. As the
squaring in the standard deviation attaches great sig-
nificance to the more extreme values, that often refer to
the smaller and therefore less significant UCUS, the
mean deviation seems more appropriate. In the shell
script the mean deviation of the UCU density for each
landslide type is computed. When more zonation
models present acceptable and comparable validation
values, the model with the highest mean deviation, and
so with the greater differentiation capacity, should be
preferred.

The shell script

The high number of GIS commands and the operational
complexity has made an automation of the procedure
through the creation of a shell (or program) script
indispensable. In a previous work (Clerici et al. 2002), a
relatively simple shell script was proposed for the con-
struction of Landslide Susceptibility maps considering
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the whole landslide surface, as proposed in the original
formulation of the Conditional Analysis method. The
subsequent adoption of the MSUE as the geomorpho-
logical feature representative of a landslide, made the
procedure much more complex requiring a new specific

shell script (Clerici 2002). In the current version other
features have been added to the program, such as, for
example, the possibility of performing susceptibility
analysis separately for each landslide type and the model
validation procedure.

Fig. 3 Steps of the automated
procedure for landslide suscep-
tibility map construction. A
simple case with only two factor
maps and only four landslides,
two for the training set (dark
gray) and two for the validation
set (light gray), is considered.
The entire procedure is repeated
for each landslide type
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The script is mainly based on the GRASS GIS
(Version 5.3) (GRASS Development Team 1999; Neteler
and Mitasova 2004), a Free Software/Open Source sys-
tem released under GNU General Public License and
presently maintained by an international team with the
official master site in Italy (http://www.grass.itc.it) and
many mirrors all over the world.

In the script, commands of the Bash shell (Free
Software Foundation 2002; Cooper 2005), of the text
processing language ‘gawk’ (Free Software Foundation
2003) and of the non-interactive line editor ‘sed’ (Pizzini
1998) are also widely used. Considering that the script
was implemented under Linux O.S., only free software
has been used, making the procedure very inexpensive
from an economical point of view.

The program requires as input a Landslide Inventory
map containing all the landslides mapped in the study
area and at least one, and up to a maximum of 10, factor
maps. The output consists in a Job report containing
two tables for each landslide type (see Table. 4, 5, 6, 7).
The first table reports the characteristics of the five
susceptibility classes, the second one the validation
procedure results.

For each landslide type and/or for all the types as a
whole, a map showing the five classes of landslide sus-
ceptibility and the current landslides can be displayed on
the screen and/or output in Postscript format in any user
selected scale (see Fig. 5 as an example). The map name,
a legend, a graphic scale and a north arrow are also
displayed. In the legend a sixth class is added if unde-
fined areas are present.

Landslide susceptibility calculation

The steps of the entire procedure are schematically
shown for a very simple theoretical case in Fig. 3. The
first step is the reclassification (if requested) of the
factor maps. The reclassified maps are then overlayed
in order to obtain the UCU map, i.e. the map con-
taining all the factor class combinations in the study
area. Each combination is distinguished in the map by
a different identification number, while the factor
combination is stored as a category label (in brackets in
the figure). If no value is defined in some portion of
any factor map, as shown for the Factor B map in the
figure, the corresponding area is excluded from the
definition of the UCUs and therefore from the sub-
sequent processing. From this map a file reporting the
extension of each UCU in the investigated area is
created (UCU area file).

Subsequently, the MSUEs are extracted from the
main scarps in the Landslide Inventory map (MSUE
map) (Fig. 1). The length (in meters) of each MSUE is
then computed by summing the length of each cell. The
total length of all MSUEs is then divided by the total

area occupied by the UCUs to define the MSUE mean
density, and by the MSUE number to define the MSUE
mean length.

Afterwards, for each MSUE cell, the class value of
each factor is defined by a paired analysis of the MSUE
map and each single Factor map (Fig. 2). For each
factor, a map is thus constructed in which the proper
factor value is assigned to each MSUE cell. By over-
laying these maps, the factor combination is defined for
each MSUE cell and a landslide factor combination
(LFC) map created.

Then, a file with the MSUE length (in meters) is
created for each LFC of the training set and joined to
the previously created file with UCU extensions; the
resulting UCU Density file is used for the reclassification
of the original UCU map leading to a new MSUE
density map containing the MSUE density values ex-
pressed in m/km2.

The Susceptibility Classes’ file, obtained by assigning
each UCU to the pertaining susceptibility class accord-
ing to its MSUE density value, is then used to reclassify
the MSUE density map, leading to the construction of
the final landslide susceptibility map to which the
’undefined’ areas (if any) and landslides are then
superimposed. As already mentioned, the characteristics
of this map are reported in a specific table in the job
report.

For the validation procedure, a file with the MSUE
length (in meters) is created for each LFC of the vali-
dation set (Validation Set LFC Length) and the length
(in meters and in percent) of the validation set MSUEs
falling in each previously defined susceptibility class, is
computed. The absolute value of the difference with the
percent of the MSUE length of the training set is re-
ported in the validation table of the job report.

The Baganza basin susceptibility map construction

The described procedure has been applied to the
mountainous and hilly part of the Baganza Torrent
basin, in the Northern Italian Apennines, about 50 km
south-west of Parma town (Fig. 4). The basin area is
167.386 km2.

Geological framework

The Northern Apennine fold-and-thrust belt developed
through the deformation of several sequences over-
thrusted during tectonic phases from Latest Cretaceous
to Early Pleistocene. From Late Miocene, the Adria-
verging Apennine belt was affected by extensional
faulting, well developed in the Tuscan sector (Elter et al.
2003).
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The Baganza valley (Fig. 4) cuts into the Po plain
side of the Apennine chain in correspondence with a
major transverse discontinuity affecting the belt. This
tectonic discontinuity divides the Apennines into two
segments characterized by a substantial difference in the
tectonic uplift (Bernini et al. 1997). The NW portion of
the belt is remarkably less uplifted compared with the SE
portion; in fact, the Ligurian and Epi-Ligurian units

overthrusting the Tuscan foredeep unit, outcrop exten-
sively. On the contrary, in the south-eastern portion the
Tuscan units form the Apennine backbone. This struc-
tural framework implies a regional NW dip of the bed-
ding and is responsible for the pronounced asymmetry
of the Baganza valley.

