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The key ingredients to successful real-time reservoir management, also known as a

Bclosed-loop^ approach, include efficient optimization and model-updating (history-

matching) algorithms, as well as techniques for efficient uncertainty propagation. This

work discusses a simplified implementation of the closed-loop approach that combines

efficient optimal control and model-updating algorithms for real-time production optimiza-

tion. An adjoint model is applied to provide gradients of the objective function with respect

to the well controls; these gradients are then used with standard optimization algorithms to

determine optimum well settings. To enable efficient history matching, Bayesian inversion

theory is used in combination with an optimal representation of the unknown parameter field

in terms of a KarhunenYLoeve expansion. This representation allows for the direct

application of adjoint techniques for the history match while assuring that the two-point

geostatistics of the reservoir description are maintained. The benefits and efficiency of the

overall closed-loop approach are demonstrated through real-time optimizations of net

present value (NPV) for synthetic reservoirs under waterflood subject to production

constraints and uncertain reservoir description. For two example cases, the closed-loop

optimization methodology is shown to provide a substantial improvement in NPV over the

base case, and the results are seen to be quite close to those obtained when the reservoir

description is known a priori.

Keywords: adjoint, Bayesian inversion, closed loop, history matching, KarhunenYLoeve,

model updating, optimal control, optimization, reservoir simulation, uncertainty, waterflood

1. Introduction

Real-time model-based reservoir management entails the optimization of

reservoir performance under geological uncertainty. For this to be realized in practice,

a number of algorithmic advances are required. These include fast optimization

procedures, the ability to proficiently incorporate production data to update the

reservoir description in real-time, and efficient techniques for treating geological
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uncertainty. In this paper, we describe procedures for production optimization and

model updating based on the application of optimal control theory, Bayesian inversion

theory, and biorthogonal expansions. The propagation of uncertainty is not considered

here, although this can be very naturally incorporated into the techniques we present

using established methods from other fields [1].

Real-time model-based reservoir management, also referred to as the Bclosed-

loop^ approach, can be explained with reference to figure 1. In the figure, the

BSystem^ box represents the real system over which some cost function, designated

J(u), is to be optimized. In a typical application, J(u) might be net present value (NPV)

or cumulative oil produced. The system consists of the reservoir, wells, and surface

facilities. Here u is a set of controls including, for example, well rates and bottom hole

pressures (BHP), which can be controlled to maximize or minimize J(u). It should be

understood that the optimization process results in control of future performance to

maximize or minimize J(u), and thus the process of optimization cannot be performed

on the real reservoir, but must be carried out on some approximate model. The Blow-

order model^ box represents the approximate model of the system, which Y in our case Y
is the simulation model of the reservoir and facilities. This simulation model is a

dynamic system that relates the controls u to the cost function J(u). Since our

knowledge of the reservoir is generally uncertain, the simulation model and its output

are also uncertain.

The closed-loop process starts with an optimization loop (marked in blue in

figure 1 Y note that colors refer to the online version) performed over the current

Figure 1. Schematic layout of the closed-loop optimal control approach (from Jansen et al. [3]).
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simulation model to maximize or minimize the cost function. This optimization must

be performed, in general, on an uncertain simulation model. The optimization provides

optimal settings of the controls u for the next control step. These controls are then

applied to the real reservoir (as input) over the control step, which impacts the outputs

from the reservoir (such as water cuts, BHP, etc.). These measurements provide new

information about the reservoir, and therefore enable the reservoir model to be updated

(and model uncertainty to be reduced). This is called the model-updating loop, marked

in red in figure 1. The optimization loop can then be performed on the updated model

over the next control step, and the process repeated over the life of the reservoir.

As indicated above, the closed-loop approach for efficient real-time optimiza-

tion consists of three key components: efficient optimization algorithms, efficient

model-updating algorithms, and techniques for uncertainty propagation. In this work

we present a simplified implementation of the closed-loop approach that combines

efficient optimal control algorithms and model-updating procedures. Uncertainty

propagation is not considered here. Neglecting uncertainty propagation essentially

means that the closed-loop process is applied to a single realization of the uncertain

parameters; e.g., the maximum likelihood estimate, which is updated at every

control step. Such a procedure can be expected to provide near-optimal results in

many cases, although the treatment of uncertainty will of course be important in

many applications. The entire loop and an application are discussed by Sarma et al.

[2].

The key ideas behind closed-loop reservoir management have been known to the

oil industry for quite a while, although different names and forms have been used to

describe them [3]. Most of the earlier work on closed-loop control was geared toward

short-term production optimization, and references for such approaches can be found

in [4]. Although relatively little information is required to apply these techniques,

long-term production performance is not really optimized as the effect of future events

is not taken into account during the optimization process. It has only been recently that

closed-loop long-term production optimization has generated some interest. In

particular, Brouwer et al. [4] used adjoint models for optimization and Kalman filters

for model updating. Adjoint models allow for very efficient optimization, although

their implementation can be complicated. The ensemble Kalman filter has only been

recently applied for history matching [5]. Although this approach is relatively easy to

implement [5, 6], its efficiency compared to established methods such as adjoint

models may be an issue. Aitokhuehi and Durlofsky [7] used conjugate gradient

algorithms with numerical gradients for optimization and the probability perturbation

method [8] for model updating. The use of numerical gradients and the stochastic

probability perturbation method makes the implementation quite easy, but both

algorithms are very expensive computationally, which may limit the use of this

procedure in practical settings.

