

Available online at www.sciencedirect.com

Geochimica

Geochimica et Cosmochimica Acta 70 (2006) 4680–4724

www.elsevier.com/locate/gca

Biomolecules in hydrothermal systems: Calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures

Douglas E. LaRowe *, Harold C. Helgeson

Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA Received 15 September 2005; accepted in revised form 3 April 2006

Abstract

Calculation of the thermodynamic properties of biomolecules at high temperatures and pressures is fundamental to understanding the biogeochemistry of hydrothermal systems. Ample evidence indicates that hyperthermophilic microbes interact chemically with their mineralogical environment in these systems. Nevertheless, little is known about the thermodynamic properties of the biomolecules involved in such processes. Recent advances in theoretical biogeochemistry make it possible to calculate these properties using the limited experimental data available in the literature, together with correlation and group additivity algorithms, reference model compounds, and the revised HKF equations of state. This approach permits calculation of the standard molal thermodynamic properties of the 120 common protonated and deprotonated nucleotides and their constituent nucleic-acid bases and nucleosides as a function of temperature and pressure. The requisite equations of state parameters can be calculated from experimental standard molal heat capacities, volumes, and compressibilities reported in the literature for nucleic-acid bases and nucleosides. Because no calorimetric or densimetric data are available for the nucleotides, experimental heats of reaction taken from the literature were used together with correlation and group additivity algorithms to generate provisional values of the corresponding equations of state parameters for the nucleotides. The thermodynamic properties and revised HKF equations of state parameters generated in the present study can be used to carry out comprehensive mass transfer and Gibbs energy calculations to describe and quantify the chemical interaction of minerals and microbes in hydrothermal systems. © 2006 Elsevier Inc. All rights reserved.

1. Introduction

Much has been learned over the last 30 years about the mineralogy and aqueous geochemistry of the hydrothermal systems in which organisms are known to thrive. Similarly, the taxonomy, metabolic requirements, growth rates, energetics, proteomics, and genomics of hyperthermophilic microbes have received considerable attention (e.g., [ZoBell,](#page-44-0) [1970; Brock, 1978; Fischer et al., 1983; Stetter et al.,](#page-44-0) [1983; Deming and Baross, 1986; Stetter et al., 1986, 1990;](#page-44-0) [Woese et al., 1990; Adams and Kelly, 1992; Adams,](#page-44-0) [1993\)](#page-44-0). In contrast, little is understood about the chemical and thermodynamic factors responsible for stabilizing the

Corresponding author. E-mail address: larowe@berkeley.edu (D.E. LaRowe). biomolecules that support life at high temperatures and pressures [\(Shock, 1992; Amend and Shock, 2001; Daniel](#page-43-0) [and Cowan, 2000\)](#page-43-0). Because nucleic-acid bases, nucleosides, and nucleotides are requisite for life, quantifying their chemical and thermodynamic interaction in hydrothermal systems is essential to understanding the biogeochemistry of these systems. Nevertheless, the thermodynamic variables that regulate metabolic processes in these organisms have not been characterized. The relative stabilities of both nucleotides and minerals in hydrothermal systems are controlled by the chemical potentials of O_2 , CO_2 , H_2S , and other components that are shared among biomolecules and the aqueous and mineralogical environment in which hyperthermophilic microbes thrive. Consequently, the relative stabilities of thermophilic microbes, biomolecules, and the mineralogy and fluid chemistry of the hydrothermal system are intrinsically interdependent. Assessing this

^{0016-7037/\$ -} see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.gca.2006.04.010

interdependence quantitatively requires not only the thermodynamic properties of minerals and inorganic aqueous species, but also those of the biomolecules in the system. The purpose of the present communication is to address this challenge by developing a comprehensive and internally consistent set of standard molal thermodynamic properties and equations of state parameters for the constituent biomolecules in nucleic acids at high and low temperatures and pressures. Calculation of the thermodynamic properties of nucleotides and their component molecules in hydrothermal systems provides a frame of reference that can be used to quantify the effect of temperature, pressure, and bulk composition on the ATP cycle, as well as eventually DNA and RNA polymerization in hyperthermophiles. Characterization of the relative stabilities of nucleic acids in these systems should have a beneficial impact on hightemperature biotechnology and genetic engineering.

Since the pioneering calorimetric studies of crystalline guanine and adenine over 70 years ago by [Stiehler and](#page-43-0) [Huffman \(1935a,b\)](#page-43-0), considerable attention has been devoted to measuring the thermodynamic properties of nucleotides, nucleosides, nucleic-acid bases, sugars, phosphate compounds, and reactions among them at or near 25° C and 1 bar.¹ Selected data reported in a number of these papers have also been summarized in compilations [\(Mav](#page-42-0)[rovouniotis, 1990, 1991; Alberty, 1998; Alberty, 2004b\)](#page-42-0). More recently [Ould-Moulaye et al. \(2001, 2002\)](#page-42-0) generated a comprehensive set of thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at 25° C and 1 bar, but the extent to which they are consistent with what is known experimentally about these properties at higher temperatures and pressures is not clear.

Although some heat capacity measurements are available at temperatures up to 90° C ([Szeminska et al.,](#page-43-0) [1979](#page-43-0)), most experimental thermodynamic data reported in the literature for nucleotides and their constituent molecules at temperatures greater than 25° C are restricted to temperatures $\leq 55 \degree$ C [\(Patel and Kishore, 1995; Lee and](#page-42-0) [Chalikian, 2001](#page-42-0)). No experimental data other than heats of ionization ([Oscarson et al., 1995](#page-42-0)) are available for nucleotides at the temperatures and pressures prevailing in many submarine hydrothermal systems. Nevertheless, experimental low-temperature data reported in the literature for reactions and reference model compounds can be combined with the revised HKF equations of state using correlation and group additivity algorithms to characterize the thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. To ensure internal consistency and compatibility with the most recent experimental data reported in the literature, this approach requires reassessment of the values of ΔG_f° , ΔH_f° , and S° at 25 °C and 1 bar adopted by [Ould-Moulaye et al. \(2001, 2002\).](#page-42-0) The group additivity strategies adopted below for this purpose make extensive use of experimental data reported in the literature for crystalline reference model compounds and the solubilities and heats of solution of nucleic acid bases and nucleosides. Many of the standard molal thermodynamic properties and revised HKF equations of state parameters for the biomolecules considered in the present communication were generated using group additivity algorithms, correlations, and reference model compounds and reactions. The resulting provisional estimates of the thermodynamic properties of these molecules should afford a better understanding of the biogeochemistry of hydrothermal systems in the interim until more experimental calorimetric data become available in the literature. The terms and symbols appearing in the present communication are explained in [Table 1](#page-2-0) and the thermodynamic relations used in the calculations are summarized below.

2. Thermodynamic relations

Standard molal Gibbs energies and enthalpies are expressed in the present communication as apparent standard molal Gibbs energies and enthalpies of formation (ΔG° and ΔH° , respectively), which are defined by ([Benson, 1968;](#page-41-0) [Helgeson, 1969](#page-41-0))

$$
\Delta G^{\circ} \equiv \Delta G^{\circ}_{f} + (G^{\circ}_{P,T} - G^{\circ}_{P,T_{r}})
$$
\n
$$
\tag{1}
$$

and

$$
\Delta H^{\circ} \equiv \Delta H_f^{\circ} + (H_{P,T}^{\circ} - H_{P_r,T_r}^{\circ}), \tag{2}
$$

where ΔG_f° and ΔH_f° refer to the standard molal Gibbs energy and enthalpy of formation from the elements in their stable form at the reference pressure (P_r) and temperature (T_r) of 1 bar and 298.15 K, and $(G_{P,T}^{\circ} - G_{P_r,T_r})$ and $(H_{P,T}^{\circ} - H_{P_r,T_r})$ stand for the differences in the standard molal Gibbs energy and enthalpy of any aqueous species at the pressure (P) and temperature (T) of interest, and those at P_r and T_r . The differences in Gibbs energies and enthalpies between the pressure and temperature of interest (P, T) and the reference pressure (1 bar) and temperature (298.15 K) (P_r, T_r) can be expressed by writing

 1 Krebs and Kornberg (1957), Wilhoit and Shiao (1964), Phillips et al. [\(1965\), Phillips \(1966\), Alberty \(1969\), Brown \(1969\), Cox and Pilcher](#page-42-0) [\(1970\), Herskovits and Bowen \(1974\), Nabavian et al. \(1977\), Sabbah et al.](#page-42-0) [\(1977\), Høiland and Holvik \(1978\), Kilday \(1978a,b,c,d\), Wilson et al.](#page-42-0) [\(1979\), Bardi et al. \(1980\), Ramirez and Marecek \(1980\), Sabbah \(1980\),](#page-42-0) [Stern and Oliver \(1980\), Teplitsky et al. \(1980\), Ahmed et al. \(1981\),](#page-42-0) [Glukhova et al. \(1981\), Kilday \(1981\), Jasra and Ahluwalia \(1982\),](#page-42-0) [Teplitsky et al. \(1982\), Kanbour et al. \(1983\),Kirklin and Domalski \(1983\),](#page-42-0) [DeVoe and Wasik \(1984\), Høiland et al. \(1984\), Stern and Hubler \(1984\),](#page-42-0) [Zielenkiewicz et al. \(1984\), Apelblat \(1986\),Dawson et al. \(1986\), Gajewski](#page-42-0) [et al. \(1986\), Colbert et al. \(1987\), Buckin \(1988\), Tewari et al. \(1988\),](#page-42-0) [Buckin et al. \(1989\), Goldberg and Tewari \(1989\), Kishore et al. \(1989\),](#page-42-0) [Kishore and Ahluwalia \(1990a,b\), Paljk et al. \(1990\), Goldberg and](#page-42-0) [Tewari \(1991\), Tewari et al. \(1991\), Zolkiewski and Zielenkiewicz \(1991\),](#page-42-0) [Alberty and Goldberg \(1992\), Larson et al. \(1993\), Zielenkiewicz et al.](#page-42-0) [\(1993\), Goldberg and Tewari \(1994\),Zielenkiewicz et al. \(1994b,a\),](#page-42-0) [Oscarson et al. \(1995\), Patel and Kishore \(1995\), Zielenkiewicz \(1995\),](#page-42-0) [Zielenkiewicz et al. \(1998\), Zielenkiewicz \(2000\), Zielenkiewicz et al.](#page-42-0) [\(2000\), Boerio-Goates et al. \(2001\), Lee and Chalikian \(2001\), Huber et al.](#page-42-0) [\(2002\), Boyer et al. \(2003\), Alberty \(2004a\).](#page-42-0)

Table 1 Glossary of symbols and terms

Symbol or term	Explanation
A	adenosine
a	standard molal heat capacity power function
	coefficient in Eq. (6)
a_i'	activity of the <i>i</i> th reactant in the biological
	standard state
a_i	activity of the <i>i</i> th species
a_1, a_2, a_3, a_4	species specific revised-HKF equations of state
	regression parameters
(aq)	designation of the aqueous state
Arg	arginine
ATP	adenosine triphosphate
b	standard molal heat capacity power function
	coefficient in Eq. (6)
base	designation of a nucleic-acid base
С	cytidine
c	standard molal heat capacity power function
	coefficient in Eq. (6)
c_1, c_2	species-specific revised-HKF equations of state
	regression parameters
$\begin{array}{c} (cr) \ C_p^{\circ} \ C_{p_r}^{\circ} \end{array}$	designation of the crystalline state standard molal isobaric heat capacity
	standard molal isobaric heat capacity at the
	subscripted reference pressure of 1 bar
	standard molal isobaric heat capacity of solvation
$\Delta C_{p,s}^{\circ} \Delta C_{p,n}^{\circ}$	non-solvation standard molal isobaric heat
	capacity
E_i°	standard molal expansibility of the <i>i</i> th species
d	designation that the nucleotide or nucleoside of
	interest consists of deoxyribose rather than ribose
(g)	designation of the gas state
G	guanosine
ΔG°	apparent standard molal Gibbs energy of
	formation at the pressure and temperature of
	interest which is defined in Eq. (1)
ΔG_{f}°	standard molal Gibbs energy of formation from the
	elements in their stable form at 298.15 K and 1 bar
$\frac{\Delta G_{hyd}^{\circ}}{G_{P,T}^{\circ}}$	standard molal Gibbs energy of hydration
	standard molal Gibbs energy at the pressure and
	temperature of interest
G_{P_r,T_r}°	standard molal Gibbs energy at the reference
	pressure and temperature standard molal Gibbs energy of reaction
ΔG_r° ΔG°_{sol}	standard molal Gibbs energy of solution
ΔG_{sub}°	standard molal Gibbs energy of sublimation
ΔH°	apparent standard molal enthalpy of formation at
	the pressure and temperature of interest which is
	defined in Eq. (2)
$\Delta {H}_f^\circ$	standard molal enthalpy of formation from the
	elements in their stable form at 298.15 K and 1 bar
ΔH°_{hyd}	standard molal enthalpy of hydration
$\Delta H_{m,P_r}^{\sigma'}$	standard molal enthalpy of melting at the
	reference pressure of 1 bar
$H_n NMP_i^{(n-2)}$	generic nucleotide monophosphate consisting of
	the <i>i</i> th base, n more moles of H per mole of
	nucleotide monophosphate than the nucleotide
	monophosphate reference species, NMP_i^{2-} (see
	below), and $(n - 2)$ charge
$H_n \text{NDP}_i^{(n-3)}$	generic nucleotide diphosphate consisting of the
	ith base, n more moles of H per mole of nucleotide
	diphosphate than the nucleotide diphosphate
	reference species, NDP ⁻³ (see below), and $(n-3)$
	charge

Table 1 (continued)

$$
G_{P,T}^{\circ} - G_{P_r,T_r}^{\circ} = -S_{P_r,T_r}^{\circ}(T - T_r) + \int_{T_r}^{T} C_{P_r}^{\circ} dT - T \int_{T_r}^{T} C_{P_r}^{\circ} d\ln T + \int_{P_r}^{P} V^{\circ} dP,
$$
 (3)

$$
H_{P,T}^{\circ} - H_{P_r,T_r}^{\circ} = \int_{T_r}^{T} C_{P_r}^{\circ} dT + \int_{P_r}^{P} V^{\circ} dP
$$

$$
- \left(T \int_{P_r}^{P} \left(\frac{\partial V^{\circ}}{\partial T} \right)_P dP \right)_T, \tag{4}
$$

which are consistent with

$$
S^{\circ} = S_{P_r,T_r}^{\circ} + \int_{T_r}^{T} C_{P_r}^{\circ} d\ln T - \left(\int_{P_r}^{P} \left(\frac{\partial V^{\circ}}{\partial T} \right)_P dP \right)_T, \tag{5}
$$

where $C_{p_r}^{\circ}$ stands for the isobaric molal heat capacity of the species at the reference pressure, $\left(\frac{\partial V}{\partial T}\right)_P$ represents its standard molal expansibility, and S_{P_r,T_r}° refers to the standard molal entropy of the species at the reference pressure and temperature.