The uppermost part of the valley is located on the
northern flank of an anticline affecting the Upper Oli-

Fig. 4 Structural sketch of the
sector of the Italian Northern
Apennines including the
Baganza basin
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gocene-Lower Miocene foredeep turbidites overthrusted
by the Subligurian Units, Upper Cretaceous-Oligocene
in age (Vescovi 1998). The upper valley continues
northward cutting the overthrusted Ligurian Units
mainly consisting of the thick Helminthoid flysch se-
quences, made up of thick-bedded marly-limestone
turbidites, Upper Campanian-Middle Eocene in age.
Along the middle sector of the valley, the erosion has
preserved extensive portions of the Basal Complex units
consisting of Lower Cretaceous scaly clays with lime-
stone, ophiolite bodies, Cenomanian-Santonian thin-
bedded sandstone turbidites, and Campanian red shales
(Vescovi et al. 1999). Along the lower sector of the Ba-
ganza valley the Early Cenozoic Flysch outcrops (Cer-
rina Feroni and Vescovi 2005); this unit shows a clay-
rich upper portion, locally overlain by the Epi-Ligurian
Sequence. In correspondence with the Apennine border,

the Messinian continental conglomerates overlie the
Early Cenozoic Flysch. The Messinian deposits are in
turn overlain by the Plio-Quaternary marine sequence
and by the Quaternary continental deposits (Di Dio
et al. 1997).

Main geomorphological and climatic features

The Baganza valley develops in a SW–NE direction,
from the Apennine reliefs of Mt Cervellino (1,492 m)
and Mt Borgognone (1,400 m) to the hilly margin of the
valley, near Felino village (Fig. 4). From here the Ba-
ganza torrent continues its course through the plain until
it flows into the Parma river, in the town of Parma at an
altitude of 58 m. The Baganza basin is particularly long
and narrow with a length of about 34 km and a width

Fig. 5 Landslide susceptibility
map of the Baganza basin
obtained by the Conditional
Analysis method applied to all
landslide types with the factor
combination 1-2-5 (lithology,
slope angle, bedding/slope rela-
tions). The map was produced
in Postscript format in A4 size
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ranging from about 3 to 6 km. A relevant characteristic
of the valley is the V-shaped cross profile, with a
noticeable asymmetry: the eastern slope is much more
extended than the left slope which is steeper with lower
peaks. This asymmetry, uncommon in the Emilian A-
pennine basins, is conditioned by the structural setting,
as specified in the previous section.

The landforms shaped by running waters and gravity
prevail in the area. Locally, in the upper valley, Pleisto-
cene glacial landforms are present; these relict landforms
are, however, less evident in comparison with those in the
adjacent valleys, as they developed in weak lithologies
which were unsuitable to their preservation. Neverthe-
less, there is evidence of Pleistocene periglacial phe-
nomena in block fields and cryogenic and nival hollows.

Impressive forms of differential erosion due to the
presence of resistant rock units associated to weak rocks,
are also frequent. The most striking example of is the
NNW trending ‘‘Salti del Diavolo’’ conglomerate that
outcrops across the middle valley with a thickness of
about 15 m and a nearly vertical dip.

Nevertheless the clearly prevailing modeling is due to
the landslides caused by the favorable lithological and
structural characteristics of the bedrock. In the eastern
side of the middle valley, wide landslides are present,
some of which have been active for a long time. Many
landslides are dormant and large in size; active land-
slides are lower in number and extension, yet they
strongly influence the road conditions of the area.
Among the recent reactivations, caused by a decade of
intense autumnal precipitations (Bertolini and Pellegrini
2001), the most significant one is situated on the NW
slope of Mt Cervellino where, on November 2000, a
complex landslide was activated, with a length of
3.2 km, a width of 400 m and a presumed volume of
about 40·106 m3.

The Baganza valley is characterized by considerable
climatic variation as regards both temperature and
rainfall. Analysis of rainfall values registered in the
stations of the valley and in adjacent areas makes it
possible to define the yearly and monthly rainfall
amount and the rainy days distribution. The yearly
isohyets have values ranging from about 800 mm in the
lower valley to 2,000–2,500 mm on the watershed
(Bertolini and Pellegrini 2001). The monthly average
rainfalls have a distribution with two maxima in late
Autumn (usually November) and in Spring (March or
April) and two minima in Winter (usually February) and
in Summer (usually July). The distribution of the yearly
rainy days shows a similar trend. The rainfall regime is
therefore typical of the so-called ‘‘sublitoraneo-appen-
ninico’’ climate affecting most of the Apennines in the
Parma province (Pinna and Vittorini 1985). Orography
plays an important role in the temperature distribution:
the monthly temperatures indicates values of 13�C in the
lower valley and 7–8�C on the main divide.

Input maps

The reliability of a susceptibility zonation is conditioned
not only by the model adopted and the number and type
of factors used in the analysis, but also by the quality of
the collected data. The availability of detailed base maps
and high-quality aerial-photographs, the systematic field
check and the independent analysis of experienced
investigators, can greatly reduce errors in data acquisi-
tion. However, irrespective of the experience and skill of
operators a certain degree of uncertainty is always
associated with the data (Carrara et al. 1995b). For
example, in landslide mapping some boundaries can be
difficult to identify due to erosional processes or human
activity. In a geological map, the boundary between
formations can be hidden by dense vegetation or detrital
covers. Furthermore, maps constructed by numerical
cartographic techniques, as for example Digital Eleva-
tion Models or slope maps, can be different if different
algorithms or different grid resolutions are adopted.
These unavoidable sources of uncertainty are incorpo-
rated in all the phases of the analysis and their influence
on the final susceptibility zonation is difficult to quantify.

All the maps used in the analysis are in raster format.
The large scale of the base maps, the quite limited
extension of the study area and the reasonably short
running time of the shell script allowed to adopt the
pretty high resolution of 5 m. This cell side adequately
describes also the smallest landslide of the area, whose
MSUE length is about 35 m. The basin includes a total
of 6,695,423 cells.

Landslide Inventory map

All the landslides were mapped at 1:10,000 scale by
interpretation of aerial photographs of 1996 and 2001, at
a scale of about 1:33,000 and 1:14,000, respectively, and
by field verification. Six landslide types were distin-
guished according to the classification of Cruden and
Varnes (1996): falls, translational slides, rotational
slides, lateral spreads, flows and complex landslides.