In this work, we apply an adjoint model for the efficient calculation of gra-

dients of the objective function with respect to the controls, which are then used
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by gradient-based optimization algorithms such as sequential quadratic program-

ming (SQP) [9] for optimization. For the model-updating procedure, we use Bayesian

inversion theory and apply an efficient parameterization of the permeability field

using the KarhunenYLoeve (KYL) expansion. This allows us to describe the un-

certain parameter field (e.g., permeability), in terms of two-point statistics, using

very few parameters. A key advantage of the KYL description is that these param-

eters can be continuously varied while maintaining the underlying geostatistical

description. As a result, adjoint techniques can be applied for the history matching

while preserving some degree of geological realism. This procedure is much faster

than stochastic algorithms and, unlike standard gradient-based algorithms, implicitly

honors the geology.

The use of adjoints for optimization and history matching has been the focus of

active research for the past few decades. Ramirez and coworkers used it to optimize

surfactant flooding [10], carbon dioxide flooding [11], and steam flooding [12].

Zakirov et al. [13] applied adjoint models to optimize production from a thin oil rim.

Optimization of water flooding using adjoints has been studied by many researchers

including Asheim [14], Virnovsky [15], Sudaryanto and Yortsos [16], and recently by

Brouwer and Jansen [17]. The use of adjoints for history matching was pioneered by

Chen et al. [18] and Chavent et al. [19], who applied it to single-phase problems. Since

then, many other researchers have modified and improved the application of adjoint

models for multiphase history matching including Wasserman et al. [20], Watson et al.

[21], Wu et al. [22], Li et al. [23], Wu and Datta-Gupta [24], and Zhang et al. [25].

Gavalas et al. [26] introduced the use of an eigenfunction expansion for the efficient

parameterization of reservoir properties, which was also used later by Oliver [27] and

Reynolds et al. [28].

This article proceeds as follows. Sections 2 and 3 briefly describe the optimal

control algorithm, and sections 4 and 5 describe the model-updating algorithm. These

two elements are combined in a sequential manner to perform optimization for an

uncertain reservoir description, as described in section 6. Two variants of the im-

plementation of the model-updating algorithm within the closed loop are discussed.

Next, the efficiency and applicability of this approach is demonstrated through a real-

time dynamic water-flood optimization of a synthetic reservoir under production

constraints and with an uncertain permeability field. The closed-loop optimization

methodology is shown to provide a substantial improvement in NPV and sweep

efficiency over the base case, and the results are quite close to those obtained with

known geology.

2. Mathematical formulation of the problem

The production optimization problem under uncertainty as discussed above

requires finding a sequence of control vectors un for n = 0, 1, . . . , N j 1, where n is the
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control step index and N is the total number of control steps, to maximize (or

minimize) a performance measure J(u0, . . . , uNj1). Our procedure for this optimization

is discussed in detail by Sarma et al. [29], so our description here will be brief. The

problem can be written as follows:

max
un

J ¼ � xNð Þ þ
PN�1

n¼0

Ln xnþ1; un;mð Þ
� �

8n 2 0; . . . ;N � 1ð Þ

subject to:

gn xnþ1; xn; un;m
� �

¼ 0 8n 2 0; . . . ;N � 1ð Þ

x0 ¼ x0 Initial Conditionð Þ

cn xnþ1; un;m
� �

� 0 8n 2 0; . . . ;N � 1ð Þ

Aun � b 8n 2 0; . . . ;N � 1ð Þ

LB � un � UB 8n 2 0; . . . ;N � 1ð Þ

ð1Þ

Here, xn refers to the dynamic states of the system (pressures, saturations,

compositions, etc.) and m refers to model parameters (permeability, porosity, etc.),

which are assumed to be time invariant. Uncertainty enters the optimization due to

uncertainty in m. The cost function J consists of two terms. The first term � is a

function only of the dynamic states of the last control step (e.g., abandonment cost).

The second term is a summation over all control steps and consists of the kernel Ln,

which is known as the Lagrangian in control literature [30]. Note that this definition is

different from that of classical mechanics. Here it will involve the oil and water rates

at each time step. The Ln term is treated fully implicitly because it involves quantities

that are functions of well parameters.

The set of equations, gn, together with the initial condition, defines the dynamic

system. In the current application, gn is the fully implicit reservoir simulation

equations written for each grid block at each time step:

gn xnþ1; xn; un;m
� �

¼ Accumulation terms� Flux terms�Well terms ð2Þ

The last three equations of equation (1) define additional constraints for the controls Y
nonlinear constraints, linear constraints, and bounds. These equations constrain the

controls directly, as opposed to the simulation equations (equation (2)) that constrain

only the dynamic states. Note that the linear constraints are separately written from the

nonlinear constraints as these and the bounds on controls are directly handled by the

constrained optimization algorithm used (sequential quadratic programming [9]).

3. Optimal control with adjoint models

To perform the optimization component of the closed-loop (marked in blue in

figure 1) with gradient-based methods, an efficient approach to calculate the gradients
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of the cost function J(u0, . . . , uNj1) with respect to controls un is required. The most

efficient method of calculating these gradients entails the use of the adjoint equations.