2.1. Crystalline compounds

Consideration of a wide range of experimental data indicates that in the absence of lambda phase transitions the standard molal heat capacities at 1 bar of crystalline organic compounds including amino acids ([Helgeson et al., 1998](#page-42-0)) can be represented as a function of temperature by the Maier–Kelley power function [\(Maier and Kelley, 1932\)](#page-42-0), which can be written as

$$
C_{P_r}^{\circ} = a + bT + cT^{-2},\tag{6}
$$

where a, b , and c stand for temperature-independent coefficients of the species of interest.

Combining Eq. (6) with Eqs. (3) – (5) and integrating the heat capacity terms leads to

$$
G_{P,T}^{\circ} - G_{P_r,T_r}^{\circ} = -S_{P_r,T_r}^{\circ}(T - T_r) + a\left(T - T_r - T\ln\left(\frac{T}{T_r}\right)\right) - \left(\frac{(c - bT_r^2T)(T - T_r)^2}{2T_r^2T}\right) + \int_{P_r}^P V^{\circ} dP,
$$
\n(7)

$$
H_{P,T}^{\circ} - H_{P_r,T_r}^{\circ} = a(T - T_r) + \frac{b}{2}(T^2 - T_r^2) - c\left(\frac{1}{T} - \frac{1}{T_r}\right)
$$

$$
+ \int_{P_r}^{P} V^{\circ} dP - \left(T \int_{P_r}^{P} \left(\frac{\partial V^{\circ}}{\partial T}\right)_P dP\right)_T, \quad (8)
$$

and

$$
S^{\circ} = S_{P_r,T_r}^{\circ} + a \ln \left(\frac{T}{T_r} \right) + b(T - T_r) - \frac{c}{2} \left(\frac{1}{T^2} - \frac{1}{T_r^2} \right)
$$

$$
- \left(\int_{P_r}^{P} \left(\frac{\partial V^{\circ}}{\partial T} \right)_P dP \right)_T.
$$
(9)

As in the case of minerals ([Helgeson et al., 1978](#page-42-0)) and organic crystals [\(Helgeson et al., 1998; Richard and Helge](#page-42-0)[son, 1998\)](#page-42-0), the standard molal volumes of crystalline bases and nucleosides are insensitive to the changes in temperature and pressure considered in the present study, which range from 0° C and 1 bar to 150 $^{\circ}$ C and 500 (less arbitrary) bar. Therefore, as a first approximation we can write

and

$$
V^{\circ} = V_{P_r, T_r}^{\circ},\tag{10}
$$

which can be used to evaluate the volume integrals in Eqs. [\(7\)–\(9\)](#page-3-0) for crystalline compounds.

2.2. Aqueous species

The conventional standard molal properties of aqueous species² are expressed in the revised-HKF equations of state [\(Helgeson and Kirkham, 1974a,b, 1976; Helgeson](#page-41-0) [et al., 1981; Shock and Helgeson, 1988; Tanger and Helge](#page-41-0)[son, 1988; Shock et al., 1989; Shock and Helgeson, 1990;](#page-41-0) [Johnson et al., 1992; Shock et al., 1992; Sverjensky et al.,](#page-41-0) [1997\)](#page-41-0) as the sum of structural (non-solvation) and solvation contributions, which can be expressed as

$$
\varXi^{\circ} = \Delta \varXi_n^{\circ} + \Delta \varXi_s^{\circ} \tag{12}
$$

where \mathbb{E}° stands for any conventional standard molal property of an aqueous species, and $\Delta \mathcal{Z}_n^{\circ}$ and $\Delta \mathcal{Z}_s^{\circ}$ refer to the conventional non-solvation and solvation contributions to that property, respectively.

2.2.1. Charged aqueous species

The solvation contributions to the standard molal heat capacity, volume, isothermal compressibility, and entropy of a charged aqueous species can be expressed in terms of Born transfer theory as [\(Shock et al., 1992](#page-43-0))

$$
\Delta C_{P,s}^{\circ} = \omega TX + 2TY \left(\frac{\partial \omega}{\partial T}\right)_P - T \left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial^2 \omega}{\partial T^2}\right)_P, \tag{13}
$$

$$
\Delta V_s^\circ = -\omega Q + \left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial \omega}{\partial P}\right)_T,\tag{14}
$$

$$
\Delta \kappa_{T,s}^{\circ} = \omega N + 2Q \left(\frac{\partial \omega}{\partial P}\right)_T - \left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial^2 \omega}{\partial P^2}\right)_T, \tag{15}
$$

and

$$
\Delta S_s^\circ = \omega Y + \left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial \omega}{\partial T}\right)_P, \tag{16}
$$

where $\Delta C^\circ_{P,s},\Delta V^\circ_{s},\Delta\kappa^\circ_{T,s},$ and ΔS°_{s} refer to the standard molal heat capacity, volume, isothermal compressibility, and entropy of solvation, ϵ stands for the dielectric constant of H₂O, ω designates the conventional Born coefficient, and X , Y , N , and Q denote the Born functions defined

$$
\varXi_i = \varXi_i^{\text{abs}} - Z_i \varXi_{\text{H}^+}^{\text{abs}},\tag{11}
$$

where \mathcal{Z}_i and \mathcal{Z}_i^{abs} , respectively, stand for any given conventional and absolute standard molal property or equation of state parameter of the ith aqueous species, $\mathcal{Z}_{\rm H^+}^{\rm abs}$ denotes the corresponding absolute standard molal property of the hydrogen ion, and Z_i represents the charge of the subscripted species. Hence, $\mathcal{E}_{\mathrm{H}^+} = 0$ at all temperatures and pressures.

and tabulated in [Helgeson and Kirkham \(1974a\)](#page-41-0) and further discussed in [Tanger and Helgeson \(1988\).](#page-43-0)

The non-solvation contributions to the heat capacity $(\Delta C_{P,n}^{\circ})$, volume (ΔV_n°) , and isothermal compressibility $(\Delta \kappa_{T,n}^{\circ})$ of an aqueous species are given by

$$
\Delta C_{P,n}^{\circ} = c_1 + \frac{c_2}{(T - \Theta)^2} - \left(\frac{2T}{(T - \Theta)^3}\right)
$$

$$
\times \left(a_3(P - P_r) + a_4 \ln\left(\frac{\Psi + P}{\Psi + P_r}\right)\right),\tag{17}
$$

$$
\Delta V_n^\circ = \sigma + \frac{\xi}{T - \Theta}
$$

= $a_1 + \frac{a_2}{\Psi + P} + \left(a_3 + \frac{a_4}{\Psi + P}\right) \left(\frac{1}{T - \Theta}\right),$ (18)

and

$$
-\Delta \kappa_{T,n}^{\circ} = \left(\frac{\partial \sigma}{\partial P}\right)_T + \left(\frac{\partial \xi}{\partial P}\right)_T \left(\frac{1}{T-\Theta}\right),\tag{19}
$$

where

$$
\sigma = a_1 + \frac{a_2}{\Psi + P},\tag{20}
$$

$$
\xi = a_3 + \frac{a_4}{\Psi + P},\tag{21}
$$

$$
\left(\frac{\partial \sigma}{\partial P}\right)_T = \frac{-a_2}{\left(\Psi + P\right)^2},\tag{22}
$$

and

$$
\left(\frac{\partial \xi}{\partial P}\right)_T = \frac{-a_4}{\left(\Psi + P\right)^2},\tag{23}
$$

where c_1 , c_2 , a_1 , a_2 , a_3 , a_4 , σ , and ξ represent speciesdependent non-solvation parameters and Ψ and Θ denote solvent parameters equal to 2600 bar and 228 K, respectively. The revised-HKF equations for the standard molal heat capacity, volume, isothermal compressibility, and entropy, and the standard molal enthalpy and Gibbs energy of formation of charged species are given by

$$
C_P^{\circ} = \Delta C_{P,n}^{\circ} + \Delta C_{P,s}^{\circ} = c_1 + \frac{c_2}{(T - \Theta)^2} - \left(\frac{2T}{(T - \Theta)^3}\right)
$$

$$
\times \left(a_3(P - P_r) + a_4 \ln\left(\frac{\Psi + P}{\Psi + P_r}\right)\right)
$$

$$
+ \omega TX + 2TY \left(\frac{\partial \omega}{\partial T}\right)_P - T\left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial^2 \omega}{\partial T^2}\right)_P, \qquad (24)
$$

$$
V^{\circ} = \Delta V^{\circ}_{n} + \Delta V^{\circ}_{s} = \sigma + \frac{\xi}{T - \Theta}
$$

= $a_{1} + \frac{a_{2}}{\Psi + P} + \left(a_{3} + \frac{a_{4}}{\Psi + P}\right) \left(\frac{1}{T - \Theta}\right) - \omega Q$
+ $\left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial \omega}{\partial P}\right)_{T}$, (25)

² The standard state adopted in the present study for aqueous species other than H_2O corresponds to unit activity of the species in a hypothetical one molal solution referenced to infinite dilution at any pressure and temperature. The standard molal thermodynamic properties of charged aqueous species used below are consistent with the hydrogen ion convention, which can be expressed as

$$
\kappa_{T}^{\circ} = \Delta \kappa_{T,n}^{\circ} + \Delta \kappa_{T,s}^{\circ} = -\left(\frac{\partial \sigma}{\partial P}\right)_{T} - \left(\frac{\partial \xi}{\partial P}\right)_{T} \left(\frac{1}{T - \Theta}\right) + \omega N + 2Q \left(\frac{\partial \omega}{\partial P}\right)_{T} - \left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial^{2} \omega}{\partial P^{2}}\right)_{T},
$$
(26)

$$
S^{\circ} = S_{P_r,T_r} + c_1 \ln\left(\frac{T}{T_r}\right)
$$

\n
$$
- \frac{c_2}{\Theta} \left[\left(\frac{1}{T-\Theta}\right) - \left(\frac{1}{T_r-\Theta}\right) + \frac{1}{\Theta} \ln\left(\frac{T_r(T-\Theta)}{T(T_r-\Theta)}\right) \right]
$$

\n
$$
+ \left(\frac{1}{T-\Theta}\right)^2 \left(a_3(P-P_r) + a_4 \ln\left(\frac{\Psi+P}{\Psi+P_r}\right)\right)
$$

\n
$$
+ \omega Y - \left(\frac{1}{\epsilon} - 1\right) \left(\frac{\partial \omega}{\partial T}\right)_P - \omega_{P_r,T_r} Y_{P_r,T_r},
$$
\n(27)

$$
\Delta H^{\circ} = \Delta H_f^{\circ} + c_1(T - T_r) - c_2 \left(\left(\frac{1}{T - \Theta} \right) - \left(\frac{1}{T_r - \Theta} \right) \right)
$$

+ $a_1 (P - P_r) + a_2 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right) + \left(\frac{2T - \Theta}{(T - \Theta)^2} \right)$

$$
\times \left(a_3 (P - P_r) + a_4 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right) \right) + \omega \left(\frac{1}{\epsilon} - 1 \right)
$$

+ $\omega T Y - T \left(\frac{1}{\epsilon} - 1 \right) \left(\frac{\partial \omega}{\partial T} \right)_P - \omega_{P_r, T_r} \left(\frac{1}{\epsilon_{P_r, T_r}} - 1 \right)$
- $\omega_{P_r, T_r} T_r Y_{P_r, T_r},$ (28)

and

$$
\Delta G^{\circ} = \Delta G_f^{\circ} - S_{P_r,T_r}(T - T_r) - c_1 \left(T \ln \left(\frac{T}{T_r} \right) - T + T_r \right)
$$

+ $a_1 (P - P_r) + a_2 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right)$
- $c_2 \left(\left(\left(\frac{1}{T - \Theta} \right) - \left(\frac{1}{T_r - \Theta} \right) \right) \left(\frac{\Theta - T}{\Theta} \right) \right)$
- $\frac{T}{\Theta^2} \ln \left(\frac{T_r(T - \Theta)}{T(T_r - \Theta)} \right) + \left(\frac{1}{T - \Theta} \right)$
 $\times \left(a_3 (P - P_r) + a_4 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right) \right) + \omega \left(\frac{1}{\epsilon} - 1 \right)$
- $\omega_{P_r,T_r} \left(\frac{1}{\epsilon_{P_r,T_r}} - 1 \right) + \omega_{P_r,T_r} Y_{P_r,T_r}(T - T_r),$ (29)

respectively.

2.2.2. Neutral aqueous species

As in the case of other neutral aqueous species [\(Shock](#page-43-0) [et al., 1989; Shock and Helgeson, 1990](#page-43-0)), the effective Born coefficient (ω) of the various neutral bases, nucleosides, and nucleotides are taken to be independent of temperature and pressure.³ Therefore, the solvation contributions to the standard molal properties of these species can be expressed as

$$
\Delta C_{P,s}^{\circ} = \omega TX, \tag{30}
$$

$$
\Delta V_s^\circ = -\omega Q,\tag{31}
$$

$$
\Delta \kappa_{T,s}^{\circ} = \omega N, \tag{32}
$$

and

$$
\Delta S_s^\circ = \omega Y. \tag{33}
$$

It follows that Eqs. [\(24\)–\(29\)](#page-4-0) can be expressed for neutral nucleic-acid bases, nucleosides, and nucleotides as $\left(\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array} \right)$

$$
C_P^{\circ} = \Delta C_{P,n}^{\circ} + \Delta C_{P,s}^{\circ} = c_1 + \frac{c_2}{(T - \Theta)^2} - \left(\frac{2T}{(T - \Theta)^3}\right)
$$

$$
\times \left(a_3(P - P_r) + a_4 \ln\left(\frac{\Psi + P}{\Psi + P_r}\right)\right) + \omega TX, \tag{34}
$$

$$
V^{\circ} = \Delta V_n^{\circ} + \Delta V_s^{\circ}
$$

= $a_1 + \frac{a_2}{\Psi + P} + \left(a_3 + \frac{a_4}{\Psi + P}\right) \left(\frac{1}{T - \Theta}\right) - \omega Q,$ (35)

$$
\kappa_T^{\circ} = \Delta \kappa_{T,n}^{\circ} + \Delta \kappa_{T,s}^{\circ} = -\left(\frac{\partial \sigma}{\partial P}\right)_T - \left(\frac{\partial \xi}{\partial P}\right)_T \left(\frac{1}{T - \Theta}\right) + \omega N,
$$
\n(36)

$$
S^{\circ} = S_{P_r,T_r} + c_1 \ln\left(\frac{T}{T_r}\right) - \frac{c_2}{\Theta} \left[\left(\frac{1}{T-\Theta}\right) - \left(\frac{1}{T_r-\Theta}\right) \right] + \frac{1}{\Theta} \ln\left(\frac{T_r(T-\Theta)}{T(T_r-\Theta)}\right) + \left(\frac{1}{T-\Theta}\right)^2 \times \left(a_3(P-P_r) + a_4 \ln\left(\frac{\Psi+P}{\Psi+P_r}\right)\right) + \omega(Y_{P,T} - Y_{P_r,T_r}),
$$
\n(37)

$$
\Delta H^{\circ} = \Delta H_f^{\circ} + c_1(T - T_r) - c_2 \left(\left(\frac{1}{T - \Theta} \right) - \left(\frac{1}{T_r - \Theta} \right) \right)
$$

+ $a_1 (P - P_r) + a_2 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right) + \left(\frac{2T - \Theta}{(T - \Theta)^2} \right)$

$$
\times \left(a_3 (P - P_r) + a_4 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right) \right) + \omega \left(\frac{1}{\epsilon} - 1 \right)
$$

+ $\omega \left(T Y_{P,T} - T_r Y_{P_r,T_r} - \left(\frac{1}{\epsilon_{P_r,T_r}} - 1 \right) + \left(\frac{1}{\epsilon_{P,T}} - 1 \right) \right),$ (38)

and

$$
\Delta G^{\circ} = \Delta G_f^{\circ} - S_{P_r,T_r}(T - T_r) - c_1 \left(T \ln \left(\frac{T}{T_r} \right) - T + T_r \right)
$$

+ $a_1 (P - P_r) + a_2 X \ln \left(\frac{\Psi + P}{\Psi + P_r} \right)$
- $c_2 \left(\left(\left(\frac{1}{T - \Theta} \right) - \left(\frac{1}{T_r - \Theta} \right) \right) \left(\frac{\Theta - T}{\Theta} \right) \right)$
- $\frac{T}{\Theta^2} \ln \left(\frac{T_r(T - \Theta)}{T(T_r - \Theta)} \right) + \left(\frac{1}{T - \Theta} \right)$
 $\times \left(a_3 (P - P_r) + a_4 \ln \left(\frac{\Psi + P}{\Psi + P_r} \right) \right)$
+ $\omega \left(Y_{P_r,T_r}(T - T_r) + \left(\frac{1}{\epsilon_{P,T}} - 1 \right) - \left(\frac{1}{\epsilon_{P_r,T_r}} - 1 \right) \right).$ (39)

³ The effective Born coefficients for neutral aqueous species account for dipole–dipole interactions arising from the presence of the neutral aqueous molecules in a structured solution ([Helgeson et al., 1981; Shock et al.,](#page-42-0) [1992; Amend and Helgeson, 1997a](#page-42-0)).