The landslides are 1,147 and occupy an area of
56.5 km2, representing the 33.8% of the whole basin.
The different landslide types show very different fre-
quencies. There is only one very small fall along the
steep wall of an ophiolite body in the upper valley.
Lateral spreads are only four, consisting of flysch blocks
slightly shifted on the basal clayey complex. Five
translational slides affect the flysch in those rare situa-
tions where strata are outward dipping with slope angle
greater than dip angle. The rotational slides are 286 and
affect many different rock formations, but especially the
marly-limestone flysch and the thin-bedded sandstones
and mudstones. They usually show a large detachment
area and limited shifting of the depleted material. Earth
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and mud flows are the most frequent landslide type
totalling 443. They usually have small depletion areas
with the channeled material converging on a common
accumulation area. Complex landslides show the largest
areal extent. Many of them are substantially rotational
in the upper portion and evolve as flows in the toe, even
if different landslide types are also present along the
crown, especially falls and flows. When a single type of
initial failure was clearly detectable, the landslide was
assigned to the proper specific type; this is the case of
many rotational/earth-flow complex landslides that were
assigned to the rotational type. In the study area a total
of 408 complex landslides was mapped.

With respect to the chronology of the landslides, on
the basis of historical documentation (Boccia 1804; Al-
magià 1907; Dall’Olio 1975), local technical reports and
newspaper chronicles, it was possible to date the
movements of hundred of landslides in the Western
Emilia Apennines. Furthermore, 71 14C age determina-
tions referred to 36 landslides were carried out giving
values ranging from 100 to 29,600 years B.P. Six of these
radiometric dates regard the Mt Cervellino landslide, in
the Baganza valley, and testify six movements in a time
span from 1940 to 5730 years. B.P., i.e. from the Upper
Atlantic to the Lower Subatlantic (Tellini and Chelli
2003). Obviously these dates generically refer to episodes
of landslide activity and do not reveal the first move-
ment age. Nevertheless they suggest that many land-
slides in the basin may be very old.

The maps were scannerized, imported into GRASS,
rectified and georeferenced. The boundary of the main
scarp and of the accumulation zone of each landslide
were then digitized. In the editing phase, a specific
numerical code was assigned to each different digitized
feature: the first digit identifies the landslide element
(main scarp or accumulation), the second the type of
landslide and the remaining five digits are the progres-
sive number of the element.

Only the landslide types with a significant presence,
i.e. rotational slides, flows and complex landslides have
been used for susceptibility analysis. For each of the
three types, landslides have been randomly split into two
groups, the training set, containing about the 75% of
landslides and the validation set, with the remaining
25%.

Factor maps

Given that, as specified above, in the Baganza valley
many landslides are probably very old, only time-
invariant factors can be used. Among them, lithology
and slope angle are globally acknowledged as the most
important ones in affecting landsliding and are intro-
duced in practically all works dealing with landslide
susceptibility assessment since the work of Brabb et al.

(1972). In the Baganza torrent area a detailed geological
map at 1:10,000 scale, delivered also in digitized form by
the Cartographic Office of the Regione Emilia Romagna
and many recent geological maps (Cerrina Feroni et al.
1990; Andreozzi and Zanzucchi 1999; Vescovi 2002;
Cerrina Feroni and Vescovi 2005) are available, making
the construction of a lithological map a rather simple
operation.

The same Cartographic Office also releases digitized
contours lines with a contour interval of 5 m. Therefore
a detailed digital elevation model (DEM), and subse-
quently a slope angle map, were easy to construct
through the GRASS GIS commands. With the DEM it
was immediately possible to construct two other mor-
phometric characteristics which are often used in land-
slide susceptibility analysis: slope aspect, directly derived
from the DEM, and elevation, represented by the DEM
itself properly reclassified. These two layers, combined
with the strata attitudes reported on the above men-
tioned geological maps, made possible the construction
of a map portraying the bedding/slope relations.
Therefore the following five factors were used in the
analysis: lithology, slope angle, slope aspect, elevation
and bedding/slope relations. In defining the LFCs a
distance from the MSUEs of zero cells was adopted for
lithology, whereas for the other four factors, calculated
by a neighboring procedure, a distance of two cells was
preferred.

Lithology

Geological maps in vector format of the area were
joined, updated by the more recent geological surveys
and transformed into raster format. In the area, there
is an overall presence of 36 lithostratigraphic units and
15 drift cover types, for a total of 51 different units. In
running the shell script, these were originally reduced
to 15 lithological classes defined on the basis of the
prevailing rock composition and the structural char-
acteristics. As a bivariate analysis showed that three
classes, namely gravel and sand deposits of the recent
terraces, morainic and palustrine deposits, have no
landslides, these were grouped in the same class in spite
of their lithological and structural differences. So the
final reclassed map was reduced to the following 13
categories: 1 =Surficial deposits; 2 = Talus deposits; 3
= Gravel and sand deposits of the recent terraces,
morainic and palustrine deposits; 4 = Gravel and sand
deposits of the old terraces; 5 = Clays with embedded
limestone and serpentinite blocks; 6 = Marly-limestone
flysch; 7 = Marly-clays; 8 = Thin-bedded sandstones
and mudstones; 9 = Poorly cemented conglomerates;
10 = Scaly clays; 11 = Massive clays; 12 = Poorly
cemented sandstones; 13 = Marls with discrete
coherence.
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The extension of the lithological classes and the
MSUE lengths and densities for each landslide type are
reported in Table 1. One evident characteristic is the
presence of classes with extremely variable extension;
class 6 (marly-limestone flysch) occupies over half of the
area, whereas other lithologies show reduced extensions
and therefore limited statistic significance, as for exam-
ple class 12 with an area of only 0.66 km2.

Considering the total of all the landslide types, a
high density variability among the different lithologies
is evident, with values ranging from nearly 0 in class 3
to over 2,000 m/km2 in classes 7, 9 and 10. The high
densities of classes 7 (2,568 m/km2) and 10 (2,041 m/
km2) are justified by the presence of weak lithologies

(clays and marls) affected by pervasive deformations
that favor, in particular, the flow type. The latter pre-
sents the highest density values precisely in correspon-
dence with the two classes 7 (987 m/km2) and 10
(1,122 m/km2). Complex landslides also show a high
density (1,414 m/km2) in correspondence with class 7,
but a maximum (1,921 m/km2) in the poorly cemented
conglomerates of class 9. The rotational landslides, on
the other hand, present high values in the thin-bedded
turbidites of class 8 (455 m/km2) and in the talus
deposits of class 2 (500 m/km2). The paltry densities of
classes 3 and 4 are obviously justified by the flat
morphology of the terraces and not by the lithological
characteristics.