The adjoint equations are obtained from the necessary conditions of optimality of the

problem defined by equation (1); these optimality conditions are given by the calculus

of variations [30]. The key result is that the cost function of equation (1) constrained

by the dynamical system can be written in terms of an augmented cost function:

JA ¼ � xN
� �

þ
XN�1

n¼0

Ln xnþ1; un;m
� �

þ �T0 x0 � x0
� �

þ
XN�1

n¼0

�T nþ1ð Þgn xnþ1; xn; un;m
� �

ð3Þ

Treatment of the other constraints is similar and is discussed in [29]. The vectors �n

are Lagrange multipliers; one such multiplier is required for each constraint with

which the cost function is augmented. For optimality of the original problem as well as

the augmented cost function, the first variation of the augmented cost function must

equal zero [30]. The first variation of JA is given by:

�JA ¼
@�

@x

�
�
�
�
x¼xN

þ @LN�1

@xN
þ �TN @gN�1

@xN

� �

�xN þ
XN�1

n¼0

gn½ ���T nþ1ð Þ þ x0 � x0
� �

��T0

þ
XN�1

n¼1

@Ln�1

@xn
þ �T nþ1ð Þ @gn

@xn
þ �Tn @gn�1

@xn

� �

�xn þ
XN�1

n¼0

@Ln

@un
þ �T nþ1ð Þ @gn

@un

� �

�un

ð4Þ

Note that variation of m does not appear in equation (4) as m is independent of un.

Since the variations of xn, un, and �n are independent of one another, each of these

terms must vanish for optimality [30]. The gn��T(n+1) and (x0 j x0)��T0 terms are zero

by definition. The terms involving �xn will vanish if �n satisfies:

�Tn ¼ � @Ln�1

@xn
þ �T nþ1ð Þ @gn

@xn

� �
@gn�1

@xn

� ��1

8n ¼ 1; :::;N � 1

�TN ¼ � @�

@x

�
�
�
�
x¼xN

þ @LN�1

@xN

� �
@gN�1

@xN

� ��1

Final Conditionð Þ
ð5Þ

Equation (5) defines the adjoint model. Because the Lagrange multipliers �n depend

on �n+ 1, the adjoint model is solved backwards in time, with the second equation

above providing � at the last time step (i.e., the initial condition for the backward

integration). Equation (4) can now be written as:

�JA ¼
XN�1

n¼0

@Ln

@un
þ �T nþ1ð Þ @gn

@un

� �

�un ð6Þ
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Thus the gradients of the cost function with respect to the controls are given as:

dJ

dun
¼ dJA

dun
¼ @Ln

@un
þ �T nþ1ð Þ @gn

@un

� �

8n 2 0; . . . ;N � 1ð Þ ð7Þ

These gradients can be used with any gradient-based algorithm to determine the new

search direction and thereby the new un. The basic steps required for gradient-based

optimization with adjoints, as given in [29], are as follows:

1. Solve the forward model equations for all time steps with given initial condition

and initial control strategy. Store the dynamic states at each time step.

2. Calculate the cost function with results of the forward simulation.

3. Solve the adjoint model equations using the stored dynamic states to calculate the

Lagrange multipliers with equation (5).

4. Use the Lagrange multipliers to calculate the gradients using equation (7) for all

control steps.

5. Use these gradients with any gradient-based optimization algorithm to choose new

search direction and control strategy.

6. Repeat process until optimum is achieved, that is, all gradients are sufficiently close

to zero.

This is a very efficient procedure, as the time required to solve the adjoint model

(and to calculate all of the required gradients) is about the same as that needed for the

forward simulation. For further algorithmic details on our implementation of the

adjoint model within the context of a fully implicit general-purpose reservoir

simulator, and for a description of the treatment of nonlinear constraints, refer to [29].

4. Model updating as a minimization problem

A number of techniques are available for the history-matching problem.

Gradient-based procedures are in general very efficient, but standard implementations

suffer from two limitations. First, they tend to find local, rather than global, minima.

Although this is the case to some extent with all history-matching algorithms,

stochastic optimization techniques introduce a random component to sample the

parameter space more broadly. The second limitation inherent in standard gradient-

based techniques is that geological constraints are not preserved. This occurs because,

during the optimization, geostatistical correlations between model parameters are not

maintained.

The technique applied here circumvents this latter difficulty by introducing an

efficient parameterization of the permeability field in terms of the KarhunenYLoeve
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expansion (the KYL expansion, described in more detail below, is essentially an

eigenfunction expansion) [26Y28]. Because the parameters appearing in the KYL

expansion are uncorrelated, any set of these parameters provides a permeability field

that honors the underlying two-point geostatistics. Thus, these parameters can be

varied in any way to achieve a history match. The technique is much more efficient

than stochastic search procedures and has the additional advantage that much of the

adjoint code developed for the production optimization problem can also be applied

with some modifications to the history-matching problem.

The model-updating component of the closed loop is a problem of inversion of

production data (well pressures and flow rates) in order to determine reliable estimates

of uncertain model parameters (porosity and permeability). Within the context of

Bayesian inverse modeling, the solution to the general inverse problem consists of

combining all prior information as given by the prior probability density of the

observed data d, given by �D(d), the prior probability density of the model parameters

m, given by �M(m), and the forward model d = f(m) to determine the posterior

probability density of the model parameters �M(m) given by the following general

equation [31]:

�M mð Þ ¼ k�M mð Þ�D f mð Þð Þ ð8Þ

where k is a constant. The most general solution for solving any nonlinear inverse

problem involves determining the entire probability distribution �M(m), which requires

an extensive exploration of the model space, usually accomplished using random

search techniques such as a Monte Carlo method [31].