The parameters required to compute the standard molal thermodynamic properties of aqueous nucleic-acid bases, nucleosides, and nucleotides as a function of temperature and pressure from the revised HKF equations of state summarized above can be generated from the experimental data, group additivity algorithms, model compounds, and correlations summarized below.

3. Nucleic-acid bases

Nucleic-acid bases can be divided into two classes of partially aromatic heterocyclic nitrogen-bearing compounds consisting of either a single ring (pyrimidines) or two rings (purines). Of the many naturally occurring and synthetic purine and pyrimidine compounds, those consid-

Fig. 1. Idealized structures and chemical formulas for selected nucleic-acid bases.

Table 2

Summary of values of the standard molal thermodynamic properties at 25 °C and 1 bar and revised HKF equation of state parameters for selected aqueous nucleic-acid bases, nucleosides, sugars and ribose-5-phosphate²⁻

Compound	Formula	$\Delta G_f^{\circ a}$	ΔH_{f}° ^a	$S^{\circ b}$	$C_P^{\circ b}$	$V^{\circ c}$		$a_1^{\text{d}} \times 10 \ a_2^{\text{a}} \times 10^{-2} \ a_3^{\text{e}}$		$a_4^{\text{f}} \times 10^{-4}$ c_1^{b}		$c_2^{\text{f}} \times 10^{-4}$ $\omega^{\text{a}} \times 10^{-5}$	
Purines													
Adenine	$C_5H_5N_5$	74,770	31,235 53.41		56.24 ^g		89.59 21.5046	8.5010	-2.6632	-5.3561		$87.88 - 15.87$	0.065 ^h
Guanine	$C_5H_5N_5O$	16,702	$-34,803$ 51.19		60.06 ¹	97.9	23.298	7.4602	-5.4837	-3.4136		$90.14 - 15.87$	0.23 ^h
Pyrimidines													
Cytosine	$C_4H_5N_3O$	-8411	$-46,915$ 47.64		41.81		73.35 17.3106	5.8612	6.6034	-5.2201		$70.51 - 13.36$	$0.17^{\rm h}$
Thymine	$C_5H_6N_2O_2$	$-61,315$	$-104,969$ 48.96		56.93		88.04 21.2655	7.2705	-1.0309	-5.0944		$83.20 -12.39$	0.12 ^h
Uracil	$C_4H_4N_2O_2$	$-59,734$	$-94,587$ 45.88		36.19		71.55 17.5038	5.9312	-1.6074	-4.3091	56.57	-9.40	0.14 ^h
Sugars													
Ribose	$C_5H_{10}O_5$	$-179,739$	$-247,132$ 59.53		66.46		95.71 22.6455	7.2930	-5.3875	-3.4054 134.7		-32.82	0.17^{j}
Deoxyribose	$C_5H_{10}O_4$	$-144,433$	-205.037 57.82		56.16		94.65 22.5370	7.2652	-5.3715	-3.4040	124.4	-32.82	0.17
Nucleosides													
Adenosine	$C_{10}H_{13}N_5O_4$	$-46,499$	$-148,490$ 87.19		120.3	170.7	39.5452	12.901	8.9651	-8.8169	163.2	-20.10	0.23^{k}
Cytidine	$C_9H_{13}N_3O_5$	$-130,179$	$-226,640$ 83.09		96.38	153.3	36.3116	7.9960	7.5934	-6.5938	132.6	-16.30	0.34^{k}
Guanosine	$C_{10}H_{13}N_5O_5$ -105,568		$-214,528$ 88.33		124.9	174.2	42.2627	8.3757	-2.4562	-5.8937	169.3	-20.10	0.39 ^k
Thymidine	$C_{10}H_{14}N_2O_6$ -183,083		$-284,694$ 84.42		110.5	167.4	38.1602	10.959	12.395	-7.1879	143.4	-14.90	0.29 ^k
Uridine	$C_9H_{12}N_2O_6$	$-181,502$	$-274,312$ 81.34		95.14	151.8	36.1528	7.0910	5.1259	-5.6836	131.8	-16.65	0.31^{k}
Deoxynucleosides													
Deoxyadenosine	$C_{10}H_{13}N_5O_3$	$-11,193$	$-106,386$ 85.48		111.2	170.0	38.0314 16.957			$15.1636 - 10.834$	154.2	-20.10	0.23 ^k
Deoxycytidine	$C_9H_{13}N_3O_4$	$-96,652$	$-184,534$ 87.35		87.28	154.0	35.8171	9.7174	7.4022	-6.5327	123.5	-16.30	0.34^{k}
Deoxyguanosine	$C_{10}H_{13}N_5O_4$	$-71,539$	$-176,273$ 77.99		115.8	173.2	39.4526	15.498	14.2847	-10.569	160.3	-20.10	0.39 ^k
Deoxythymidine	$C_{10}H_{14}N_2O_5$	$-14,9556$	$-242,588$ 88.68		101.4	167.5	38.8728	11.451	-7.7797	-3.6098	134.4	-14.90	0.29^{k}
Deoxyuridine	C_8H_1 ₂ N ₂ O ₅	$-14,7975$	$-232,206$ 85.59		86.04	151.2	35.5945	9.6188	3.5015	-6.2803	122.8	-16.65	0.31^{k}
Other													
Ribose-5- $\rm phosphate^{2-1}$	$C_5H_9O_8P^{2-}$		$-378,243$ $-487,926^{\rm m}$ 16.49 ^m		7.5	83.78		2.0659 57.7664	-17.55	0.3909		$102.86 - 32.92$	2.96

Unless otherwise indicated, the properties and parameters given in this table were generated in the present study (see text).

 a cal mol⁻¹.

 b cal K⁻¹ mol⁻¹

 \rm^c cm³ mol⁻¹.

 d cal mol⁻¹ bar⁻¹.

-
- ^e cal K mol⁻¹ bar⁻¹.
^f cal K mol⁻¹. f cal K mol⁻¹.
-

^g Average of literature values summarized in [Table A.2](#page-36-0) in Appendix A.
 h Coloulated using Eq. (47)

- ^h Calculated using Eq. [\(47\).](#page-10-0)
-
- ⁱ Calculated using Eq. [\(58\).](#page-15-0)
^j [Amend and Plyasunov \(2001\).](#page-41-0)

.

- k Calculated using Eq. [\(71\).](#page-17-0)
- ¹ Discussed in Appendix B.
- ^m [Goldberg and Tewari \(1989\).](#page-41-0)

ered below consist of the normal nucleotide constituents of DNA and RNA corresponding to two purines (adenine and guanine) and three pyrimidines (cytosine, thymine, and uracil). The idealized structures and formulas of these nucleic-acid bases are shown in [Fig. 1](#page-6-0).

3.1. Standard molal Gibbs energies, enthalpies, and third law entropies at 25° C and 1 bar

Values of $\Delta G_{f(aq)}^{\circ}$, $\Delta H_{f(aq)}^{\circ}$, and $S_{(aq)}^{\circ}$ at 25 °C and 1 bar for the five aqueous nucleic-acid bases considered in the

Table 3

Summary of C_p° power function coefficients and values of the standard molal thermodynamic properties at 25 °C and 1 bar for selected crystalline compounds

Compound	Formula	$\Delta G_{f}^{\circ\text{ a,b}}$	$\Delta H_f^{\circ a}$	$S^{\circ\text{c}}$	$C_P^{\circ c}$	V ^{od}	a^c	$b^e \times 10^3$	$c^f \times 10^{-5}$
Purines									
Adenine	$C_5H_5N_5$	71.860	23.160^8	36.09 ^h	34.19	91.1 ^g	0.375^{1}	113.4 ¹	$\boldsymbol{0}$
Guanine	$C_5H_5N_5O$	11,402	-43.953	38.29 ^h	37.7	100.3^{k}	2.49^{i}	118.1^{i}	$\mathbf{0}$
Pyrimidines									
Cytosine	$C_4H_5N_3O$	$-10,021$	-52.890	33.00	31.97	74.73 ^m	15.28	65.97	-2.65
Thymine	$C_5H_6N_2O_2$	$-63,392$	$-110.612n$	37.05	34.95	86.68°	16.20	75.37	-3.31
Uracil	$C_4H_4N_2O_2$	$-61,734$	$-101,4001$	29.74	30.31	70.5°	4.175	92.67	-1.32
Monosaccharides									
Ribose	$C_5H_{10}O_5$	$-177,660$	$-250,294P$	41.99 ^q	44.70 ^q	94.42^r	-7.398	168.8	1.577
Deoxyribose	$C_5H_{10}O_4$	$-142,153$	$-207.770^{\rm p}$	41.01 ^s	32.52	84.36 ^r	128.8	-215.4	-28.49
Nucleosides									
Adenosine	$C_{10}H_{13}N_5O_4$	$-48.850q$	$-156,200q$	69.22 ^q	69.38	173.53 ^q	-3.330	239.6	1.111
Cytidine	$C_9H_{13}N_3O_5$	$-130,731$	$-232,250$	66.12	67.15	157.16	11.58	192.2	-1.539
Guanosine	$C_{10}H_{13}N_5O_5$	$-109,308$	$-223,313$	71.41	72.87	182.73	-1.215	244.3	1.111
Thymidine	$C_{10}H_{14}N_2O_6$	$-184,102$	$-289,972$	70.14	70.13	169.11	12.50	201.6	-2.199
Uridine	$C_9H_{12}N_2O_6$	$-182,444$	$-280,760$	62.87	65.50	152.93	0.4697	218.9	-0.209
Deoxynucleosides									
Deoxyadenosine	$C_{10}H_{13}N_5O_3$	$-13,343$	$-113,676$	78.24	57.21	163.47	132.9	-144.6	-28.96
Deoxycytidine	$C_9H_{13}N_3O_4$	$-95,224$	$-189,726$	65.14	55.00	147.10	147.8	-192.0	-31.61
Deoxyguanosine	$C_{10}H_{13}N_5O_4$	$-73,801$	$-180,789$	70.43	60.71	172.67	135.0	-139.9	-28.96
Deoxythymidine	$C_{10}H_{14}N_2O_5$	$-148,595$	$-247,448$	69.16	57.96	159.05	148.7	-182.6	-32.27
Deoxyuridine	$C_9H_{12}N_2O_5$	$-146,937$	$-238,236$	61.89	53.35	142.87	136.7	-165.3	-30.28
Acids									
Phosphoric acid	H_3PO_4	$-268,715$	-306.974 ^t	26.41^{u}	25.36	52.97°	3.447	73.50	$\boldsymbol{0}$
Citric acid	$C_6H_8O_7$	$-296,096$	$-369,000^{\rm w}$	60.25^x	53.89	124.59'	11.25	143.0	$\boldsymbol{0}$

 $^{\rm a}$ cal mol⁻¹.

^b Calculated using Eq. [\(42\)](#page-8-0) together with values of ΔH_f° and S° given above with values of S° of the elements taken from [Cox et al. \(1989\)](#page-41-0) unless otherwise noted.

^c cal K^{-1} mol⁻¹.