Table 1 Area and main scarp upper edge (MSUE) length (in m) and density (in m/km2) for each landslide type in the classes of the 5
factors used in the analysis

F C Area Rotational Flow Complex All types

km2 (%) Length Density Length Density Length Density Length Density

1 1 7.5 4.5 918 122 1,526 203 1,942 258 4,386 584
2 1.0 0.6 514 500 552 537 677 659 1,743 1,697
3 6.1 3.6 6 1 13 2 0 0 19 3
4 7.8 4.7 702 90 168 22 0 0 870 112
5 15.1 9.0 5,127 339 9,696 641 10,531 696 25,354 1,515
6 96.7 57.8 28,154 291 22,772 235 66,138 684 117,064 1,210
7 3.9 2.3 648 166 3,862 987 5,529 1,414 10,039 2,568
8 14.9 8.9 6,775 455 6,309 424 1,1787 792 2,4871 1,671
9 1.5 0.9 437 294 212 143 2,853 1,921 3,502 2,358
10 4.2 2.5 676 159 4,754 1,122 3,218 760 8,648 2,041
11 6.3 3.7 1,012 162 2,400 384 6,122 979 9,543 1,525
12 0.7 0.4 275 418 418 635 0 0 693 1,053
13 1.7 1.0 337 203 599 361 154 93 1,090 658

2 1 22.1 13.2 1,242 56 1,695 77 5,224 237 8,161 370
2 29.7 17.7 4,521 152 8,409 283 16,119 543 29,049 979
3 35.3 21.1 7,997 226 15,508 439 25,463 721 48,968 1,386
4 27.8 16.6 8,177 294 11,357 409 22,479 809 42,013 1,512
5 17.9 10.7 7,414 413 6,338 353 14,869 829 28,621 1,595
6 14.3 8.6 6,678 466 4,746 331 1,0445 728 21,869 1,525
7 9.1 5.4 4,292 474 2,594 286 6,442 711 13,328 1,470
8 11.2 6.7 5,259 470 2,632 235 7,910 707 15,801 1,411

3 1 27.6 16.5 6,540 237 7,226 262 19,234 697 33,000 1,196
2 26.3 15.7 8,075 307 7,860 298 17,032 647 32,967 1,252
3 15.7 9.4 6,560 419 5,187 331 8,504 543 20,242 1,293
4 14.1 8.4 5,881 418 6,028 428 8,529 606 20,439 1,453
5 9.7 5.8 2,004 207 4,186 432 6,043 624 12,227 1,263
6 19.4 11.6 4,182 215 6,572 338 1,1843 610 22,572 1,162
7 22.5 13.4 4,597 204 7,133 317 15,022 668 26,742 1,189
8 32.0 19.1 7,706 241 9,088 284 22,556 704 39,350 1,229

4 1 35.1 21.0 3,501 100 9,620 274 18,744 533 31,865 907
2 27.6 16.5 6,589 239 11,786 428 21,787 791 40,162 1,457
3 35.8 21.4 10,361 289 12,722 355 19,457 543 42,540 1,188
4 32.2 19.2 12,624 393 12,959 403 24,918 775 50,501 1,571
5 24.2 14.5 8,552 353 4,349 179 14,867 613 27,768 1,146
6 12.5 7.5 3,954 317 1,845 148 9,178 735 14,977 1,199

5 1 62.8 37.5 18,692 297 17,420 277 46,888 746 83,000 1,321
2 43.0 25.7 12,604 293 11,200 261 27,457 639 51,261 1,193
3 10.0 6.0 5,047 505 1,836 184 7,802 781 14,685 1,470
4 51.6 30.8 9,236 179 22,824 443 26,804 520 58,864 1,142

F Factor (1 Lithology, 2 Slope angle, 3 Aspect, 4 Elevation, 5 Bedding/slope relations), C Classes
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In spite of the above mentioned limits of the bivariate
analysis, these simple observations confirm that lithol-
ogy exerts a substantial control on the landslide density
and type.

Slope angle

The original slope values, ranging from 0� to 77.3�, were
reclassified with the shell script in the following eight
categories with an interval of 5�: 1 = 0–5�; 2 = 6–10�; 3
= 11–15�; 4 = 16–20�; 5 = 21–25�; 6 = 26–30�; 7 =
31–35�; 8 = >35�.

The extension of the classes and the MSUE lengths
and densities for each landslide type are reported in
Table 1. The adopted class interval brought a good
subdivision of the study area as the minimum class
extension is big enough, 5.42%, to allow a statistical
analysis. Analyzing the density values for all landslide
types, the central classes 4, 5, 6, with a slope angle
ranging from 16 to 30� present the highest density val-
ues. Yet, except for the two lower classes (from 0 to 10�),
the differences are not particularly significant. The sit-
uation is different for the different landslide types. In
fact the rotational slides show a constant density incre-
ment along with the increase in steepness, reaching the
maximum in classes 6, 7 and 8, whereas the complex
landslides show their highest density in classes 4 and 5;
finally, the flows have their maximum in classes 3 and 4.
It is therefore evident that flows generate in correspon-
dence with low slope angle values, while rotational slides
require higher values. Complex landslides are generated
in intermediate steepness conditions. As it was already
observed for lithology, this factor also reveals a strict
relationship with landslide density and type.