For the case of history matching, however, solving the forward model d = f (m) is

usually very time-consuming, and in practical cases a single evaluation can take

several hours of computation. Therefore we must often be satisfied with the

determination of the maximum likelihood and a reasonable estimate of the dispersion

of the distribution around it. This is generally accomplished through least-squares

techniques, which is a special case of equation (8), when both the prior probability

densities �M(m) and �D(d) are Gaussian. Under these assumptions, the model-

updating problem reduces to the minimization of the following misfit function, where

CD and CM are the data and parameter prior covariance matrices [31]:

S mð Þ ¼ f mð Þ � dobsð ÞT C�1
D f mð Þ � dobsð Þ þ m� mprior

� �T
C�1

M m� mprior

� �
ð9Þ

In the general problem of model updating, the forward model d = f(m) (simulation

equations and outputs) is not only a function of the model parameters m, but is also a

function of the dynamic states x (grid pressures, saturations, etc.) and a set of controls

u (well rates, bottom hole pressures, etc.), that is, dn = f (xn+1, un, m), where n is the

time-step index (m is assumed to be time-invariant). The dynamic states x are
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functions of both m and u. Thus the mathematical formulation of the general model-

updating problem is as follows:

min
m

S ¼ m� mprior

� �T
C�1

M m� mprior

� �
þ
PN�1

n¼0

Ln xnþ1; un;mð Þ
� �

8n 2 0; . . . ;N � 1ð Þ

subject to:

gn xnþ1; xn; un;m
� �

¼ 0 8n 2 0; . . . ;N � 1ð Þ
x0 ¼ x0 Initial Conditionð Þ
m 2 Geologically Consistent Realizations

ð10Þ

The Lagrangian Ln(xn + 1, un, m) has the following form for the history-matching

problem (assuming that measurement uncertainties are independent):

Ln xnþ1; un;m
� �

¼
XNw

i¼1

f n
i xnþ1; un;mð Þ � dn

obsi

�n
i

( )2

ð11Þ

Here �i
n is standard deviation of the measured data and Nw is number of wells. The set

of equations gn(xn + 1, xn, un, m) = 0, together with the initial condition x0 = x0, refers to

the reservoir simulation equations (forward model) that constrain the dynamic states x.

The geological constraints (last set of constraints in equation (10)) are required

because production data on its own is not fully constraining. Even with these

geological constraints the system is still not fully constrained, but the use of these

constraints guarantees that the resulting m will be consistent with the geostatistical

description.

5. Bi-orthogonal expansions and adjoints for updating

As noted before, standard gradient-based algorithms will not maintain the

necessary geological constraints. As a result, although the objective function might be

reduced by a large amount, the final m may not be geologically realistic, which may in

turn result in poor predictions. By introducing the KYL expansion of the random

parameter field m, the problem defined in equation (10) is transformed such that the

geological constraints (as defined by the covariance matrix of m) are implicitly

honored. In addition, the number of parameters defining m is decreased significantly,

resulting in a greater reduction of the uncertainty envelope compared to the direct

solution of the original problem [27, 28].

The KarhunenYLoeve expansion is a very powerful tool for representing

stationary and nonstationary processes with explicitly known covariance functions.

Any random field or process can be represented as a series expansion involving a

complete set of deterministic functions with corresponding random coefficients [32].

This method provides a second-moment characterization in terms of random variables
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and deterministic functions. The use of KYL expansion with orthogonal deterministic

basis functions and uncorrelated random coefficients has generated interest because of

its biorthogonality property, that is, both the deterministic basis functions (eigenfunc-

tions) and the corresponding random coefficients are orthogonal. This allows for the

optimal encapsulation of the information contained in the random process into a set of

discrete uncorrelated random variables. For a random field m(x, �) with a finite

variance and a mean m(x), the KYL expansion in continuous form is given as [33]:

m x; �ð Þ ¼ m xð Þ þ
X1

i¼1

ffiffiffiffi
�i

p
fi xð Þ�i �ð Þ ð12Þ

Here, x is the spatial (or temporal) variable, � is a random event, �i(�) is a set of

uncorrelated random variables, and �i and fi(x) are the eigenvalues and eigenfunctions

of the covariance function C(x1, x2) of m(x, �). By definition, C(x1, x2) is bounded,

symmetric, and positive definite. Following Mercer’s theorem [32], C has the

following spectral or eigen decomposition:

C x1; x2ð Þ ¼
X1

i¼1

�i fi x1ð Þfi x2ð Þ ð13Þ

Because reservoir simulation models are defined on discrete grids, we are more

interested in the discrete form of the KYL expansion. The truncated KYL expansion of

the correlated (geologically constrained) random variables m is given as:

m½ �H ;1 ¼ �½ �H ;K �½ �K;K �½ �K;1 þ m½ �H ;1 ð14Þ
Here, � is the matrix of the eigenvectors corresponding to the K largest eigenvalues of

the covariance matrix CM, � is a diagonal matrix consisting of the K largest standard

deviations (square roots of eigenvalues), � is a vector of uncorrelated random variables

with zero mean and unit variance (dimension K), and m is the expected value of m. In

practice, K << H, where H is the dimension of m (e.g., if the geology is characterized

by porosity and isotropic permeability, H = 2Nb, where Nb is the total number of grid

blocks in the problem). Thus m is represented by a much smaller set of parameters �.
Using this expansion for m, the proposed formulation of the model-updating problem

is as follows:

min
�

S ¼ m �ð Þ � mprior �ð Þ
	 
T

C�1
M m �ð Þ � mprior �ð Þ
	 


þ
PN�1

n¼0

Ln xnþ1; un;m �ð Þð Þ
� �

8n 2 0; :::;N � 1ð Þ
subject to:

gn xnþ1; xn; un;m �ð Þð Þ ¼ 0 8n 2 0; . . . ;N � 1ð Þ
x0 ¼ x0 Initial Conditionð Þ

ð15Þ

The problem is thus formulated with � as the unknown parameters. Since the

components of � are uncorrelated, the optimization (minimization) algorithm is free to
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modify � in any manner; i.e., whatever the values of �, the set of m obtained from them

using equation (14) will always be correlated according to the correlation structure of

the covariance matrix. Thus any gradient-based algorithm can be used to accomplish

the minimization using � as the unknowns while at the same time honoring the

geological constraints for m.