- d cm³ mol⁻¹.
- $^{\circ}$ cm³ mol⁻¹.

e cal K⁻² mol⁻¹.
- $\rm f$ cal K mol⁻¹.
- ^g [Kirklin and Domalski \(1983\)](#page-42-0).
- h [Domalski and Hearing \(1996\)](#page-41-0).
-
- ⁱ Calculated by regressing experimental C_p° data from [Stiehler and Huffman \(1935b\)](#page-43-0) with Eq. [\(6\).](#page-3-0) $\dot{ }$ [Cox and Pilcher \(1970\).](#page-41-0)
-
- ^k Calculated from $V_{adenine}^{\circ}$ using group volumes taken from [Immirzi and Perini \(1977\)](#page-42-0).¹ [Wilson et al. \(1979\)](#page-43-0).
-
- ^m Calculated from V_{uncil}° using group volumes taken from [Immirzi and Perini \(1977\)](#page-42-0).
ⁿ [Nabavian et al. \(1977\)](#page-42-0).
-
- ⁿ Nabavian et al. (1977).
 \degree Calculated from density data given by [Colbert et al. \(1987\)](#page-41-0).
- ^p [Colbert et al. \(1987\).](#page-41-0)
-
- q [Boerio-Goates et al. \(2001\).](#page-41-0) r Calculated from density data from [Boyer et al. \(2003\)](#page-41-0).
- Calculated using Eq. [\(63\).](#page-15-0)
- [Chase \(1998\).](#page-41-0)
- ^u [Egan and Wakefield \(1957\)](#page-41-0).
- ^v Calculated from density from [Egan and Wakefield \(1957\)](#page-41-0). ^w [Wilhoit and Shiao \(1964\)](#page-43-0).
-
- x [de Kruif et al. \(1982\)](#page-41-0).
- ^y Calculated from density data from [Apelblat \(1986\).](#page-41-0) See [Table A.7](#page-37-0) in Appendix A for additional literature values.

present study are shown in [Table 2.](#page-6-0) The values of $\Delta G_{f(aq)}^{\circ}$ and $\Delta H_{f(aq)}^{\circ}$ given in this table were calculated from the standard molal Gibbs energies and enthalpies of formation of the crystalline nucleic-acid bases ($\Delta G_{f(cr)}^{\circ}$ and $\Delta H_{f(cr)}^{\circ}$, respectively) and the corresponding standard molal properties of solution (ΔG_{sol}° and ΔH_{sol}°) using

$$
\Delta G^{\circ}_{f(aq)} = \Delta G^{\circ}_{f(cr)} + \Delta G^{\circ}_{sol} \tag{40}
$$

and

$$
\Delta H^{\circ}_{f(aq)} = \Delta H^{\circ}_{f(cr)} + \Delta H^{\circ}_{sol}.
$$
\n(41)

The values of $S^{\circ}_{(aq)}$ given for the nucleic-acid bases listed in [Table 2](#page-6-0) were calculated by combining values of S_i° taken from [Cox et al. \(1989\)](#page-41-0) with

Table 4

Summary of values of ΔG_{sol}° , ΔH_{sol}° , and ΔS_{sol}° at 25 °C and 1 bar for nucleic-acid bases, nucleosides, monosaccharides, and citric acid

Compound	Formula	$\Delta G_{sol}^{\circ}^{\quad \ \ \, \mathrm{a}}$	$\Delta H_{sol}^{\circ}^{\quad a}$	$S_{sol}^{\circ}\text{ }^{\text{b,c}}$
Purines				
Adenine	$C_5H_5N_5$	2908 ^d	8075 ^d	17.33
Guanine	$C_5H_5N_5O$	5300 ^d	$9150^{\rm d}$	12.91
Pyrimidines				
Cytosine	$C_4H_5N_3O$	1610 ^d	5975 ^d	14.64
Thymine	$C_5H_6N_2O_2$	2077 ^d	5643 ^d	11.96
Uracil	$C_4H_4N_2O_2$	2000^e	6813 ^d	16.14
Nucleosides				
Adenosine	$C_{10}H_{13}N_5O_4$	2351 ^d	7710 ^f	17.97
Guanosine	$C_{10}H_{13}N_5O_5$	3740°	8785^{i}	16.92
Cytidine	$C_9H_{13}N_3O_5$	552^h	5610 ¹	16.96
Thymidine	$C_{10}H_{14}N_2O_6$	1019 ^h	5278 ⁱ	14.28
Uridine	$C_9H_{12}N_2O_6$	942 ^h	6448 ¹	18.47
Deoxynucleosides				
Deoxyadenosine	$C_{10}H_{13}N_5O_3$	2150 ^d	$7292^{\rm i}$	18.65
Deoxyguanosine	$C_{10}H_{13}N_5O_4$	2262^{j}	4517 ^k	7.56
Deoxycytidine	$C_9H_{13}N_3O_4$	-1428	5192^k	22.2
Deoxythymidine	$C_{10}H_{14}N_2O_5$	-961°	4860 ^k	19.52
Deoxyuridine	C_9H_1 ₂ N_2O_5	-1038	6030 ^k	23.71
Monosaccharides				
Ribose	$C_5H_{10}O_5$	-2079 ¹	3151^d	17.54
Deoxyribose	$C_5H_{10}O_4$	$-2280^{\rm m}$	2733 ^d	16.81
<i>Other</i>				
Citric acid	$C_6H_8O_7$	-1084 ⁿ	4473 ^d	18.64

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

- ^c Calculated from $\Delta S_{sol}^{\circ} = (\Delta H_{sol}^{\circ} \Delta G_{sl}^{\circ})$
- d Average of literature values at 25 °C and 1 bar listed in [Table A.8.](#page-37-0)
- ^e [Dawson et al. \(1986\)](#page-41-0).
- ^f [Stern and Oliver \(1980\)](#page-43-0).
- ^g [Herskovits and Bowen \(1974\).](#page-42-0)
-
- Calculated using Eq. (64) . Calculated using Eqs. (65) .
- j Calculated using Eq. [\(68\).](#page-16-0)</sup>
-
- ^k Calculated using Eq. (70).
¹ Goldberg and Tewari (1991).

^m Calculated from the group additivity relation represented by $\Delta G_{sol,Deoxyadenosine}^{\circ} + \Delta G_{sol,ribose}^{\circ} - \Delta G_{sol,adenosine}^{\circ} = \Delta G_{sol,deoxyribose}^{\circ}.$

ⁿ Calculated from the values of ΔG_{cr}° and ΔG_{aq}° for citric acid given in [Tables 3 and B.0](#page-7-0) in Appendix B, respectively. See [Table A.8](#page-37-0) in Appendix A for additional literature values.

$$
S_{(aq)}^{\circ} = \frac{\Delta H_{f(aq)}^{\circ} - \Delta G_{f(aq)}^{\circ}}{T} - \sum_{i} n_i S_i^{\circ},\tag{42}
$$

where n_i denotes the number of moles of the *i*th element in a given nucleic-acid base and S_i° represents the standard molal third law entropy of the ith element in its stable state at 25 °C and 1 bar. The values of $\Delta G^{\circ}_{f (cr)}$ and $\Delta H^{\circ}_{f (cr)}$, and ΔG_{sol}° , and ΔH_{sol}° used to evaluate Eqs. (40) and (41) are listed in [Tables 3 and 4,](#page-7-0) respectively. Because experimental values of $\Delta G^{\circ}_{f (cr)}$ are not available in the literature to compute values of $\Delta G_{f(aq)}^{\circ}$ for the aqueous pyrimidines listed in [Table 3](#page-7-0), values of $\Delta G_{f(cr)}^{\circ}$ for these species were estimated using the strategy described below.

Values of $\Delta G_{f(cr)}^{\circ}$ for the pyrimidines can be calculated by rearranging and combining Eq. (42) with experimental values of $\Delta H_{f(cr)}^{\circ}$ and those of S_{cr}° computed with the aid of the group additivity algorithms depicted in Table 5 using the $S^{\circ}_{(cr)}$ group contributions listed in [Table 6.](#page-9-0) The values of the group contributions shown in [Table 6](#page-9-0) that are not available in the literature were estimated in the present study from the group additivity algorithms summarized in [Table 7](#page-9-0) using the properties of the reference model compounds listed in [Table 8](#page-10-0).

For example, the value of $\Delta G_{f(aq)}^{\circ}$ for aqueous uracil given in [Table 2](#page-6-0) was calculated from

$$
\Delta G^{\circ}_{f(aq)\text{uracil}} = \Delta G^{\circ}_{f(cr)\text{uracil}} + \Delta G^{\circ}_{sol\text{uracil}},\tag{43}
$$

using the value of $\Delta G_{sol\, {\rm unacil}}^{\circ}$ given in Table 4 and the value of $\Delta G_{f (cr) \text{uracil}}^{\circ}$ computed from

$$
\Delta G^{\circ}_{f (cr) \text{uracil}} = \Delta H^{\circ}_{f (cr) \text{uracil}} - T \Delta S^{\circ}_{f (cr) \text{uracil}}, \tag{44}
$$

which is given in [Table 3.](#page-7-0) A value of $\Delta H_{f(cr) \text{ unacil}}^{\circ}$ is also shown in [Table 3](#page-7-0) together with that of and $\Delta S_{f(cr) \text{uracil}}^{\circ}$, which was calculated from

Table 5

Summary of structural group algorithms used to calculate values of S° at 25 °C and 1 bar and the C_p° power function coefficients of selected crystalline pyrimidines

DKP stands for diketopiperazine.

Summary of Maier–Kelley heat capacity power function coefficients and values of S° at 25 °C and 1 bar of the crystalline groups used in additivity algorithms to calculate the corresponding coefficients and properties of selected pyrimidines (see text)

Group	$S^{\circ a}$	$a^{\rm a}$	$b^{\rm b}\!\times\!10^3$	$c^{\rm c}\times 10^{-5}$
(6) CH_2	7.72 ^d	-1.74 ^d	22.4 ^d	0.66 ^d
CН (6)	5.19 ^d	$-0.37d$	17.1 ^d	0^d
(6) NΗ	-3.51^e	-4.5^e	34.3^e	-1.15^e
(6)	4.85^e	1.909 ^e	2.738^e	$0^{\rm e}$
(6)	13.19^{e}	6.959 ^e	-5.065^6	0.489 ^e
(6) NH ₂	8.09 ^e	1.435^e	24.75°	0 ^e
(6) CH ₃	12.5 ^d	11.66 ^d	$-0.20^{\rm d}$	$-1.99d$
cal K^{-1} mol ⁻¹ \bf{a} b cal K ⁻² mol ⁻¹ .				

cal K mol $^{-1}$.

^d Taken from [Richard and Helgeson \(1998\).](#page-43-0)

^e Calculated with the algorithms depicted in Table 7 (see text).

Table 7

Summary of structural group algorithms used to calculate C_P° power function coefficients and S° at 25 °C and 1 bar of selected crystalline groups

$$
\begin{pmatrix}\n\text{(6) NH} \\
\text{(6) CH}\n\end{pmatrix} = \n\begin{pmatrix}\n\text{(6) CH}_{2} \\
\text{(6) CH}_{2}\n\end{pmatrix}\n- 5\n\begin{pmatrix}\n\text{(6) CH}_{2}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{(6) C-H} \\
\text{(6) C-H}\n\end{pmatrix} = 1/2\n\begin{pmatrix}\n\text{(6) CH}_{2} \\
\text{(7) - d H} \\
\text{(8) - d H} \\
\text{(9) - d H} \\
\text{(1,3-phenylendamine)}\n\begin{pmatrix}\n\text{(6) CH} \\
\text{(7) - d H} \\
\text{(8) - d H} \\
\text{(9) - d H} \\
\text{(1,3-phenylendamine)}\n\begin{pmatrix}\n\text{(9) CH} \\
\text{(10) CH}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{(6) N} \\
\text{(7) N}\n\end{pmatrix} = 1/3\n\begin{pmatrix}\n\text{(8) CH} \\
\text{(9) CH}\n\end{pmatrix}
$$

$$
\Delta S_{f(cr)\text{uracil}}^{\circ} = S_{(cr)\text{uracil}}^{\circ} - 4S_{\text{C, graphite}}^{\circ} - 2S_{\text{H}_{2},g}^{\circ} - S_{\text{N}_{2},g}^{\circ} - S_{\text{O}_{2},g}^{\circ},\tag{45}
$$

using values of $S_{\text{C, graphite}}^{\circ}$, $S_{\text{H}_2,g}^{\circ}$, $S_{\text{N}_2,g}^{\circ}$, and $S_{\text{O}_2,g}^{\circ}$ taken from [Cox et al. \(1989\).](#page-41-0) Finally, the value of $S_{(cr)uracil}^{\circ}$ was estimated using the first group additivity algorithm listed in [Table](#page-8-0) [5.](#page-8-0) For entropy, this expression can be written as

$$
S^{\circ}_{(cr)\text{uracil}} = S^{\circ}_{(cr)\text{ DKP}} - 2S^{\circ}_{(cr)\,((6) > \text{CH}_2)} - 2S^{\circ}_{(cr)\,((6) > \text{CH})}. \tag{46}
$$

The values of $S^{\circ}_{(c)}$ DKP stands for diketopiperazine), $S^{\circ}_{(cr)((6) > \text{CH}_2)}$, and $S^{\circ}_{(cr)((6) \geq \text{CH})}$ used in the calculations are given in [Tables 8 and 6.](#page-10-0)

The validity of the calculations described in the preceding paragraphs can be tested by inference from comparison of computed standard molal thermodynamic properties of nucleic-acid bases with their experimentally determined counterparts reported in the literature. For example, the structural group additivity algorithms used to calculate values of S_{cr}° for cytosine, thymine, and uracil (shown in [Table](#page-8-0) [5\)](#page-8-0) can also be used to compute values of $C_{P_r(cr)}^{\circ}$ for the same compounds, which can be compared to corresponding experimental values of $C_{P_r(cr)}^{\circ}$ reported in the literature. It can be seen in [Table 9](#page-10-0) that the computed values of $C_{P_r(cr)}^{\circ}$ for cytosine, thymine, and uracil are all within 1.5 cal mol⁻¹ K^{-1} of the experimental standard molal heat capacities reported in the literature. In addition, the values of $\Delta G^{\circ}_{f (cr)}, \Delta H^{\circ}_{f (cr)}, S^{\circ}_{cr}, \Delta G^{\circ}_{f (aq)}, \Delta H^{\circ}_{f (aq)},$ and $S^{\circ}_{(aq)}$ listed in Tables 2 and 3 compare favorably with those adopted by [Ould-Moulaye et al. \(2001, 2002\)](#page-42-0). Such close agreement between literature values of standard molal thermodynamic properties estimated in the present study strongly supports the use of similar group additivity algorithms to calculate equations of state parameters and other thermodynamic properties of nucleic-acid bases for which few or no experimental data are available.

3.2. Equations of state parameters

Calculation of the thermodynamic properties of aqueous species as a function of temperature and pressure using the revised HKF equations of state requires values of species-dependent solvation and non-solvation parameters (see Section [2.2](#page-4-0)). These values can be generated by regressing with the revised HKF equations of state experimental standard molal isobaric heat capacities (C_p°) , volumes (V°) , and isothermal compressibilities (κ_T°) for a given species as a function of temperature. It can be demonstrated that accurate values of the solvation parameter (ω) can be retrieved from calorimetric data only if values of C_p° above \sim 100 °C are available in the literature for the aqueous species of interest ([Helgeson and Kirkham, 1976; Helgeson et al., 1981; Tanger](#page-41-0) [and Helgeson, 1988; Shock et al., 1989, 1992](#page-41-0)). In the absence of high-temperature calorimetric and densimetric data, experimental values of low-temperature C_p° , V° , and κ_1° reported in the literature can be combined with the revised-HKF equations of state using independently generated values of ω derived in the manner described below.

Summary of C_p° power function coefficients and values of S° at 25 °C and 1 bar of reference compounds used in group additivity algorithms to estimate the corresponding coefficients and properties of selected groups

 a cal K⁻¹ mol⁻¹.

b Calculated using Eq. [\(6\)](#page-3-0) together with above values of a, b, and c.

 \rm^c cal mol⁻¹.

 d cal K mol⁻¹

. e Calculated from $S_{cr,298}^{\circ} = S_{lq,298}^{\circ} - \int_{T_{mel}}^{298} \frac{C_{P,(lq)}}{T} - \frac{\Delta H_{melt}}{T_{melt}} + \int_{T_{melt}}^{298} \frac{C_{P,(cr)}}{T}$ using values of $S_{lq,298}^{\circ}$, ΔH_{melt} , T_{melt} , and values of C_{P}° taken from [Messerly et al.](#page-42-0) [\(1988\).](#page-42-0)

^f Calculated by regressing values of C_p° taken from [Messerly et al. \(1988\)](#page-42-0) with Eq. [\(6\)](#page-3-0).
^g Messerly et al. (1988).
^h [Lebedev et al. \(1981\).](#page-42-0)

ⁱ Calculated by regressing values of C_p° taken from [Lebedev et al. \(1981\)](#page-42-0).
^j [Domalski and Hearing \(1996\)](#page-41-0).