Slope aspect

If the significance of the previous factors meet with
current research results, the meaning of slope aspect in
explaining instability is still debated as different con-
clusions are drawn by different authors in different areas
and with different techniques. It is generally accepted
that slope orientation affects the exposure to sunlight
and to winds, affecting indirectly other factors that
contribute to landslides, such as precipitation, soil
moisture, vegetation cover and soil thickness. Most au-
thors agree in considering that at middle and high lati-
tudes the N and NW-facing slopes (or S-facing in the
southern hemisphere) are the most favorable to land-
sliding due to their shadier and colder conditions that
favor the accumulation of snow, a higher moisture
content for a longer time and a greater physical weath-
ering (Carrara et al. 1991; Lineback Gritzner et al. 2001;
Fernandes et al. 2004; Lan et al. 2004; Lee et al. 2004;
Tangestani 2004; Moreiras 2005). It is worth noting that

in other studies drier slopes result more favorable to
landsliding (Dai and Lee 2002; Perotto-Baldiviezo et al.
2004; Shresta et al. 2004). For other authors the high
landslide density on specific slope orientation is con-
nected to local conditions as for example the prevailing
direction of winds and storms, the rock structure and
fault orientation, or even the coastal erosion (Larsen
and Torres-Sánchez 1998; Jakob 2000; Lin and Tung
2003; Fernandes et al. 2004; Ayalew and Yamagishi
2005). Finally, others authors, in different areas, did not
notice significant relationships between landslides and
aspect (Çevik and Topal 2003; Ohlmacher and Davis
2003; Ayalew and Yamagishi 2004), while Atkinson and
Massari (1998) found aspect significant for larger and
older dormant landslides, but not for active ones and for
Luzi and Pergalani (1999) aspect shows an influence on
rotational slides, but not on flows and translational
slides.

In the study area, slope aspect has been divided in 9
classes. Classes from 1 to 8 represent the eight angular
sectors 45� wide, whose bisectors correspond to the main
and the secondary cardinal directions; the last class
contains the horizontal cells. The class intervals (values
in degrees, clockwise from north) are the following: 1 =
337.6-22.5 (N); 2 = 22.6–67.5 (NE); 3 = 67.6–112.5 (E);
4 = 112.6–157.5 (SE); 5 = 157.6–202.5 (S); 6 = 202.6–
247.5 (SW); 7 = 247.6–292.5 (W); 8 = 292.6–337.5
(NW); 9 = horizontal.

This factor poses a special problem as the last class,
whose extension is only 0.1 km2 corresponding to the
0.06% of the area, does not really contain an aspect
value, but groups together all the cells whose orientation
cannot be determined. For this reason it was excluded
from the analysis during the reclassification phase. The
extension of the classes and the MSUE lengths and
densities are reported in Table 1.

If we consider all landslides, the class densities do not
show a significant variability, as values range from 1,162
to 1,453. Some small differences can be noted for rota-
tional slides showing higher values in classes 3 and 4 (E
and SE) and for flows with prevailing densities in classes
4 and 5 (SE and S). So this factor, if taken alone, does
not seem to have good explanatory power of landslide
distribution.

Elevation

In general slope failures are considered more frequent at
higher altitudes because of the increase in rainfall and
snowfall and the strength of freeze-thaw cycles. This
relationship is confirmed in some studies (Lin and Tung
2003; Menéndez Duarte and Marqı́nez 2002), whereas in
many other cases, usually due to the interference of
other factors such as lithology, different relationships
are found; for example in Dai and Lee (2002), Zhou
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et al. (2002), Çevik and Topal (2003), Ayalew et al.
(2004), Lan et al. (2004), landslides are mostly distrib-
uted in areas belonging to lower and/or middle elevation
classes. In other studies elevation is shown to have little
impact on the occurrence of landslides (Guzzetti et al.
1999; Lineback Gritzner et al. 2001; Ayalew and Ya-
magishi 2005).

The elevations in the basin, ranging from a minimum
of 169 m to a maximum of 1,492 m., were reclassified
adopting a class interval of 200 m in the following 6
classes: 1 = 169–400; 2 = 401–600; 3 = 601–800; 4 =
801–1,000; 5 = 1,001–1,200; 6 = 1,201–1,492. The
results of the bivariate analysis are reported in Table 1.
Density distribution does not present a significant trend
to indicate a strict relationship between elevation and
landslide density. In fact the highest values are found in
classes 2 and 4 while the low values of class 1 are strongly
influenced by the presence of ample and stable terraced
surfaces in the terminal part of the basin. It is evident
therefore that the different densities are attributable to
other conditions only partly connected to elevation,
confirming that this factor has a poor direct relationship
with landsliding, at least in the investigated area.

Bedding/slope relations

The structural setting is usually considered as affecting
the slope stability, with a different degree of landsliding
strictly connected to the geometric relationship between
bedding attitude and slope (Cruden and Hu 1996).
However this factor is rarely introduced into the analysis
(Atkinson and Massari 1998; Guzzetti et al. 1999; Do-
nati and Turrini 2002; D’Amato Avanzi et al. 2004;
Ercanoglu and Gokceoglu 2004; Ayalew and Yamagishi
2005) probably due to the difficulty in the acquisition of
large sets of reliable attitude data to adequately repre-
sent the structural setting and to the lack of a satisfac-
tory procedure for the transformation of point data to a
continuous surface. The results of statistical analysis are
not univocal. For example Carrara et al. (1991) found
that beds dipping toward the free face facilitate mass-
movement and D’Amato Avanzi et al. (2004) discovered
that downslope class shows the highest landslide pres-
ence, but in the area investigated by Atkinson and
Massari (1998) landsliding is unrelated to the strata/
slope relation and for Donati and Turrini (2002) layers
dipping opposite to the slope have a greater incidence on
landsliding than dip-with-slope layers.

Some years ago a GIS based procedure was imple-
mented in order to define different situations by com-
bining the bedding attitude (dip angle and direction)
with slope geometry (slope angle and aspect) (Clerici
et al. 1993). Examples of the use of the procedure can be
found in Clerici et al. (2002), Donati and Turrini (2002)
and Bednárik et al. (2005). The resulting 13 different
bedding-slope situations are reported in Table 2.

The procedure was applied by using 1,225 attitude
data reported for the study area in the already men-
tioned detailed geological maps at 1:10,000 scale. By a
reclassification operation, classes 1 and 2 (horizontal
and vertical strata) that occupy only 0.21 and 0.33%,
were incorporated into class 3 (inward dipping strata),
of which they represent the two opposing extremes, to
form a single class (new class 1). Class 4, that occupies
about a quarter of the entire area, was reclassified as new
class 2 (cataclinal under-dip). A third new class includes
all classes from 5 to 13 (cataclinal over-dip) that occupy
overall only the 5.97% of the whole area. Finally, all
lithologies without stratification, with an undefined
stratification, or which are strongly deformed, were put
into the new class 4. In summary, the resulting four
reclassified classes are: 1 = horizontal, vertical and in-
ward dipping strata; 2 = outward dipping strata with
slope angle less than dip angle; 3 = outward dipping
strata with slope angle greater than dip angle; 4 = non-
bedded or strongly deformed formations.