As in the optimization problem, an adjoint model is used to calculate the

gradients of the objective function S with respect to the parameters �. Using the same

approach as in the production optimization problem (i.e., adjoining the dynamic

system to the objective function), the adjoint model is derived as:

�Tn ¼ � @Ln�1

@xn
þ �T ðnþ1Þ @gn

@xn

� �
@gn�1

@xn

� ��1

8n ¼ 1; :::;N � 1

�TN ¼ � @LN�1

@xN

� �
@gN�1

@xN

� ��1

Final Conditionð Þ
ð16Þ

After � is calculated using the adjoint model, the derivative of S with respect to m is

calculated as:

dS

dm
¼
XN�1

n¼0

@Ln

@m
þ �T nþ1ð Þ @gn

@m

� �

þ 2C�1
M m� mprior

� �	 
T ð17Þ

Equation (17) can be used to calculate the gradient of S with respect to � using the

chain rule and equation (12):

dS

d�
¼ dS

dm

dm

d�
¼

XN�1

n¼0

@Ln

@m
þ �T nþ1ð Þ @gn

@m

� �

þ 2C�1
M m� mprior

� �	 
T

" #

�½ � �½ � ð18Þ

This completes the description of the history-matching procedure. Many of the main

components of this adjoint, such as ¯gnj1/¯xn, are already calculated and stored for

the production optimization problem, and can thus be easily reused, leading to added

efficiency. We note that the use of the Jacobian from the fully implicit forward

problem in the history matching algorithm was previously introduced by Li et al. [23].

6. Implementation of the closed loop

The formulation of the closed loop (without uncertainty propagation) can be

implemented very efficiently with the components discussed above. The main steps

required to complete the loop are as follows:

1. From the prior model of the uncertain but correlated parameter field, calculate the

covariance matrix, either numerically or analytically. Note that the covariance

model may be nonstationary.
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2. Perform KYL expansion to determine the eigenvectors and eigenvalues of the

covariance matrix. Retain only the largest eigen-pairs; the number to be retained can

be determined from the percentage of the total energy contained in the eigen-pairs.

3. Perform optimization from control step k to Nt, (total control steps) starting with

k = 1, that is, the first control step, using the current maximum likelihood estimate

of the parameter field m.

4. Apply the optimized trajectory of the controls on the Btrue^ reservoir from control

step k to k + 1, and record the reservoir response for this time period. This provides

the Bdata^ to be used for history matching.

5. Perform model updating to assimilate new data. Updating can be performed from

control step 1 to the step k + 1, that is, assimilate new data and reassimilate earlier

data, or from step k to k + 1, that is, only assimilate new data.

6. Perform optimization step 3 for the next control step, that is, k = k + 1, with the new

maximum likelihood estimate of the parameter field obtained from step 5. Repeat

steps 3 to 6 until k = Nt.

Some of the above steps require further elaboration. If the prior model of the

parameter field is multi-Gaussian, the covariance matrix can be calculated analytically.

In general, especially if the prior model is obtained from multi-point geostatistics, the

covariance matrix must be calculated numerically from a large number of realizations

of the prior model. The covariance matrix will be nonstationary if prior conditioning

data such as hard data are present. The KarhunenYLoeve expansion can be performed

using singular value decomposition (SVD). However, since the standard implementa-

tion of SVD is a very expensive process, special techniques such as the Lanczos

algorithm [34] for determining only the dominant eigen-pairs may be used.

For each optimization step, the optimization process must be performed to the

last control step Nt, even though only the trajectory from step k to k + 1 is actually

applied on the Btrue^ reservoir. This is because we are interested in long-term

optimization, and future events (beyond step k + 1) can have significant impact on the

optimal trajectory from step k to k + 1. However, if the maximum likelihood estimate

of the parameter field does not change much from one update to the next, the optimal

trajectory obtained in the next optimization loop should not be very different from the

last optimization, and therefore, techniques such as neighboring optimal control [30]

might be used for added efficiency.

The two methods to perform data assimilation discussed in step 5 constitute the

two variants of the model-updating process considered here. The traditional approach

to history matching is to use all existing data at any given time to execute the updating

process, even though some of that data may have been previously assimilated. This is

required to maintain consistency (history match) with all existing data if the standard

form of the least square error is used as the objective function (without the prior term

as in equation (15)).

The updating process can, however, be made much more efficient by performing

the update only from step k to k + 1, that is, only assimilating new data. Consistency
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with previously assimilated data can be maintained approximately by using the prior

term in the objective function (equation (15)), with each new updating step starting

with the maximum likelihood estimate from the previous step as mprior and the poste-

rior covariance matrix from the previous step as the new prior covariance CM. The

covariance changes from one step to the next because the dynamic data being assimi-

lated introduces correlations into � (independent initially by construction) after each

model update. As a result, at each model-updating step, a new KYL expansion must be

performed on the small covariance matrix of � (designated C�) but not on CM (C� is of

dimension 20 � 20 in the example below, as opposed to 2,025 � 2,025, the size of

CM). This KYL expansion of the now correlated � then replaces the vector � in equation

(14), thus giving a new set of independent �, used for updating the next control step.