^k Calculated using values of C_p° taken from [Van Bommel et al. \(1988\)](#page-43-0) with Eq. [\(6\)](#page-3-0).
¹ Calculated using values of C_p° taken from Rabinovich et al. (1984).

¹ Calculated using values of C_p° taken from [Rabinovich et al. \(1984\).](#page-42-0) m [Richard and Helgeson \(1998\).](#page-43-0)

- ⁿ Calculated from $S_{cr,298}^{\circ} = S_{lq,298}^{\circ} \int_{T_{melt}}^{298} \frac{C_{P,(lq)}}{T} \frac{\Delta H_{melt}}{T_{melt}} + \int_{T_{melt}}^{298} \frac{C_{P,(cr)}}{T}$ using values of $S_{lq,298}^{\circ}$, ΔH_{melt} , T_{melt} , and values of C_P° taken from Adachi et al. (1
-

Table 9 Summary of experimental and calculated values of C_p° for selected crystalline pyrimidines

Pyrimidine	Formula	$C_p^{\circ a}$						
		Experimental	Calculated ^b					
Cytosine	$C_4H_5N_3O$	31.69 ^c	31.97					
Thymine	$C_5H_6N_2O_2$	35.90°	34.95					
Uracil	$C_4H_4N_2O_2$	28.9 ^d	30.31					

 a cal K⁻¹ mol⁻¹.

 b Calculated using the group additivity algorithms depicted in [Table 5.](#page-8-0)</sup>

^c [Domalski and Hearing \(1996\)](#page-41-0).

^d [Kilday \(1978d\)](#page-42-0).

3.2.1. The solvation parameter, ω

High-temperature experimental values of C_p° for the aqueous nucleic-acid bases are not available in the literature. Nevertheless, estimates of ω can be computed from the correlation developed by [\(Plyasunov and Shock,](#page-42-0) [2001\)](#page-42-0), who observed a relationship between values of ω in cal mol⁻¹ and the standard molal Gibbs energy of hydration (ΔG_{hyd}°) in kcal mol⁻¹. This correlation for neutral aqueous species can be expressed as

$$
\omega = \left(0.624 + \frac{18.51}{\Delta G_{hyd}^{\circ} - 21.7}\right)10^{5}.\tag{47}
$$

Although the requisite values of ΔG_{hyd}° for the nucleic-acid bases are not available in the literature, they can be calculated from

Table 10

Summary of standard molal thermodynamic properties of hydration at 25 °C and 1 bar for the nucleic-acid bases and sugars considered in the present study

present stuur				
Compound	Formula	ΔG_{hvd}° ^a	ΔH_{hvd}° ^a	ΔS_{hyd}° ^b
Purines				
Adenine	$C_5H_5N_5$	$-11,506^{\circ}$	$-22,400^{\rm d}$	-36.54°
Guanine	$C_5H_5N_5O$	$-24,948^{\circ}$	$-35,350$ ^f	-34.89 ^e
Pyrimidines				
Cytosine	$C_4H_5N_3O$	$-19,314^{\circ}$	$-30,810^8$	-38.56 ^e
Thymine	$C_5H_6N_2O_2$	$-15,303^{\circ}$	$-23,920$ ^h	-28.90°
Uracil	$C_4H_4N_2O_2$	$-16,761^{\circ}$	$-21,800^{\rm i}$	-16.90°
Monosaccharides				
Ribose	$C_5H_{10}O_5$	$-19,243^{\circ}$	$-34,609$ ^f	-51.54 ^e
Deoxyribose	$C_5H_{10}O_4$	$-19,444^{\circ}$	$-35,027$ ^f	-52.27°

 a cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

^o cal K⁻¹ mol⁻¹.
^c Calculated using values of ΔG_{sol}° and ΔG_{sub}° taken from [Tables 4 and](#page-8-0) [11,](#page-8-0) respectively.

 d [Zielenkiewicz et al. \(1984\).](#page-43-0)

^e Calculated from $\Delta S^{\circ}_{hyd} = (\Delta H^{\circ}_{hyd} - \Delta G^{\circ}_{hyd})$

Zielenkiewicz et al. (1984),

c Calculated from $\Delta S_{hyd}^{\circ} = (\Delta H_{hyd}^{\circ} - \Delta G_{hyd}^{\circ})/T_r$.

f Calculated from ΔH_{sol}° and ΔH_{sub}° taken from [Tables 4 and 11,](#page-8-0) respectively.

^g [Zielenkiewicz et al. \(1998\).](#page-43-0)

^h [Zielenkiewicz \(1995\)](#page-43-0).

ⁱ [Teplitsky et al. \(1980\).](#page-43-0)

$$
\Delta G_{hyd}^{\circ} = \Delta G_{f(aq)}^{\circ} - \Delta G_{f(g)}^{\circ} = \Delta G_{sol}^{\circ} - \Delta G_{sub}^{\circ},\tag{48}
$$

where $\Delta G_{f(qq)}^{\circ}$ and $\Delta G_{f(g)}^{\circ}$ stand for the standard molal Gibbs energies of formation of the aqueous and gas nucleic-acid bases at 298.15 K and 1 bar, and ΔG_{sol}° and ΔG_{sub}°

refer to the standard molal Gibbs energies of solution and sublimation for nucleic-acid bases. The values of $\Delta G_{f(g)}^{\circ}$, $\Delta G_{f(aq)}^{\circ}, \Delta G_{sol}^{\circ}, \Delta G_{hyd}^{\circ}, \text{ and } \Delta G_{sub}^{\circ} \text{ consistent with Eq. (48)}$ $\Delta G_{f(aq)}^{\circ}, \Delta G_{sol}^{\circ}, \Delta G_{hyd}^{\circ}, \text{ and } \Delta G_{sub}^{\circ} \text{ consistent with Eq. (48)}$ $\Delta G_{f(aq)}^{\circ}, \Delta G_{sol}^{\circ}, \Delta G_{hyd}^{\circ}, \text{ and } \Delta G_{sub}^{\circ} \text{ consistent with Eq. (48)}$ for the nucleic-acid bases are given in [Table A.1](#page-36-0) in Appendix A and [Tables 2, 4, 10, and 11](#page-6-0), respectively. Values of $\Delta H_{f(g)}^{\circ}$, ΔH_{hyd}° , and ΔH_{sub}° , and $S_{(g)}^{\circ}$, ΔS_{hyd}° , and ΔS_{sub}° for the nucleic-acid bases are also shown in [Table A.1](#page-36-0) in Appendix A and [Tables 10 and 11](#page-10-0). Values of ω for the nucleic-acid bases computed from Eqs. [\(47\) and \(48\)](#page-10-0) are listed in [Table 2](#page-6-0).

3.2.2. The non-solvation heat capacity parameters, c_1 and c_2

In the absence of experimental high-temperature calorimetric data, reliable values of c_1 and c_2 for nucleic-acid bases can be obtained by regressing low-temperature experimental values of C_p° using Eq. [\(34\)](#page-5-0) and the values of ω gen-erated in Section [3.2.1](#page-10-0). For $P = P_r$, Eq. [\(34\)](#page-5-0) can be

Table 11 Summary of standard molal thermodynamic properties of sublimation at $25 \degree$ C and 1 bar for the nucleic-acid bases adopted in the present study

Compound	Formula	$\Delta G_{sub}^{\circ}^{\circ}$ ^a	$\Delta H_{sub}^{\circ}^{\alpha}$	$\Delta S_{sub}^{\circ\quad \ b}$
Purines				
Adenine	$C_5H_5N_5$	$14,414^{c,d}$	$31,980^e$	58.92^{f}
Guanine	$C_5H_5N_5O$	$30,248^{\text{c},\text{g}}$	44,500 ^g	47.80 ^f
Pyrimidines				
Cytosine	$C_4H_5N_3O$	$20,924^{c,i}$	$38,693^{\rm h}$	59.60 ^f
Thymine	$C_5H_6N_2O_2$	$17,380^{c,i}$	$32,051^{\rm h}$	49.21 ^f
Uracil	$C_4H_4N_2O_2$	$18,761^{c,j}$	29,601 ^h	36.36 ^f

See [Table A.6](#page-37-0) in Appendix A for additional values.
^a cal mol⁻¹.
b cal K⁻¹ mol⁻¹

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

Extrapolated using vapor pressure data for temperatures ranging up to 340 K. ΔH_{sub}° was taken in a first approximation to be constant over this temperature range.

[Zielenkiewicz \(2000\)](#page-44-0).

^e Average of values taken from [Zielenkiewicz \(2000\)](#page-44-0) and [Domalski and](#page-41-0) [Hearing \(1996\).](#page-41-0)

^f Calculated from $\Delta S_{sub}^{\circ} = (\Delta H_{sub}^{\circ} - \Delta G_{sub}^{\circ})/T_{sub}$.
^g [Yanson et al. \(1974\)](#page-43-0).

- ^h Calculated using ΔH_{for}° and ΔH_{fg}° .
ⁱ [Ferro et al. \(1980\)](#page-41-0).
-

 j [Bardi et al. \(1980\).](#page-41-0)</sup>

simplified and rearranged into two particularly useful expressions,

$$
\Delta C_{P,n}^{\circ} = C_P^{\circ} - \omega TX,\tag{49}
$$

and

$$
\Delta C_{P,n}^{\circ} = c_1 + \frac{c_2}{(T - \Theta)^2}.
$$
\n(50)

The filled circular symbols in Fig. 2 represent values of $\Delta C_{P,n}^{\circ}$ for cytosine, thymine, and uracil calculated from Eq. (49) using experimental values of C_p° reported by [Patel and](#page-42-0) [Kishore \(1995\).](#page-42-0) Eq. (50) is consistent with the straight lines in Fig. 2. It follows that the intercepts and slopes of these straight lines correspond to values of c_1 and c_2 , respectively, for cytosine, thymine, and uracil. It can be seen in Fig. 2 that the straight lines representing the revised HKF equations of state are closely consistent with the experimentally derived values of $\Delta C_{P,n}^{\circ}$ as a function of $1/(T-\Theta)^2$.

Experimental values of C_p° at temperatures other than $25 \,^{\circ}\text{C}$ for adenine and guanine are not available in the literature. Nevertheless, values of c_1 and c_2 for these species can be estimated by taking account of the systematic similarities of the c_2 values for other nucleic-acid bases and their respective nucleosides. In a first approximation values of c_2 for adenine and guanine can be calculated from

$$
c_{2 nucleic-acid base_i} = c_{2 nucleoside_i} - \delta c_2, \qquad (51)
$$

where δc_2 corresponds to the average difference in the c_2 values of the nucleosides, cytidine, thymidine, and uridine and their respective nucleic-acid bases, cytosine, thymine, and uracil in accord with

$$
\delta c_2 = \frac{\sum_{i=1}^{3} (c_{2nucleoside_i} - c_{2nucleic-acid base_i})}{3}, \qquad (52)
$$

where the terms c_2 nucleic-acid base_i and c_2 nucleoside_i designate the c_2 parameters for the nucleic-acid base and nucleoside of interest. Values of c_1 for adenine and guanine can be calculated from their respective values of c_2 and C_P° at 25 °C and 1 bar using Eqs. (49) and (50). The values of c_1 and c_2 calculated in this manner for adenine, cytosine, guanine, thymine, and uracil are listed in [Table 2](#page-6-0) and the corresponding experimental values of C_P° are given in [Table](#page-36-0)

Fig. 2. $\Delta C_{P,n}^{\circ}$ for aqueous cytosine, thymine, and uracil as a function of $10^4/(T-\Theta)^2$ at 1 bar. The symbols denote values of $\Delta C_{P,n}^{\circ}$ computed from Eq. (49) using values of ω and C_p° taken from [Tables 2 and A.2](#page-6-0) in Appendix A, respectively. The regression lines represent fits of Eq. (50) to the data.

Fig. 3. Standard molal heat capacities (C_p°) of crystalline adenine and guanine as a function of temperature at 1 bar. The symbols denote values of C_p° taken from [Stiehler and Huffman \(1935b\).](#page-43-0) The regression lines represent fits of Eq. [\(6\)](#page-3-0) to the data.

Fig. 4. Standard molal heat capacities (C_p°) of crystalline cyclohexanol, 2,5-diketopiperazine, *m*-phenylenediamine, piperazine, triazine, and H₃PO₄ as a function of temperature at 1 bar. The symbols denote values of C_p° taken from the literature. The regression lines represent fits of Eq. [\(6\)](#page-3-0) to the data. The dashed lines in the piperidine and cyclohexanol plots correspond to a metastable extension and extrapolation, respectively, of C_p° for the crystalline phase.

[A.2](#page-36-0) in Appendix A. The c_2 values for the nucleosides computed in the manner described in Section [4.2.2](#page-17-0) are also listed in [Table 2.](#page-6-0)

3.2.3. The crystalline heat capacity parameters, a, b, and c

Values of the heat capacity power function coefficients $(a, b, \text{ and } c)$ in Eq. [\(6\)](#page-3-0) for crystalline adenine and guanine, together with those of the groups derived from the corresponding coefficients for reference model compounds are given in [Tables 3, 6, and 8](#page-7-0), respectively. The a, b , and c values for the groups depicted in [Table 6](#page-9-0) were calculated from the same group additivity algorithms used to calculate S_{cr}° for cytosine, thymine, and uracil (see above and [Table 5\)](#page-8-0). The filled circles in Figs. 3 and 4 represent experimental values of standard molal isobaric crystalline heat capacities $(C_{P(c)}^{\circ})$ reported in the literature for adenine, guanine, and

the reference model compounds as a function of temperature at 1 bar. The straight lines shown in these figures for the crystalline compounds are consistent with the values of a, b, and c given in [Tables 3 and 8](#page-7-0) for these species, which were generated by regressing the experimental values of $C_{P(c)}^{\circ}$ with Eq. [\(6\).](#page-3-0)