In Table 1 the extension of the four classes and their
MSUE lengths and densities are listed. Considering all
landslides types (last column) there are no substantial
differences in the density values, ranging from 1,142 to
1,470 m/km2. Much more meaningful are the results for
each single landslide type. In fact, the rotational slides
have a predominant density (505 m/km2) in class 3,
according to the common opinion of a greater instability
of slopes with outward dipping strata and slope angle
greater than dip angle. Flows indeed show a predomi-
nant density (443 m/km2) in class 4 containing forma-
tions with no stratification, that are mainly the clayey, or
at least the clayey predominant, units. Complex land-
slides are less differentiated even if higher densities are

Table 2 Classes of bedding/slope relations

Class a(�) b(�) c(�) Bedding/slope relations

1 0–5 Any Any Horizontal strata
2 85–90 Any Any Vertical strata
3 5–85 >90 Any Anaclinal (inward dipping)
4 5–85 <90 <0 Cataclinal under-dip

(outward dipping with slope
angle less than dip angle)

5 5–30 0–10 >0 Cataclinal over-dip (outward
dipping with slope angle
greater than dip angle)

6 5–30 10–60 >0
7 5–30 60–90 >0
8 30–60 0–10 >0
9 30–60 10–60 >0
10 30–60 60–90 >0
11 60–85 0–10 >0
12 60–85 10–60 >0
13 60–85 60–90 >0

The 13 classes are defined by different combinations of a, the slope
angle, b, the difference between slope direction and strata direction,
and c, the difference between slope angle and dip angle. The terms
anaclinal and cataclinal (over-dip and under-dip) are taken from
Ayalew and Yamagishi (2005)
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reported in the landslide prone class 3 and in the theo-
retically more stable inward dipping strata of class 1.

Procedure application and analysis of the results

The procedure was applied considering each of the five
single factors and all the possible 2-3-4-5-factor combi-
nations, leading to the construction of 31 different
models of susceptibility zonation. The results are sum-
marized in Table 3 where, for each factor combination,
the theoretical number of UCUs (number of all the
possible factor class combinations) and the actual
number of UCUs (number of combinations actually
present in the area) are reported. For each landslide type
and for the total of all landslides, the validation error
(VE) and the mean deviation (MD) of the UCUs density
values, are also listed.

If all landslide types are considered indistinctly, an
analysis of the table reveals that, in general, the
goodness of validation decreases with the increase of
the number of factors introduced into the analysis. In
fact, whilst the models with a single factor have a VE
varying from a minimum of 3.8 to a maximum of 11.4,
the combinations with four factors have values ranging
from 23.9 to 47.4, with a maximum value of 60.4, for
the combination of all five factors. This result is pre-
dictable considering that most of the factors are strictly
related to each other, providing redundant information,
as is highlighted by the reduction of the number of
UCUs present in comparison with potential UCUs.
Thus the introduction of a large number of factors does
not significantly increase the amount of information fed
into the model, but rather increases the number of
small UCUs, which are not very meaningful from a
statistical point of view. This confirms what was shown
by Carrara and others (1995a, b) and Guzzetti et al.
(1999), for whom an intrinsic limitation of any multi-
variate analysis is that as the number of variables in-
creases the reliability of the model decreases to some
extent.

Table 3 Results of the procedure application to the 31 factor
combinations

FC TNU ANU R F C A

1 13 13 VE 15.9 7.8 13.2 7.7
MD 126 266 434 275

2 8 8 VE 3.5 7.2 2.4 3.8
MD 137 81 135 118

3 8 8 VE 45.0 7.6 0.0 5.3
MD 75 47 42 55

4 6 6 VE 25.6 17.5 0.6 11.4
MD 75 98 102 92

5 4 4 VE 7.0 2.0 3.5 3.8
MD 93 76 92 87

1-2 104 104 VE 11.0 6.1 10.1 8.8
MD 275 341 506 374

1-3 104 104 VE 39.8 7.9 11.0 12.2
MD 230 364 493 362

1-4 78 56 VE 22.6 13.8 17.2 14.5
MD 216 433 656 435

1-5 52 28 VE 8.3 4.6 12.3 6.6
MD 264 430 704 466

2-3 64 64 VE 27.4 7.7 7.1 5.9
MD 158 100 182 147

2-4 48 48 VE 26.8 7.2 5.0 10.7
MD 119 148 158 142

2-5 32 31 VE 7.5 9.4 5.0 4.2
MD 137 157 156 150

3-4 48 48 VE 60.7 9.7 1.7 10.3
MD 142 133 144 140

3-5 32 32 VE 31.6 10.3 10.1 6.3
MD 124 105 149 126

4-5 24 24 VE 18.2 17.0 7.8 12.6
MD 120 189 162 157

1-2-3 832 830 VE 37.5 12.4 15.0 17.2
MD 409 465 711 528

1-2-4 624 437 VE 39.6 12.0 18.7 17.8
MD 361 496 979 612

1-2-5 416 210 VE 17.9 5.8 11.6 9.3
MD 432 554 988 658

1-3-4 624 443 VE 56.2 20.3 25.5 25.0
MD 305 568 1,032 635

1-3-5 416 222 VE 33.4 10.0 17.1 14.6
MD 573 975 1,372 973

1-4-5 312 113 VE 29.7 14.5 21.0 20.7
MD 497 1,769 3,590 1,952

2-3-4 384 384 VE 48.1 7.7 10.4 12.1
MD 290 405 550 415

2-3-5 256 248 VE 26.7 8.9 8.75 9.3
MD 387 330 291 336

2-4-5 192 185 VE 26.4 19.2 12.5 15.7
MD 254 293 279 275

3-4-5 192 192 VE 60.9 21.6 20.9 28.5
MD 219 280 325 275

1-2-3-4 4992 3335 VE 66.1 37.5 35.5 40.6
MD 695 676 1,341 904

1-2-3-5 3328 1612 VE 40.0 21.4 17.7 23.9
MD 778 722 1,829 1,110

1-2-4-5 2496 807 VE 41.1 21.4 26.1 25.9
MD 570 1,026 4,446 2,014

1-3-4-5 2496 824 VE 69.2 33.4 38.3 39.4
MD 553 1,080 2,338 1,324

2-3-4-5 1536 1464 VE 66.8 46.4 44.7 47.4
MD 384 393 579 452

Table 3 (Contd.)