Because C� generally reduces from step to step as new data are assimilated, the

m associated with different choices of � will look increasingly similar to the most

recent mprior. Using this approach, previously assimilated data, although not directly

assimilated from step k to k + 1, appear indirectly through mprior and C�. Further, as we

proceed from one control step to the next, since C� reduces (i.e., the variance of �
reduces), the weight of the prior term in the objective function increases, implying that

deviation from mprior becomes more difficult as time proceeds. This can be helpful in

alleviating problems such as those observed in [4], where late-time updates became

problematic, presumably due to the assimilation of noise.

The total time required to perform one cycle of the closed loop at control

step k can be quantified in terms of the total number of simulations required. One

iteration of the optimization algorithm requires an equivalent of two simulations (from

k = k to Nt) to calculate the gradients (if constraints are implemented internally) and

1Y4 simulations (from k = k to Nt) to calculate the step size in the search direction

(using sequential quadratic programming). Typically, 4Y6 iterations result in

substantial improvements in the objective function. Similarly, for the model-updating

component, using the first approach, an equivalent of two simulations (from k = 1

to k) is required to calculate the gradients and 1Y4 simulations (from k = 1 to k) to

calculate the step size in the search direction. Using the second approach for model

updating, the simulation length is reduced to one control step. Usually, about 5Y10

iterations result in convergence. Thus, if we update the reservoir model and controls

10 times over the course of the simulated production, the equivalent of about 300 (120

for optimization + 180 for model updating) complete simulations (from k = 0 to Nt)

would be required under the first approach, compared to about 155 (120 for

optimization + 35 for model updating) complete simulations using the second

approach.

7. Case study YY dynamic waterflooding

The closed-loop approach discussed above is now applied to an idealized

example case somewhat similar to that used by Brouwer et al. [4]. This case was
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chosen primarily because it effectively demonstrates the applicability of adjoint-based

optimization to smart well control and because it illustrates that the model-updating

approach can be successfully used with realizations based on multipoint (as opposed to

two-point) geostatistics. In addition, this example allows us to qualitatively compare

our model-updating approach to Kalman filters as used by Brouwer et al. [4].

The schematic of the reservoir and well configuration is shown in figure 2.

The model consists of one horizontal Bsmart^ water injector and one horizontal

Bsmart^ producer, each having 45 controllable segments. The reservoir covers an area

of 450 � 450 m2 and has a thickness of 10 m and is modeled by a 45 � 45 � 1

horizontal 2D grid. The fluid system is essentially an incompressible two-phase unit

mobility oilYwater system, with zero connate water saturation and zero residual oil

saturation.

In order to apply the closed-loop approach, one or more of the reservoir

properties must be unknown. For this example, permeability is assumed to be

unknown and will be updated by assimilating production data. Further, it is assumed

that we have some prior knowledge of the reservoir, which informs us that the

reservoir is a fluvial channelized reservoir as depicted by the training image [35]

shown in figure 3, with the channel sand permeability being about 10 Darcy and the

background sand permeability about 500 mDarcy. The contrast in permeability be-

tween the high-permeability sand and the background reservoir is about a factor of

20, and it is this heterogeneity that makes the optimization results interesting.

Figure 2. Schematic of reservoir and wells for example case (from Brouwer and Jansen [17]).
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Figure 3. Training image used to create the original realizations (from Strebelle [35]).

Figure 4. Some of the realizations created with snesim [35]; realization 9 is assumed to be the Btrue^
realization for case 1 and realization 8 is the initial guess.
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Figure 4 shows some unconditioned realizations of the permeability field

generated using the snesim software [35] with the training image of figure 3. To

validate our closed-loop approach, a Btrue^ realization is required, against which the

optimization and model updating results can be compared. Realization 9 from figure 4

is taken to be the Btrue’’ reservoir. Note that although we are using unconditioned

realizations for this example, realizations conditioned to hard data can be used just as

easily with this approach. In the absence of any other data, all realizations obtained

from snesim are equiprobable; thus any realization could be chosen as an initial guess.

Figure 5. Energy retained in the first 100 eigen-pairs.

Figure 6. Reconstruction of Btrue^ realization with 20 eigen-pairs.
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We choose realization 8 to be the initial guess. Note that the connectivity and the

location of the channels are quite different in these two realizations, and therefore the

nature of the production data would also be very different, particularly in terms of

important features such as breakthrough times.

KarhunenYLoeve expansion is performed using the covariance matrix created

from 1,000 initial realizations. The energy retained in the eigen-pairs is plotted in

figure 5. We observe that most of the energy is associated with the first few eigen-

pairs. Figures 6 and 7 show the reconstructions of the true and initial permeability

Figure 7. Reconstruction of initial realization with 20 eigen-pairs.

Figure 8. Final oil saturations after one PV injection for reference case with Btrue^ realization.
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fields using 20 eigen-pairs. It is clear that although the long correlation structures (low

frequencies) are essentially preserved, the smaller correlation structures (high

frequencies) are lost, which results in a smoothing effect. Although this smoothing

results in an approximation of the actual multipoint geostatistics, it is beneficial in that

it provides smoother gradients, which in turn leads to better convergence behavior of

the minimization algorithm. For the purpose of model updating, we chose to retain

only 20 eigen-pairs; this corresponds to about 70% of the total energy.

For purposes of optimization, the injector segments are placed under rate control,

and the producer segments are under BHP control. There is a total injection constraint

of 2,700 bbl/day (STBD); thus the optimization essentially results in a redistribution of

this water among the injection segments. There are also bounds on the minimum and

maximum rates allowed per segment, as well as bounds on the BHP of the producers,

which could, for example, correspond to bubble point pressures or fracture pressures.