3.2.4. The non-solvation volume and compressibility parameters, a_1 , a_2 , a_3 , and a_4

In the absence of experimental high-temperature volumetric and compressibility data, values of the a_1 , a_2 , a_3 , and a_4 parameters for the aqueous nucleic-acid bases can be generated by regressing experimental low-temperature aqueous standard molal volumes (V°) and isothermal compressibilities $(\Delta \kappa_T^{\circ})$ using the equations discussed in Section [2.2.2](#page-5-0) and independently specified values of ω . The filled circles in Fig. 5 represent values of ΔV_n° for adenine, cytosine, thymine, and uracil calculated from corresponding values of V° reported by [Lee and Chalikian \(2001\)](#page-42-0) using Eqs. [\(31\) and \(35\),](#page-5-0) together with values of ω taken from [Table](#page-6-0) [2.](#page-6-0) It follows that the intercepts and slopes of the straight lines in Fig. 5 correspond to values of the σ and ξ parameters in Eq. [\(18\)](#page-4-0). Analogously, the symbols in [Fig. 6](#page-14-0) stand for values of $-\Delta\kappa_{T,n}^{\circ}$ for adenine, cytosine, thymine, and uracil calculated from corresponding values of the standard molal isothermal compressibilities (κ_T°) for these species, together with appropriate statements of Eqs. [\(32\) and](#page-5-0) [\(36\)](#page-5-0). The values of κ_T° were converted from adiabatic compressibilities (κ_s°) reported by [Lee and Chalikian \(2001\)](#page-42-0) by taking account of [\(Desnoyers and Philip, 1972\)](#page-41-0)

$$
\kappa_{T,i}^{\circ} = \kappa_{S,i}^{\circ} + \frac{TV_{H_{2}O}^{\circ} \alpha_{H_{2}O}^{\circ} (2E_{i}^{\circ} - V_{H_{2}O}^{\circ} \alpha_{H_{2}O}^{\circ} C_{P,i}^{\circ} / C_{P,H_{2}O}^{\circ})}{C_{P,H_{2}O}^{\circ}},
$$
 (53)

where *i* designates the solute of interest, E_i° refers to the standard molal expansibility of the solute, and $V_{\text{H}_2\text{O}}^{\circ}$, C_{P,H_2O}° , and $\alpha_{H_2O}^{\circ}$ stand for the standard molal volume, heat capacity, and coefficient of isobaric thermal expansion of water, respectively. The latter property is defined as

$$
\alpha_{\rm H_2O}^{\circ} = \frac{1}{V_{\rm H_2O}^{\circ}} \left(\frac{\partial V_{\rm H_2O}^{\circ}}{\partial T}\right)_P.
$$
\n(54)

The standard molal properties of H_2O were calculated using the SUPCRT92 software package ([Johnson et al.,](#page-42-0) [1992](#page-42-0)). The values of E_i° for adenine, cytosine, thymine, and uracil used to evaluate Eq. (53) are given in [Table](#page-36-0) [A.3](#page-36-0) in Appendix A. Note that it follows from Eq. [\(36\)](#page-5-0) that the intercepts and slopes of the straight lines in [Fig. 6](#page-14-0) correspond, respectively, to values of the $\left(\frac{\partial \sigma}{\partial P}\right)_T$ and $\left(\frac{\partial \xi}{\partial P}\right)_T$ terms in Eq. [\(19\).](#page-4-0) Values of a_2 and a_4 can thus be calculated directly from these partial derivatives using Eqs. [\(22\)](#page-4-0) and [\(23\)](#page-4-0). The a_2 and a_4 values can then be combined with values of σ and ξ using Eqs. [\(20\) and \(21\)](#page-4-0) to compute values of a_1 and a_3 . The values of a_1 , a_2 , a_3 , and a_4 generated in this manner for adenine, cytosine, thymine, and uracil are given in [Table 2](#page-6-0). It can be seen in Figs. 5 and 6 that the straight lines representing the revised HKF equations of state are closely consistent with the experimentally derived values of ΔV_p° and $\Delta \kappa_{T,n}^{\circ}$. The experimental values of V° and κ_1° used to locate the symbols in these figures are listed in [Ta](#page-36-0)[bles A.4 and A.5](#page-36-0) in Appendix A.

Fig. 5. ΔV_n° for aqueous adenine, cytosine, thymine, and uracil as a function of $1/(T-\Theta)$ at 1 bar. The symbols denote values of ΔV_n° computed from Eqs. [\(31\) and \(35\)](#page-5-0) using values of ω and V° taken from [Tables 2 and A.4](#page-6-0) in Appendix A, respectively. The regression lines represent fits of Eq. [\(18\)](#page-4-0) to the data. The vertical lines denote uncertainties in the experimental values of V° reported by [Lee and Chalikian \(2001\).](#page-42-0)

Fig. 6. $\Delta \kappa_{T,n}^{\circ}$ for adenine, cytosine, thymine, and uracil as a function of $1/(T-\Theta)$ at 1 bar. The symbols denote values of $\Delta \kappa_{T,n}^{\circ}$ computed from Eqs. [\(32\)](#page-5-0) [and \(36\)](#page-5-0) using values of ω and κ_T° taken from [Tables 2 and A.5](#page-6-0) in Appendix A, respectively. The regression lines represent fits of Eq. [\(19\)](#page-4-0) to the data. The vertical lines designate uncertainties in the values of κ_T° computed from experimental values of κ_S° reported by [Lee and Chalikian \(2001\)](#page-42-0) (see text).

Although values of V° and κ_T° are not available in the literature for guanine, estimates of the a_1 , a_2 , a_3 , and a_4 parameters for this species can be generated from correlations among values of ΔV_p° , σ , a_1 , a_2 , and a_4 for the other nucleic-acid bases and nucleosides. The form of the correlation equations are similar to those developed by [Shock](#page-43-0) [and Helgeson \(1988\)](#page-43-0), but the slopes and intercepts are derived from the corresponding parameters for nucleic-acid bases and nucleosides listed in [Table 2.](#page-6-0) The symbols in Figs. 7a and b represent values of a_1 and σ , respectively, taken from this table as a function of the experimentally derived values of ΔV_n° for adenine, cytosine, thymine, uracil, adenosine, cytidine, guanosine, thymidine, uridine, deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxyuridine (see below for the nucleosides). The symbols

in Fig. 7c denote values taken from [Table 2](#page-6-0) for a_4 plotted as a function of a_2 for the same species. The straight lines generated from the trends in the parameters shown in Fig. 7 are consistent with

$$
a_1 = 2.68 + 11.19 \left(\frac{\Delta V_n^{\circ}}{41.8393} \right), \tag{55}
$$

 \int_{n}^{∞} , (56)

 $\sigma = 8.41 + 1.026 \Delta V_n^{\circ}$ and

$$
a_4 = 1.195 - 0.5749a_2. \tag{57}
$$

The value of ΔV_p° at 25 °C and 1 bar used to calculate those of a_1 and σ for aqueous guanine from Eqs. (55) and (56), respectively, were calculated from the values of ω and V° given in [Table 2](#page-6-0) for this species using Eqs. [\(31\) and \(35\)](#page-5-0).

Fig. 7. Correlations of a_1 and σ with ΔV_p° , and a_2 with a_4 for nucleic-acid bases and nucleosides derived in the present study from experimental data available in the literature. The symbols denote values of ΔV_n° computed from Eqs. [\(31\) and \(35\)](#page-5-0) using values of ω and V° taken from [Table 2 and A.4](#page-6-0) in Appendix A, respectively. The values of a_1 , a_2 , and a_4 were taken from [Table 2,](#page-6-0) but those for σ were calculated from Eqs. [\(18\) and \(20\)](#page-4-0).

Although no value of V° at 25 °C and 1 bar for guanine is available in the literature, it was estimated in the present study using the standard molal volumes at 25° C and 1 bar of the other nucleic-acid bases and their corresponding nucleosides as reference model compounds to evaluate the mean additivity approximation represented by

$$
V_{\text{guamine}}^{\circ} = V_{\text{guanosine}}^{\circ} - \frac{\sum_{i} (V_{\text{nucleoside}_i}^{\circ} - V_{\text{base}_i}^{\circ})}{n}, \qquad (58)
$$

where $V_{\text{guanosine}}^{\circ}$, $V_{\text{nucleoside}}^{\circ}$, and $V_{\text{base}_i}^{\circ}$ denote the standard molal volumes of guanosine, the ith nucleoside, and the corresponding ith base, respectively. These volumes are listed in [Table 2](#page-6-0).

The value of V° for guanine at 25 °C and 1 bar computed from Eq. (58) using values of V° given in [Table 2](#page-6-0) for the species on the right hand side of the equation was used, together with Eqs. [\(56\) and \(55\),](#page-14-0) to generate values of σ and a_1 for guanine. These parameters were then in turn combined with Eqs. [\(18\), \(20\), \(21\), and \(57\)](#page-4-0) to calculate values of a_2 , a_3 , and a_4 for guanine. The resulting values are shown in [Table 2](#page-6-0), along with the values of a_1 and V° for guanine computed from Eqs. [\(55\) and \(58\)](#page-14-0).

4. Nucleosides

The term nucleoside refers to a compound consisting of one nucleic-acid base bonded to either one ribose or deoxyribose sugar as shown in Fig. 8. For specific references to nucleosides comprised of deoxyribose, the prefix deoxy- is added to the nucleoside name. The common names of the nucleosides considered in the present study are formed by dropping the last several letters of the common name for their corresponding nucleic-acid bases, and replacing them with the suffix -idine in the case of pyrimidines, or -osine in the case of purines.

4.1. Standard molal Gibbs energies, enthalpies, and third law entropies at 25° C and 1 bar

The values of $\Delta G_{f(aq)}^{\circ}$ and $\Delta H_{f(aq)}^{\circ}$ at 25 °C and 1 bar for the aqueous nucleosides can be calculated from corresponding values of $\Delta G^{\circ}_{f (cr)}, \Delta H^{\circ}_{f (cr)}, \Delta G^{\circ}_{sol}$, and ΔH°_{sol} using Eqs. [\(40\)](#page-8-0) [and \(41\)](#page-8-0). The values of $\dot{S}^{\delta}_{(aq)}$ can then be computed from Eq. [\(42\)](#page-8-0) using values of S_i° taken from [Cox et al. \(1989\)](#page-41-0). However, with the exception of adenosine, the values of $\Delta G_{f(ct)}^{\circ}$ and $\Delta H_{f(cr)}^{\circ}$ required to evaluate Eqs. [\(40\) and \(41\)](#page-8-0) are not available in the literature. Similarly, values of ΔG_{sol}° and ΔH_{sol}° have not been reported in the literature for one of the 10 nucleosides considered in the present study. Nevertheless,

Fig. 8. Idealized generic structure of nucleosides and deoxynucleosides.

these properties can be estimated from the algorithms summarized below. Values of $\Delta G^{\circ}_{f(aq)}$, $\Delta H^{\circ}_{f(aq)}$, and $S^{\circ}_{(aq)}$ at 25° C and 1 bar for the 10 aqueous nucleosides considered in the present study are listed in [Table 2](#page-6-0) and those for their crystalline counterparts are shown in [Table 3.](#page-7-0)

4.1.1. Crystalline values of ΔG_f° , ΔH_f° , and S°

Values of $\Delta G_{f(cf)}^{\circ}$ and $\Delta H_{f(cf)}^{\circ}$ for the *i*th crystalline nucleoside can be estimated in a first approximation from values of $\Delta G_{f(cr)}^{\circ}$ and $\Delta H_{f(cr)}^{\circ}$ for the *i*th crystalline nucleic-acid base, ribose, and water using

$$
\Delta \Xi_{nucleoside_{i(cr)}}^{\circ} = \Delta \Xi_{ribose_{(cr)}}^{\circ} + \Delta \Xi_{base_{i(cr)}}^{\circ} - \Delta \Xi_{H_2O_{(I)}}^{\circ} + \Delta \Xi_{r}^{\circ}
$$
\n(59)

where $\Delta \mathcal{Z}^{\circ}$ stands for any standard molal thermodynamic property or equations of state parameter for the subscripted species and $\Delta \mathcal{Z}_r^{\circ}$ represents the corresponding properties of reaction for

$$
base_{i(cr)} + sugar_{(cr)} \rightleftharpoons nucleoside_{i(cr)} + H_2O_{(1)}.
$$
 (60)

In the absence of experimental values reported in the literature of $\Delta G_{f(ct)}^{\circ}$ and $\Delta H_{f(ct)}^{\circ}$ for all of the crystalline nucleosides other than adenosine, the value of $\Delta \Xi_r^{\circ}$ in Eq. (59) was taken in a first approximation to be equivalent to that for

$$
adenine_{(cr)} + ribose_{(cr)} \rightleftharpoons adenosine_{(cr)} + H_2O_{(1)},
$$
\n(61)

which is consistent with expressing $\Delta \mathcal{Z}_r^{\circ}$ in Eq. (59) as

$$
\Delta \mathcal{Z}_r^\circ = \mathcal{Z}_{adenosine(c)}^\circ + \mathcal{Z}_{H_2O(l)}^\circ - \mathcal{Z}_{adening(c)}^\circ - \mathcal{Z}_{ribase(c)}^\circ. \tag{62}
$$

The thermodynamic properties of $H_2O_{(l)}$ were taken from SUPCRT92 [\(Johnson et al., 1992\)](#page-42-0).

Values of $\Delta G_{f(cr)}^{\circ}$ and $\Delta H_{f(cr)}^{\circ}$ for crystalline *adenosine*, ribose, adenine, and the other nucleic-acid bases which are required to evaluate Eqs. (59) and (62) for nucleosides are given in [Table 3,](#page-7-0) together with the values of $\Delta G_{f(c)}^{\circ}$ and $\Delta H_{f(cr)}^{\circ}$ for the latter species computed from Eq. (59). Except in the case of adenosine, the values of $S^{\circ}_{(cr)}$ given in [Ta](#page-7-0)[ble 3](#page-7-0) for the nucleosides were generated from the corresponding values of $\Delta G_{f(ct)}^{\circ}$ and $\Delta H_{f(ct)}^{\circ}$ using Eq. [\(42\)](#page-8-0). All of these values compare favorably with those calculated by [Ould-Moulaye et al. \(2001\).](#page-42-0)

The values of $\Delta G_{f(cf)}^{\circ}$, $\Delta H_{f(cf)}^{\circ}$, and $S_{(cr)}^{\circ}$ for the crystalline deoxynucleosides in [Table 3](#page-7-0) were computed using the same equations and algorithms used to calculate the corresponding properties of the crystalline nucleosides except that the standard molal thermodynamic properties for deoxyribose were used in place of those for ribose. Although values of $\Delta G_{f(cr)}^{\circ}$ and $S_{(cr)}^{\circ}$ for crystalline deoxyribose are not available in the literature the experimental value of $\Delta H_{f(cr)}^{\circ}$ determined by [Colbert et al. \(1987\)](#page-41-0) can be combined with an estimated value of $S^{\circ}_{(cr)}$ to calculate a provisional value of $\Delta G_{f (cr)}^{\circ}$ by rearranging Eq. [\(42\)](#page-8-0). The group additivity algorithm used to estimate a value of $S_{(cr)}^{\circ}$ for deoxyribose $(S^{\circ}_{deoxyribase(cr)})$ is depicted in [Fig. 9,](#page-16-0) which is consistent with

$$
S^{\circ}_{deoxyribase(cr)} = S^{\circ}_{ribase(cr)} + S^{\circ}_{cyclohexane(cr)} - S^{\circ}_{cyclohexanol(cr)}, \quad (63)
$$

Fig. 9. Idealized structural representation of the group additivity algorithm used to calculate S° and the C_{P}° power function coefficients for crystalline deoxyribose.

where $S_{ribose (cr)}^{\circ},$ $S_{cyclohexane (cr)}^{\circ},$ and $S_{cyclohexano l (cr)}^{\circ}$ refer to values of S° for crystalline ribose, cyclohexane, and cyclohexanol, respectively. Eq. [\(63\)](#page-15-0) was used together with the value of S° given for *ribose*(*cr*) in [Table 3](#page-7-0) and those for crystalline cyclohexane and cyclohexanol in [Table 8](#page-10-0) to calculate the value of $S^{\circ}_{(cr)}$ for deoxyribose shown in [Table 3](#page-7-0). The value of $\Delta G_{f(cf)}^{\circ}$ given in [Table 3](#page-7-0) for this sugar was computed by rearranging Eq.[\(42\)](#page-8-0) and combining the resulting expression with the value of $S_{(cr)}^{\circ}$ and the experimental value of $\Delta H_{f(ct)}^{\circ}$ shown for deoxyribose in [Table 3](#page-7-0). The values of $\Delta G_{f(ct)}^{\circ}$ and $\Delta H_{f(ct)}^{\circ}$ given for both the crystalline nucleosides and deoxynucleosides in [Table 3](#page-7-0) can be combined with corresponding values of ΔG_{sol}° and ΔH_{sol}° to calculate values of their aqueous counterparts in the manner described below.