FC TNU ANU R F C A

1-2-3-4-5 19968 5567 VE 87.4 56.2 55.8 60.4
MD 683 646 1,866 1,065

FC Factor combination (1 Lithology, 2 Slope angle, 3 Aspect, 4
Elevation, 5 Bedding/slope relations), TNU Teorethical number of
UCUs, ANU Actual number of UCUs, R Rotational slides, F
Flows, C Complex landslides, A All types, VE Validation error,
MD Mean deviation

956



Also, the dispersal of the density values, expressed
quantitatively by the MD, increases with the number of
included factors. This characteristic is also obvious since
it is connected to the increase of the UCU number. The
low MD values relative to the single factor analysis,
testify a scarce differentiation capacity. These models
produce landslide density values that differ little from
the average density and therefore lead to the absence in
the examined area of the extreme density classes. This is
particularly evident in the case of factor 5 (bedding/slope
relations) as the number of UCU, corresponding to the
number of factor classes (4), produce only four densities,
less than the number of susceptibility classes (5). Also in
the case of factor 1 (lithology), that shows the highest
number of classes (13) and the higher MD (275), the very
low and very high densities are scarcely represented.

It is evident that a good compromise between a good
validation and a high differentiation can be found in the
2 and 3-factor combination models. This is confirmed by
the fact that all the 2-factor models show very good
validations, with VE from 4.2 in the combination 2-5, to
14.5 in the combination 1-4, and an MD from 126 to
466. In the 3-factor models the VE is generally higher,
and the MD much larger ranging from 275 to 1,952.
However, two combinations, namely the 1-2-5 and 2-3-
5, present a very low VE, 9.3, which is comparable to the
VE of the 2-factor models, and the first of them a
noticeably higher MD value, 658. So the 1-2-5 combi-

nation (lithology, slope angle, bedding/slope relations)
appears as the best compromise between a good vali-
dation level and a good dispersion of the density values
and the more suitable for the landslide susceptibility
zonation. The relevant report is represented in Table 4
and the Landslide Susceptibility map in Fig. 5.

As regards the single landslide types, the models for
rotational landslides show bad validation values not
only in the 4 and 5-factor combinations, but also in the
3-factor combinations, with a minimum value of 17.9 (1-
2-5). The best results are in the 2-factor combinations,
with a minimum value of 7.5 in the 2-5 combination and
a slightly higher value of 8.3 in the 1-5 combination.
Considering the higher MD (264 against 137), the latter
model should be used for landslide susceptibility zona-
tion relative to rotational landslides only (Table 5).

Flows show the lowest VE values, with the best re-
sults in the 2 and 3-factor combinations. The lowest
value of 4.6, with a MD of 430, is in the combination 1-
5, but the combination 1-2-5 also gives a very low value
of 5.8 with a remarkably higher MD of 554. So this last
model seems more suitable for a susceptibility zonation
of flow typology (Table 6).

As regards the complex landslides, many 2-factor
models show very good validations, as the combinations
2-3, 2-4, 2-5, 3-4, with a VE respectively of 7.1, 5.0, 5.0,
1.7, but low MD values ranging from 144 to 182. On the
contrary the 3-factor combination 1-2-5, in spite of a

Table 4 Job report for the factor combination 1-2-5 (lithology, slope angle, bedding/slope relations) applied to all landslides

Class Class intervals and extension Validation table

Class interval Extension Train. set Valid. set

(m/km2) (N/km2) (km2) (%) MSUE (m) Length (%) MSUE (m) Length (%) Diff. (%)

1 Very low 0–496 0.0–1.9 16.81 10.0 3,134 1.53 2,364 2.96 1.43
2 Low 497–993 1.9–3.9 11.54 6.9 23,201 11.30 9,676 12.11 0.81
3 Medium 994–1489 3.9–5.8 62.49 37.3 88,725 43.23 36,439 45.62 2.39
4 High 1,490–1,986 5.8–7.8 11.84 7.1 42,379 20.65 15,254 19.10 1.55
5 Very high >1,986 >7.8 8.18 4.9 47,819 23.30 16,145 20.21 3.08
Landslides 56.53 33.8

Total 167.39 100.0 205,258 100.00 79,881 100.00 9.27

Table 5 Job report for the factor combination 1-5 (lithology, bedding/slope relations) applied to rotational slides

Class Class intervals and extension Validation table

Class interval Extension Train. set Valid. set

(m/km2) (N/km2) (km2) (%) MSUE (m) Length (%) MSUE (m) Length (%) Diff. (%)

1 Very low 0–108 0.0–0.5 14.60 8.7 717 1.58 111 0.82 0.76
2 Low 109–217 0.5–1.0 12.71 7.6 3,352 7.37 1,225 9.00 1.63
3 Medium 218–326 1.0–1.5 66.09 39.5 28,525 62.71 8,723 64.04 1.33
4 High 327–435 1.5–2.1 4.93 3.0 3,261 7.17 498 3.66 3.51
5 Very high > 435 > 2.1 12.53 7.5 9,633 21.18 3,025 22.21 1.04
Landslides 56.53 33.8

Total 167.39 100.0 45,580 100.00 13,620 100.00 8.27
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higher, but in any case low, VE of 11.6 has a much more
better MD of 988. For this reason the 1-2-5 model,
whose characteristics are reported in Table 7, seems to
be more suitable for the susceptibility zonation of
complex landslides.

In summary, the 1-2-5 factor combination is the best
model for susceptibility zonation for all the landslides
considered together and for flows and complex land-
slides. The combination 1-5 appears to be the best for
rotational landslides. As regards the contribution of
each single factor, it is interesting to note that in the best
2 and 3-factor models, factor 5, (slope/bedding rela-
tions), is always present (combinations 1-5, 2-5, 3-5, 1-2-
5, 2-3-5). Factor 2 (slope angle) shows to be relevant in
many models, especially if combined with factor 5 (2-5,
1-2-5, 2-3-5). Factor 3 (aspect) appears in three combi-
nations (3-5, 2-3, 2-3-5) and factor 1 (lithology) is
present in the best 1-2-5 and 1-5 models, but it gives
unsatisfactory contributions in all the other combina-
tions. The less significant factor is factor 4 (elevation):
whether considered alone or combined with other
factors, it always presents a bad validation level.