The model is produced until exactly one pore volume of water is injected, which

corresponds to around 950 days of injection. This time period is divided into seven

control steps of 30, 60, 100, 190, 190, 190, and 190 days. Thus the total number of

controls is equal to (45 + 45) � 7 = 630. All constraints in this problem are linear with

respect to the controls. These seven control steps also correspond to the model-

updating steps. The injection BHP and producer water and oil rates from the Btrue^
model are used as data to update the permeability field. Since these measurements are

Figure 9. Final oil saturations after one PV injection for optimization with Btrue^ realization.
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Figure 10. Injection rate variation with time for optimization with Btrue^ realization.

Figure 11. Producer BHP variation with time for optimization with Btrue^ realization.
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Figure 12. Permeability field updates with model updating performed using all available data and without

prior term in objective.
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synthetic, they are noise-free, although in reality these measurements would also

contain noise, which can be accounted for using CD.

In order to understand the benefit of any optimization process, it is usual to

compare the optimization results against a base or reference case. In the case of

production optimization, such a base case would be a reasonable production strategy

that an engineer might devise given a simulation model and a set of constraints. For

the purpose of this case study, the base case is a constant rate/constant BHP production

strategy. The 2,700 STBD of injection water is distributed among the 45 injection

segments according to their kh, which corresponds to an uncontrolled case. The

producer BHP are set in such a way that a balanced injectionYproduction is obtained,

meaning that total liquid injection is equal to total liquid production.

The objective of the optimization process is to maximize net present value

(NPV), defined by the equation below:

Ln ¼ �tn

1þ �ð Þtn

XNp

j¼1

Popqn
o; j � Cwpqn

wp; j

h i
�
XNI

j¼1

Cwiq
n
wi; j

" #

ð19Þ

Here Dt is the length of the control step, Pop is the oil price/bbl, qo is the oil production

rate, Cwp is the water production costs/bbl, qwp is the water production rate, Cwi is the

Figure 13. Final oil saturations after one PV injection for optimization with model updating using first

approach.
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water injection cost/bbl, qwi is the water injection rate, Np is the number of producers,

NI is the number of injectors, and � is the discounting factor. The NPV discounting

factor � is set to zero, meaning that the effect of discounting is neglected. Thus,

maximizing NPV is essentially maximizing cumulative oil production and minimizing

cumulative water production. The oil price is conservatively set at 80 $/m3, water

injection costs at 0 $/m3, and water production costs at 20 $/m3. It should be noted that

it is relatively easy to vary these cost/prices with time or to implement uncertainty

models for them.

The optimization process is first demonstrated assuming that the Btrue^
permeability field is known, and to realize the benefit of the process, it is compared

against the reference case, also evaluated using the Btrue^ permeability. This

constitutes what is known as an Bopen-loop^ optimization. Starting from 100% oil

saturation throughout the reservoir, figures 8 and 9 show the final oil saturations for

the uncontrolled and the optimized case after exactly 1 PV of water has been injected.

It is clear that the optimization leads to a substantial improvement in the sweep

efficiency, leading to the increase in NPV of almost 100%.

The reasons behind the better sweep in the optimized case can be readily

explained by analyzing the optimized trajectories of the controls Y rates/BHP of the

injectors and producers Y as seen in figures 10 and 11. The y-axis of figure 10

Figure 14. Injection rate variation with time for optimization with model updating using first approach.
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corresponds to 45 injector segments and the x-axis corresponds to the seven control

steps. The scale corresponds to injection rates of the segments, with black being the

lowest rates (almost closed) and white being the highest rates (fully open). It is clear

that the injector segments completed in or near the high-permeability streaks are

nearly shut for most of the time, as they would otherwise force water to move very

rapidly toward the producers, resulting in early breakthrough and thus poor sweep.

Furthermore, injector segments at the edges of the reservoir are almost fully open,

which forces the water front away from the high-permeability streaks to move

laterally, resulting in an almost 100% sweep of these regions. In figure 11, the scale

corresponds to the BHP of the producer segments, and we again observe that the

producer segments completed in or near the high-permeability streaks are shut most of

the time. Also, the producer segments between the streaks open more toward the later

control steps, thus moving the water present in the streaks toward this region, which in

turn leads to a better sweep.

The open-loop approach discussed above required that the permeability field (and

other reservoir properties) be completely known. However, in reality, we never have

complete knowledge of the reservoir, and thus the closed-loop approach must be used.

The results of the open-loop approach can usually be thought of as the best possible

results that can be achieved by any closed-loop approach, naturally under the

assumption that the same search algorithms and the same initial starting point for the

Figure 15. Producer BHP variation with time for optimization with model updating using first approach.
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controls is used. It can thus be used as a benchmark against which closed-loop algo-

rithms can be compared. In the following set of results, we apply the closed-loop

procedure.

Figure 12 shows the permeability field updates obtained using the first model-

updating approach, but without the prior term in the objective function. Comparing to

the Btrue^ realization (realization 9 in figure 4), it is clear that the correct channel

locations and connectivity are well approximated even after the first update at 30 days.

However, the model appears to deteriorate somewhat at later times, and this may be

due to overfitting, which is possible due to the absence of the prior term. To elaborate,

the prior term indirectly takes into account previously assimilated data by not allowing

the solution to move too far from the previous prior estimate according to the weight

of the prior term. Since the previous prior estimate was a result of assimilation of

previous data, the amount of data Bavailable^ for the history match is greater

(indirectly) when the prior term is present, although the number of parameters � is the

same for both cases. Figure 13 shows the final oil saturations obtained using this

closed-loop approach. Comparing this to figures 8 and 9, we see that the sweep

obtained is greatly improved over the uncontrolled case, and is almost as good as that

using the open-loop approach. Comparing figures 14 and 15 to figures 10 and 11, it is

Figure 16. Final oil saturations after one PV injection for optimization with model updating using second

approach.
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Figure 17. Permeability field updates with model updating performed by assimilating data only over the

last control step and with prior term in objective.