4.1.2. ΔG_{sol}° and ΔH_{sol}°

Experimental values of ΔG_{sol}° for adenosine, guanosine, and deoxyadenosine, and ΔH_{sol}° for adenosine taken from the literature are listed in [Table 4](#page-8-0). Experimental values of ΔG_{sol}° and ΔH_{sol}° for the other nucleosides considered in the present study can be estimated using the experimental values of these properties for adenosine, guanosine, and deoxyadenosine, together with those for nucleic-acid bases and ri-bose given in [Table 4](#page-8-0). These values of ΔH_{sol}° can be combined with the additivity algorithms discussed below to estimate corresponding values of ΔG_{sol}° and ΔH_{sol}° for nucleosides for which no experimental data are available in the literature. For example, values of ΔG_{sol}° and ΔH_{sol}° for the *i*th such nucleoside ($\Delta G_{sol,nucleoside_i}^{\circ}$ and $\Delta H_{sol,nucleoside_i}^{\circ}$, respectively) can be calculated from the corresponding values for the *i*th nucleic-acid base ($\Delta G_{sol,base_i}^{\circ}$ and $\Delta H_{sol,base_i}^{\circ}$) and ribose ($\Delta G_{sol,ribose}^{\circ}$ and $\Delta H_{sol,ribose}^{\circ}$) using

$$
\Delta G_{sol,nucleoside_i}^{\circ} = \Delta G_{sol,base_i}^{\circ} + \Delta G_{sol,ribose}^{\circ} + \delta G_{sol}^{\circ}
$$
 (64)

and

$$
\Delta H_{sol,nucleoside_i}^{\circ} = \Delta H_{sol,base_i}^{\circ} + \Delta H_{sol, ribose}^{\circ} + \delta H_{sol}^{\circ},\tag{65}
$$

where δG_{sol}° and δH_{sol}° represent the difference in the standard molal Gibbs energies and enthalpies of solution between a given nucleoside and the corresponding properties of its constituents. Owing to the paucity of experimental data available in the literature, the values of δG_{sol}° and δH_{sol}° in Eqs. (64) and (65) were estimated from

$$
2\delta G_{sol}^{\circ} = (\Delta G_{sol, adenosine}^{\circ} - \Delta G_{sol, adenine}^{\circ} - \Delta G_{sol, ribose}^{\circ})
$$

$$
+ (\Delta G_{sol, guanosine}^{\circ} - \Delta G_{sol, guanine}^{\circ} - \Delta G_{sol, ribose}^{\circ})
$$
(66)

and

$$
\delta H_{sol}^{\circ} = \Delta H_{sol, adenosine}^{\circ} - \Delta H_{sol, adenine}^{\circ} - \Delta H_{sol, ribose}^{\circ},\tag{67}
$$

respectively. Values of ΔG_{sol}° and ΔH_{sol}° for nucleosides for which no experimental data are reported in the literature were computed using Eqs. (64) – (67) , together with values of $\Delta G_{sol,adenosine}^{\circ}$, $\Delta G_{sol,guanosine}^{\circ}$, $\Delta G_{sol,adenine}^{\circ}$, $\Delta G_{sol,guanine}^{\circ}$, and $\Delta G_{sol, ribose}^{\circ}$ and $\Delta H_{sol, adenosine}^{\circ}$, $\Delta H_{sol, adenine}^{\circ}$, and $\Delta H_{sol, ribose}^{\circ}$ taken from [Table 4.](#page-8-0) These values are also given in [Table 4](#page-8-0).

With the exception of deoxyadenosine for which experimental data are available in the literature, values of $\Delta G_{\rm sol}^{\circ}$ for the *i*th deoxynucleoside $(\Delta G_{sol, deovynucleoside_i}^{\circ})$ were estimated from

$$
\Delta G^{\circ}_{sol, deoxynucleoside_i} = \Delta G^{\circ}_{sol, nucleoside_i} + \delta G^{\circ}_{sol,d},\tag{68}
$$

where $\delta G_{sol,d}^{\circ}$ stands for the analog of δG_{sol}° for the difference in the standard molal Gibbs energies of the solution between a given deoxynucleoside and its constituent deoxy sugar and base. The value of $\delta G_{sol,d}^{\circ}$ required to evaluate Eq. (68) was estimated by computing the difference in the solubilities of deoxyadenosine and adenosine in accord with

$$
\delta G_{sol,d}^{\circ} = \Delta G_{sol, deoxyadenosine}^{\circ} - \Delta G_{sol, adenosine}^{\circ}.
$$
 (69)

The values of $\Delta G_{sol, deoxyadenosine}^{\circ}$ and $\Delta G_{sol,adenosine}^{\circ}$ used in the calculations are listed in [Table 4.](#page-8-0)

Although no values of ΔH_{sol}° for any of the deoxynucleosides considered in the present study are available in the literature, provisional values of ΔH_{sol}° for the *i*th deoxynucleoside $(\Delta H_{sol, deoxynucleoside_i}^{\circ})$ can be estimated from the values of $\Delta H_{sol, deoxyribase}^{\circ}$ and

$$
\Delta H_{sol, deoxynucleoside_i}^{\circ} = \Delta H_{sol, base_i}^{\circ} + \Delta H_{sol, deoxyribose}^{\circ} + \delta H_{sol}^{\circ}.
$$
\n(70)

The requisite value of $\Delta H_{sol, deoxyribase}^{\circ}$ is shown in [Table 4](#page-8-0). Values of ΔG_{sol}° and ΔH_{sol}° for the nucleosides and deoxynucleosides calculated from the these equations are also given in [Table 4.](#page-8-0)

As noted above, the values of $\Delta G_{f(aq)}^{\circ}$ and $\Delta H_{f(aq)}^{\circ}$ for the aqueous nucleosides and deoxynucleosides shown in [Table](#page-6-0) [2](#page-6-0) were calculated from the values of ΔG_{sol}° and ΔH_{sol}° for these species in [Table 4](#page-8-0) using Eqs. [\(40\) and \(41\)](#page-8-0). The values of $S_{(aq)}^{\circ}$ given in [Table 2](#page-6-0) for the aqueous nucleosides and deoxynucleosides were calculated from Eq. [\(42\)](#page-8-0) using values of $\Delta G_{f(aq)}^{\circ}$ and $\Delta H_{f(aq)}^{\circ}$ taken from [Table 2](#page-6-0) and S° of the elements from [Cox et al. \(1989\).](#page-41-0)

4.2. Equations of state parameters

The revised HKF equations of state parameters represented by ω , c_1 , c_2 , a_1 , a_2 , a_3 , and a_4 for the aqueous nucleosides and deoxynucleosides are listed in [Table 2](#page-6-0). These values were calculated in the manner described below.

4.2.1. The solvation parameter, ω

In the absence of high-temperature calorimetric data or values of ΔG_{hyd}° , which are required to evaluate Eq. [\(47\)](#page-10-0), provisional values of ω for a given nucleoside ($\omega_{nucleoside}$)

can be estimated from the group additivity algorithm represented by

$$
\omega_{nucleoside} = \omega_{base} + \omega_{sugar},\tag{71}
$$

where ω_{base} and ω_{suear} refer to values of ω for the nucleicacid base in the nucleoside and the sugar of interest, ribose or deoxyribose. Because no experimental data are available in the literature from which to calculate a value of ω for deoxyribose ($\omega_{deoxyribase}$), it was taken in a first approximation in the present study to be equal to ω_{ribose} because both of these sugars have nearly identical chemical formulas and structures. Values of $\omega_{nucleoside}$ computed from Eq. (71) are listed in [Table 2,](#page-6-0) together with those of the bases and sugars used in this calculation.

4.2.2. The non-solvation heat capacity parameters, c_1 and c_2 Reliable values of c_1 and c_2 for nucleosides can be obtained by regressing experimental values of C_P° using the

procedure described in Section [3.2.2.](#page-11-0) The symbols shown in Fig. 10 correspond to values of $\Delta C_{P,n}^{\circ}$ for adenosine, cytidine, thymidine, uridine, 2-deoxycytidine, and ribose calculated from experimental values of C_p° reported by [Patel and](#page-42-0) [Kishore \(1995\) and Banipal et al. \(1997\)](#page-42-0) using Eq. [\(49\)](#page-11-0) and values of ω taken from [Table 2](#page-6-0). The straight lines in Fig. 10 are consistent with Eq. [\(50\).](#page-11-0) It follows that the intercepts and slopes of these lines correspond to values of c_1 and $c₂$, respectively, for adenosine, cytidine, thymidine, uridine, 2-deoxycytidine, and ribose. It can be deduced from Fig. 10 that the straight lines representing the revised-HKF equations of state are closely consistent with the experimentally derived values of $\Delta C_{P,n}^{\circ}$ as a function of $1/(T - \Theta)^2$. The values of c_1 and c_2 corresponding to the intercepts and slopes of these lines for adenosine, cytidine, thymidine, uridine, 2-deoxycytidine, and ribose are listed in [Table 2.](#page-6-0)

Although no C_p° measurements are reported in the literature for guanosine, provisional values of the c_1 and c_2

Fig. 10. $\Delta C_{p,n}^{\circ}$ for aqueous adenosine, cytidine, 2-deoxycytidine, thymidine, and uridine as a function of $10^4/(T-\Theta)^2$ at 1 bar. The symbols denote values of $\Delta C_{p,n}^{\circ}$ computed from Eqs. [\(49\) and \(50\)](#page-11-0) using values of ω and C_p° taken from [Tables 2 and A.2](#page-6-0) in Appendix A, respectively. The regression lines represent fits of Eq. [\(50\)](#page-11-0) to the data.

parameters for this nucleoside can be estimated by taking advantage of the chemical and structural similarities of guanosine and adenosine. Hence, in a first approximation, $c_{2\, guano sine}$ can be taken to be equal to $c_{2\,adenosine}$, which can then be combined with Eqs. [\(49\) and \(50\),](#page-11-0) together with an estimated value of C_p° for guanosine $(C_{P, \text{guanosine}}^{\circ})$ at 25 °C and 1 bar to compute a corresponding value of c_1 using the value of ω for guanosine given in [Table 2.](#page-6-0) In the absence of relevant calorimetric data, the requisite value of $C_{P, guano sine}^{\circ}$ used in these calculations was estimated using the first approximation represented by

$$
C_{P, \text{guanosine}}^{\circ} = C_{P, \text{guanosine}(cr)}^{\circ} + \Delta C_{P, \text{sol}, \text{adenosine}}^{\circ}, \tag{72}
$$

where $\Delta C_{P,soladenosine}^{\circ}$ stands for the standard molal heat capacity of solution at 25 $\mathrm{^{\circ}C}$ and 1 bar of crystalline adenosine which is given by

$$
\Delta C_{P,sol\ adenosine}^{\circ} = C_{P\ adenosine}^{\circ} - C_{P\ adenosine(cr)}^{\circ}.
$$
\n(73)

Combining the values given in [Tables 2 and 3](#page-6-0) for $C_{P\ adenosine}^{\circ}$, $C_{P\ adenosine(cr)}^{\circ}$, and $C_{P\ guanosine(cr)}^{\circ}$ with Eqs. (72) and (73) leads to the estimate of $C_{P \text{ guanosine}}^{\circ}$ shown in [Table 2](#page-6-0). The calculated values of c_1 and c_2 for this aqueous nucleoside are also shown in [Table 2.](#page-6-0)

Although 2-deoxycytidine is the only deoxynucleoside for which experimental low-temperature values of C_p° are available in the literature, comparison of the values of c_2 for cytidine and deoxycytidine can be used to estimate the c_1 and c_2 parameters for the other deoxynucleosides. For example, it can be seen that the slopes of the straight lines in Fig. 11, which correspond to values of c_2 for these species, are nearly identical. Generalizing this observation in a first approximation leads to $c_{2 \textit{nucleoside}_i} \approx c_{2 \textit{deoxynucleoside}_i}$ which can then be used to generate the values of c_2 shown for the deoxynucleosides listed in [Table 2](#page-6-0). These values were com-bined with Eqs. [\(49\) and \(50\),](#page-11-0) together with the values of C_p° and ω for the deoxynucleosides given in [Table 2](#page-6-0) to calculate the values of c_1 for the these species in this table. The values of C_P° for the deoxynucleosides shown in [Table 2](#page-6-0) were estimated from the approximation represented by

Fig. 11. Comparative plot of $\Delta C_{p,n}^{\circ}$ for aqueous cytidine and 2-deoxycytidine as a function of $10^4/(T - \Theta)^2$ at 1 bar. The symbols denote values of $\Delta C_{P,n}^{\circ}$ computed from Eqs. [\(49\) and \(50\)](#page-11-0) using values of ω and C_P° taken from [Tables 2 and A.2](#page-6-0) in Appendix A, respectively. The experimental values of C_p° were reported by [Patel and Kishore \(1995\)](#page-42-0). The regression lines represent fits of Eq. [\(50\)](#page-11-0) to the data.

$$
C_{P, deoxynucleoside_i}^{\circ} = C_{P, nucleoside_i}^{\circ} + \delta C_P^{\circ},\tag{74}
$$

where δC_P° represents the difference in the experimental values of C_p° shown in the table for 2-deoxycytidine and cytidine at 25° C and 1 bar, which is given by

$$
\delta C_P^{\circ} = C_{P,2\text{-}decaycystidine}^{\circ} - C_{P,cytidine}^{\circ}.
$$
\n(75)

Although no experimental values of C_p° for deoxyribose are available in the literature, provisional values for its c_1 and $c₂$ parameters can be estimated from those of ribose. It can be seen in [Table 2](#page-6-0) that the independently derived values of $c₂$ for aqueous 2-deoxycytidine and cytidine are identical. Because the chemical formulas of aqueous ribose and deoxyribose differ by the same chemical group as deoxycytidine and cytidine, in a first approximation we can take $c_{2,deoxyribase}$ to be equal to $c_{2, ribose}$. A value of c_1 for deoxyribose can then be calculated from the values shown in [Ta](#page-6-0)[ble 2](#page-6-0) of c_2 and ω for deoxyribose using Eqs. [\(49\) and \(50\)](#page-11-0), together with an estimated value of C_p° for this species at $25 \degree C$ and 1 bar computed from

$$
C_{P,deoxyribase}^{\circ} = C_{P,deoxyribase(c)}^{\circ} - \Delta C_{P,sol,d}^{\circ},\tag{76}
$$

where $\Delta C_{P,sol,d}^{\circ}$ corresponds to the standard molal heat capacity of solution of deoxyribose. In a first approximation, $\Delta C_{P,sol,d}^{\circ}$ in Eq. (76) can be taken to be equal to $\Delta C_{P,sol}^{\circ}$ for

$$
ribose_{cr} \rightleftharpoons ribose_{aq},\tag{77}
$$

which can be calculated using the values of C_p° shown for aqueous and crystalline ribose in [Tables 2 and 3](#page-6-0), respectively.