An idea of the effects of changing or adding a factor
in a model can be had by comparing the resulting sus-
ceptibility maps. For example, the comparison between
the two best 3-factor combinations, namely 1-2-5 and 2-
3-5, offers the opportunity to evaluate the difference

between two maps obtained by changing a single factor,
namely factor 1 with factor 3, while the comparison
between the 1-5 model, the best among the 2-factor
combinations, and the 1-2-5 model, makes it possible to
evaluate the effects of introducing one more factor,
namely factor 2. In order to assess the differences, the
landslide susceptibility maps were subtracted from each
other obtaining a difference equal to 0 where the class
values coincide in both the maps, a value of 1 for one
class difference, and so on to a maximum value of 4,
where the class value is 1 in a map and 5 in the other
one. In Table 8 the areas of the resulting difference
classes are reported. In the first comparison, about the
49% of the area has the same class values in both maps,
while the difference of one class affects about the 43% of
the area. A difference greater than 2 has an area of only
the 1.4%. In the second comparison, the class 0 has an
area of about 74% and the class 1 of about 23%, while
the higher classes 2, 3 and 4 together are slightly greater
than 3%. As expected, the three maps do not exhibit
drastic differences mainly as a consequence of the strict
relationship among the factors involved.

Regarding the running time, the complete analysis
consisting in the construction of the susceptibility map
for each of the three landslide types and for all the types
considered together, required a minimum of about four
hours for the models with only one factor, and a maxi-

Table 6 Job report for the factor combination 1-2-5 (lithology, slope angle, bedding/slope relations) applied to flows

Class Class intervals and extension Validation table

Class interval Extension Train. set Valid. set

(m/km2) (N/km2) (km2) (%) MSUE (m) Length (%) MSUE (m) Length (%) Diff. (%)

1 Very low 0–127 0.0–0.7 19.18 11.5 812 1.56 683 2.96 1.40
2 Low 128–254 0.7–1.5 41.89 25.0 13,465 25.79 5,945 25.71 0.08
3 Medium 255–381 1.5–2.2 30.17 18.0 13,780 26.39 5,630 24.35 2.05
4 High 382–509 2.2–2.9 4.10 2.5 2,997 5.74 1,645 7.12 1.38
5 Very high > 509 > 2.9 15.52 9.3 21,156 40.52 9,167 39.64 0.88
Landslides 56.53 33.8

Total 167.39 100.0 52,210 100.00 23,125 100.00 5.79

Table 7 Job report for the factor combination 1-2-5 (lithology, slope angle, bedding/slope relations) applied to Complex landslides

Class Class intervals and extension Validation table

Class interval Extension Train. set Valid. set

(m/km2) (N/km2) (km2) (%) MSUE (m) Length (%) MSUE (m) Length (%) Diff. (%)

1 Very low 0–260 0.0–0.7 19.61 11.7 1,602 1.48 844 1.95 0.46
2 Low 261–520 0.7–1.4 3.86 2.3 2,646 2.45 1,471 3.40 0.94
3 Medium 521–781 1.4–2.1 62.30 37.2 65,932 61.09 28,324 65.33 4.25
4 High 782–1,041 2.2–2.8 17.69 10.6 21,976 20.36 7,893 18.21 2.15
5 Very high > 1,041 > 2.8 7.40 4.4 15,774 14.62 4,691 10.82 3.79
Landslides 56.53 33.8

Total 167.39 100.0 108,950 100.00 43,353 100.00 11.60
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mum of six hours for the 5-factor model, with a Pentium
III 1,000 MHz with a RAM of 256 MB.

Conclusions

The main advantage of the Conditional Analysis meth-
od applied to the Unique Condition Units is its con-
ceptual simplicity. The implementation of an automated
procedure through a shell script makes the method fast
and free of operational errors, making it possible to
construct landslide susceptibility maps for wide areas
quickly and with high resolutions, adopting different
factor combinations and analyzing separately the dif-
ferent landslide types, as performed for the Baganza
basin. Furthermore, the adoption of the open source
GRASS GIS and other free software makes the proce-
dure inexpensive.

The validation procedure furnishes a valuable meth-
od to assess the statistical reliability of landslide sus-
ceptibility zonation and the mean deviation a practical
index to evaluate the UCUs’ capacity to differentiate the
landslide density values. The application of the proce-
dure to the Baganza basin, has confirmed the impor-
tance of lithology and slope angle in explaining landslide
occurrence, especially if associated with slope/bedding
relation factor, even though it can not be excluded that
the introduction of other factors could give similar or
even better results.

For a correct evaluation of the results it must be
considered that the reliability of the final map in pre-
dicting future failures depends strictly on two basic
assumptions:

1. the cells at, or close to, the main scarp upper edge of a
landslide are effective in representing the situation
before the failure occurrence;

2. failures in the future will take place under the same
conditions, defined by conditioning and triggering
factors, which led to past instability, and conse-
quently the predictive capacity relies on the age of
landslides used for the model construction. If a
chronological distinction of the landslides is not
possible and very old landslides are also introduced
into the analysis, as it was the case of the present
work, only time invariant factors should be used, and
the probability of a difference between past and fu-
ture conditions increases, reducing the predictive
power of the model by an indefinable amount.
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Table 8 Differences between susceptibility maps 1-2-5 and 2-3-5 and between 1-5 and 1-2-5

Class difference

0 1 2 3 4

km2 % km2 % km2 % km2 % km2 %

125–235 54.43 49.10 47.58 42.92 7.31 6.59 1.40 1.27 0.14 0.13
15–125 82.43 74.35 24.97 22.53 1.80 1.62 1.59 1.44 0.68 0.06
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l’alta Val Parma (Provincia di Parma).
Atti Tic Sc Terra 40:215–231

Vescovi P (2002) Foglio 216 ‘‘Borgo Val di
Taro’’ della Nuova Carta Geologica
d’Italia 1:50.000. Servizio Geologico
d’Italia, Roma

Vescovi P, Fornaciari E, Rio D, Valloni R
(1999) The basal complex stratigraphy
of the Helminthoid Monte Cassio Fly-
sch: a key to Eoalpine tectonics of the
Northern Apennines. Rivista Italiana di
Paleontologia e Stratigrafia 105:101–
128

van Westen CJ, Rengers N, Soeters R
(2003) Use of geomorphological infor-
mation in indirect landslide susceptibil-
ity assessment. Nat Hazards 30:399–419
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