P. Sarma et al. / Efficient real-time reservoir management 27



clear that the optimal control trajectories obtained are reasonably similar with the

open-loop and closed-loop approaches, which is why the sweeps are comparable.

Figure 16 shows the final oil saturations obtained using the second variant of the

closed-loop approach. The sweep obtained is even better than the first variant and is

very close to that obtained with the open-loop approach. This improvement is due to

improved permeability updates. This is evident through comparison of the permeabil-

ity updates using the second variant (figure 17) with those using the first variant (figure

12). Thus the second approach to model updating is not only more efficient, but seems

to provide better model updates by preventing overfitting. The control trajectories

(figures 18 and 19) again resemble those using the open-loop approach.

Since the reservoir model and the Btrue^ permeability field are similar to that

used by Brouwer et al. [4], a qualitative comparison can be made between the model-

updating approach followed here and their use of Kalman filters for the same purpose.

Comparing figure 17 with figure 4 of Brouwer et al. [4], it is obvious that the channel

structure is much more visible with the present approach. However, this is more likely

due to the use of a better prior model (channel training image compared to a Gaussian

prior) than to any underlying advantage of the method itself. In any case, given that

the objective at hand is to determine the posterior uncertainty of the parameters only,

minimization with adjoints seems to be more efficient, as the number of simulations

required for convergence is usually around 20Y30, whereas with the ensemble Kalman

Figure 18. Injection rate variation with time for optimization with model updating using second approach.
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filter, about 100Y200 forward simulations are required [4, 6]. However, the two

methods are not exactly equivalent, as the Kalman filter can also provide the

uncertainty in the states.

Figure 20 shows that there is a substantial increase in cumulative oil production

with both the open-loop (70%) and closed-loop (60%) approaches, whereas water

production is not much affected. This is directly attributable to improved sweep. The

increase in NPV is about 100% for the open loop and 85% for the closed loop. The

second variant of the closed-loop approach is now applied to another, more

geologically complex, example (realization 22, shown in figure 4). Compared to

realization 9, this model is more sinuous and the channels are also laterally connected.

In this case, the initial model is again taken to be realization 8. The final oil saturations

for the uncontrolled case, the open loop, and the closed loop are shown in figures 21,

22 and 23. The evolution of the model is shown in figure 24. Due to the better

connectivity of the channels, the final sweep even in the uncontrolled case is

considerable. Figure 25 compares the cumulative oil and cumulative water produced.

The increase in oil production is around 25% for both the open-loop and closed-loop

cases, but there is also an increase in water production by around 30%. The increase in

NPV is approximately 25% for both cases.

Figure 19. Producer BHP variation with time for optimization with model updating using second

approach.
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Figure 21. Final oil saturation for uncontrolled reference case (case 2).

Figure 20. Comparison of cumulative production of oil (FOPT) and water (FWPT) for reference case

(REFERENCE), optimized case run with Btrue^ realization (OPTIMIZED), and closed-loop approach

(OPT_HM).
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Figure 22. Final oil saturation for optimization on Btrue^ realization (case 2).

Figure 23. Final oil saturation for optimization with model updating (case 2).
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Figure 24. Permeability field updates with model updating performed by assimilating data only over last

control step and with prior term in objective (case 2).
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It is interesting to note that although the model updates, as seen in figure 24, are

not as accurate as in the previous case, the closed-loop results are quite close to those

obtained via the open-loop approach. This seems to suggest that even very

approximate permeability updates may result in nearly correct optimal trajectories,

leading to improvements of the objective similar to those obtained using an open loop.

The poorer permeability updates can be understood by observing that only very small

regions in the training image have similar sinuosity and connectivity as realization 22,

implying that realizations similar to realization 22 are relatively rare in the parameter

space. This is in contrast to realization 9, which resembles the training image and other

realizations more closely, and was as a result better matched during the course of the

permeability updates.

8. Conclusions

In this article, the use of adjoint-based models was shown to be very efficient for

closed-loop optimal control, and significant improvements in recovery appear to be

possible through the application of such techniques. In particular, the following may

be concluded:

1. Efficient parameterization of the uncertain reservoir properties in terms of the KYL

expansion, combined with Bayesian inversion and adjoint models, provides an

efficient algorithm for model updating under geological constraints.

Figure 25. Comparison of cumulative production of oil (FOPT) and water (FWPT) for reference case

(REFERENCE), optimized case run with Btrue^ realization (OPTIMIZED), and closed-loop approach

(OPT_HM) for case 2.
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2. The increase in NPV and sweep efficiency by the closed-loop approach is very

close to that obtained using an open-loop approach for both of the examples

studied. In addition, the results from both examples indicate that approximate

parameter fields may be adequate for obtaining near-optimal trajectories of the

controls.

3. Assimilating only the new production data at any control step (coupled with the use

of the prior term in the history-matching objective function) is much more efficient,

and may be as effective as assimilating all existing data.

4. Since adjoint models are used both for optimization and model updating, many

components of the code can be reused, resulting in added efficiency.

An important issue that has not been investigated here is the propagation of

uncertainty and its effect on the optimal trajectories. Although for the relatively simple

cases studied here uncertainty propagation may not be necessary, it can be important

for more complex geological scenarios (as demonstrated in [7]). We also need to

explore whether preserving two-point statistics is sufficient for the purpose of optimal

control under complex geological scenarios. These and related issues will be addressed

in future work.
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