The values of c_1 and c_2 for deoxyribose computed in the manner described above are listed in [Table 2.](#page-6-0)

4.2.3. The crystalline heat capacity parameters, a, b, and c

Values of the heat capacity power function coefficients $(a, b, \text{ and } c \text{ in Eq. (6)})$ for crystalline nucleosides, deoxynucleosides, ribose, and deoxyribose are shown in [Table 3](#page-7-0). The values of a, b , and c given in this table for adenosine and ribose were obtained by regressing with Eq. [\(6\)](#page-3-0) experimental values reported in the literature for the standard molal isobaric heat capacities of the crystalline species $(C_{P(cr)}^{\circ})$ represented by the symbols shown in [Fig. 12.](#page-19-0) The regression lines shown in this figure are consistent with the values of a , b , and c given in [Table 3](#page-7-0) for these species.

Despite the dearth of experimental values of $C_{P(c)}^{\circ}$ for the other nucleosides considered in the present communication, provisional values of a, b , and c for the *i*th nucleoside can be calculated from

$$
E_{nucleoside_i} = E_{sugar} + E_{base_i} - (E_{H_2O} - \Delta E_r)
$$
\n(78)

where \overline{E} refers to any of the a, b, and c parameters for the subscripted species, *sugar* denotes ribose for nucleosides and deoxyribose for deoxynucleosides, and the $(\Xi_{H_2O} - \Delta \Xi_r)$ term can be evaluated in a first approximation by rearranging Eq. [\(62\)](#page-15-0) to give

$$
(\Xi_{\mathrm{H}_2\mathrm{O}} - \Delta \Xi_r) = \Xi_{\text{adenine}} + \Xi_{\text{ribose}} - \Xi_{\text{adenosine}}.\tag{79}
$$

Fig. 12. C_p° for crystalline adenosine and ribose as a function of temperature at 1 bar. The symbols denote values of C_p° reported by [Boerio-Goates et al.](#page-41-0) [\(2001\)](#page-41-0) and by personal communication from J. Boerio-Goates. The regression lines represent fits of Eq. [\(6\)](#page-3-0) to the data.

The values of a, b, and c given in [Table 3](#page-7-0) for the deoxynucleosides were calculated using the same procedure as that adopted above to compute values of these parameters for the nucleosides, except in the case of the deoxynucleosides, values of a, b , and c for deoxyribose were used to represent the E_{Sugar} term on the right side of Eq. [\(78\)](#page-18-0). The values of the a, b , and c parameters given in [Table 3](#page-7-0) for deoxyribose were estimated in a first approximation using the group additivity algorithm depicted in [Fig. 9](#page-16-0), which is consistent with

$$
\mathcal{Z}_{deoxyibase} = \mathcal{Z}_{ribase} + \mathcal{Z}_{cyclohexane} - \mathcal{Z}_{cyclohexanol}.
$$
\n(80)

The values of a , b , and c for ribose and the reference model compounds, cyclohexane and cyclohexanol, are given in

Fig. 13. ΔV_n° for aqueous adenosine, cytidine, deoxyadenosine, deoxycytidine, deoxyquanosine, deoxyuridine, guanosine, thymidine, and uridine as a function of $1/(T - \Theta)$ at 1 bar. The symbols denote values of ΔV_n° computed from Eqs. [\(31\) and \(35\)](#page-5-0) using values of ω and V° taken from [Tables 2 and A.4](#page-6-0) in Appendix A, respectively. The regression lines represent fits of Eq. [\(18\)](#page-4-0) to the data. The vertical lines designate uncertainties in the experimental values of V° reported by [Lee and Chalikian \(2001\).](#page-42-0)

[Tables 3 and 8,](#page-7-0) respectively. The values of $a, b,$ and c shown in [Table 8](#page-10-0) for cyclohexanol were obtained by regressing experimental values reported in the literature for the standard molal isobaric heat capacities of the crystalline species $(C_{P(c)}^{\circ})$. These values are represented by the symbols shown for crystalline cyclohexanol (crystal I phase) in [Fig. 4.](#page-12-0) The regression line shown in this figure for crystalline cyclohexanol is consistent with the values of a, b , and c .

4.2.4. The non-solvation volume and compressibility parameters, a_1 , a_2 , a_3 , and a_4

In the absence of experimental high-temperature volumetric and compressibility data, values of the a_1 , a_2 , a_3 , and a_4 parameters for the aqueous nucleosides can be com-puted from Eqs. [\(20\) and \(21\)](#page-4-0) for $P = 1$ bar by first regressing experimentally derived low-temperature values of ΔV_n° and $-\Delta\kappa_{T,n}^{\circ}$ for these species with Eqs. [\(18\) and \(19\)](#page-4-0), respectively, as a function of $(1/(T - \theta))$ at 1 bar. The symbols shown in [Fig. 13](#page-19-0) represent values of ΔV_n° for adenosine, cytidine, guanosine, thymidine, uridine, deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxyuridine calculated from corresponding values of V° reported by [Lee and](#page-42-0) [Chalikian \(2001\)](#page-42-0) using Eqs. [\(31\) and \(35\)](#page-5-0), together with independent values of ω taken from [Table 2](#page-6-0). Note that the intercepts and slopes of the straight regression lines in [Fig. 13](#page-19-0) correspond respectively to values of the σ and ξ parameters in Eq. [\(18\)](#page-4-0). Analogously, the symbols shown in Fig. 14 represent values of $-\Delta\kappa_{T,n}^{\circ}$ for adenosine, cytidine, guanosine, thymidine, uridine, deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxyuridine calculated from corresponding values of κ_T° reported by [Lee and](#page-42-0) [Chalikian \(2001\)](#page-42-0) using Eqs. [\(32\) and \(36\)](#page-5-0), together with values of ω taken from [Table 2.](#page-6-0) It follows from Eq. [\(19\)](#page-4-0) that the intercepts and slopes of the straight regression lines in Fig. 14, respectively, correspond to values of $(\frac{\partial \sigma}{\partial P})_T$ and

Fig. 14. $\Delta \kappa_{T,n}^2$ for aqueous adenosine, cytidine, deoxyadenosine, deoxycytidine, deoxyguanosine, deoxyuridine, guanosine, thymidine, and uridine as a function of $1/(T - \Theta)$ at 1 bar. The symbols denote values of $\Delta \kappa_{T,n}^{\circ}$ computed from Eqs. [\(32\) and \(36\)](#page-5-0) using values of ω and κ_T° taken from [Tables 2 and](#page-6-0) [A.5](#page-6-0) in Appendix A, respectively. The regression lines represent fits of Eq. [\(19\)](#page-4-0) to the data. The vertical lines designate uncertainties in the experimental values of κ_T° .

 $\left(\frac{\partial \xi}{\partial P}\right)_T$ for the nucleosides and deoxynucleosides. Values of a_2 and a_4 can be calculated directly from these partial derivatives using Eqs. [\(22\) and \(23\).](#page-4-0) The values of a_2 and a_4 for these species can then be combined with values of σ and ξ in Eqs. [\(20\) and \(21\)](#page-4-0) to calculate corresponding values of a_1 and a_3 . With the exception of those for deoxythymidine, values of a_1 , a_2 , a_3 , and a_4 for the aqueous nucleosides and deoxynucleosides computed in this manner are given in [Table 2.](#page-6-0)

Although values of V° and κ_T° as a function of temperature are not available in the literature from which to calculate values of ΔV_n° and $\Delta \kappa_{T,n}^{\circ}$ as a function of $(1/(T - \theta))$ for deoxythymidine, provisional values of the a_1 , a_2 , a_3 , and a_4 parameters for this species can be estimated from Eqs. [\(18\),](#page-4-0) (20) , (21) , and (56) , (57) . The estimates of these parameters for deoxythymidine in [Table 2](#page-6-0) were calculated in this manner using the experimental value of V° at 25 °C and 1 bar for deoxythymidine reported by [Buckin et al. \(1989\)](#page-41-0), which was combined with the value of ω for this species given in [Table 2](#page-6-0) and Eqs. [\(31\) and \(35\)](#page-5-0) to calculate the value of ΔV_n° required to evaluate Eqs. [\(55\)–\(57\)](#page-14-0) for deoxythymidine.

It can be deduced from [Figs. 13 and 14](#page-19-0) that the straight lines representing the revised HKF equations of state are closely consistent with the bulk of the experimentally derived values of ΔV_n° and $\Delta \kappa_{T,n}^{\circ}$. The experimental values of V° and κ_T° used to generate the latter values are listed in [Tables A.4 and A.5](#page-36-0) in Appendix A.

4.2.5. Standard molal crystalline volumes, $V^{\circ}_{(cr)}$

In the absence of experimental data, values of the standard molal volumes of the ith crystalline nucleoside $(V_{nucleoside(cr)_i}^{\circ})$ can be calculated from

$$
V^{\circ}_{nucleoside(cr)_j} = V^{\circ}_{base(cr)_j} + V^{\circ}_{sugar(cr)} - V^{\circ}_{H_2O(l)} + \Delta V^{\circ}_r, \qquad (81)
$$

which is consistent with Reaction [\(60\)](#page-15-0). The standard molal volume of this reaction can be taken to be equal in a first approximation to that computed from and

$$
\Delta V_r^\circ = V_{\text{adenosine}(cr)}^\circ + V_{\text{H}_2\text{O}(l)}^\circ - V_{\text{adenine}(cr)}^\circ - V_{\text{ribose}(cr)}^\circ,\qquad(82)
$$

which corresponds to a specific statement of Eq. [\(61\).](#page-15-0) Experimental values of $V^{\circ}_{(cr)}$ for the *i*th crystalline base $(V^{\circ}_{base(cr)_{,i}})$ and crystalline adenosine, adenine, ribose, and deoxyribose are given in [Table 3](#page-7-0). As in Eq. [\(60\)](#page-15-0), the subscript *sugar* in Eq. (81) refers to ribose in the case of nucleosides and deoxyribose in the case of deoxynucleosides. The values of $V^{\circ}_{(cr)}$ at 25 °C and 1 bar for the crystalline nucleosides and deoxynucleosides computed in this manner are listed in [Table 3.](#page-7-0) The value of $V_{\text{H}_2O(l)}^{\circ}$ $(18.07 \text{ cm}^3 \text{ mol}^{-1})$ was taken from SUPCRT92 ([Johnson](#page-42-0) [et al., 1992\)](#page-42-0).

5. Nucleotides

The term nucleotide refers to any nucleoside bonded by its sugar to one or more phosphate groups as shown in Fig. 15.

R = OH: RIBOSE R = H: DEOXYRIBOSE i = 1: NUCLEOTIDE MONOPHOSPHATE i = 2: NUCLEOTIDE DIPHOSPHATE i = 3: NUCLEOTIDE TRIPHOSPHATE *Z*_j = overall charge: 0,-1,-2,-3, or -4

Fig. 15. Idealized generic structure of nucleotides and deoxynucleotides.

The 120 nucleotides considered in the present communication are commonly referred to by the generic acronyms NMP, NDP, and NTP which stand for nucleotide monophosphate, nucleoside diphosphate, and nucleoside triphosphate, respectively. Specific nucleotides are referred to by the same designations except that the 'N' is replaced with the first letter of the nucleoside of interest. Charged nucleotides can be represented by $H_nNMP^{(n-2)}$, $H_nNDP^{(n-3)}$, and $H_nNTP^{(n-4)}$ where H stands for hydrogen and n denotes the number of hydrogen atoms protonating the phosphate oxygens in the generic ionized species, NMP^{2-} , NDP^{3-} , and NTP^{4-} , respectively. Each of the abbreviations for these species stands for all of the nucleotides in that group. For example, NMP refers to AMP, CMP, GMP, TMP, and UMP. A lower case 'd' precedes the same abbreviations for deoxynucleotides (e.g. dNMP). It should be noted that the abbreviated names for some of the protonated nucleotides used in the following text conceal the commonly accepted notion that these nucleotides exist as zwitterions in solution ([Oscarson et al., 1995\)](#page-42-0). The specific nucleotides thought to be zwitterions are denoted as such by a superscripted $+$ before the acronym and a superscripted $\dot{\ }$ after it in [Tables 12–17](#page-22-0). The abbreviations used below refer to the overall charge of the specified nucleotide or family of nucleotides, unless stated otherwise.

5.1. Standard molal Gibbs energies, enthalpies, and third law entropies at 25° C and 1 bar

Values of $\Delta G_{f(aq)}^{\circ}$, $\Delta H_{f(aq)}^{\circ}$, and $S_{(aq)}^{\circ}$ at 25 °C and 1 bar for the variously protonated aqueous mono-, di- and triphosphate nucleotides and deoxynucleotides containing the nucleic-acid bases adenine, cytosine, guanine, thymine, and uracil are listed in [Tables 12–17](#page-22-0). Because experimental calorimetric measurements are not available in the literature for these nucleotides, the standard molal Gibbs energies and enthalpies of formation of the nucleotides shown in [Tables 12–17](#page-22-0), with the exception of the overall neutral nucleoside triphosphates (see below), were calculated from the standard molal Gibbs energies and enthalpies of the reactions listed in [Tables 18 and 19](#page-26-0), which are discussed below. Values of the standard molal third law entropies of

Summary of equations of state parameters and the standard molal thermodynamic properties at 25 °C and 1 bar for aqueous nucleotide monophosphates (NMPs)

NMP	Formula	$\Delta G_c^{\circ a}$	ΔH_{f}° ^a	$S^{\circ b}$	$C_p^{\circ b}$	$V^{\circ c}$		$a_1^{\text{d}} \times 10 \quad a_2^{\text{a}} \times 10^{-2}$	a_3 ^e	$a_4^{\text{f}} \times 10^{-4}$	c_1^{b}	$c_2^{\text{e}} \times 10^{-4}$	$\omega^a \times 10^{-5}$
$AMP2-$	$C_{10}H_{12}N_5O_7P^{2-}$	-247.417	$-389,148$	52.89	61.68	161.03	2.3198	108.81	-18.734	-1.7194	130.2	-19.82	3.1
$HAMP^-$	$C_{10}H_{13}N_50_7P^-$	-255.617	$-388,308$	83.21	114.39	187.55	2.4065	126.25	-19.139	-2.4403	188.0	-22.30	3.1
H_2AMP^-	$C_{10}H_{14}N_5O_7P$	$-260,817$	$-392,608$	86.23	120.01	187.02	2.3993	124.81	-19.105	-2.3806	181.6	-19.10	2.5
CMP^{2-}	$C_9H_{12}N_3O_8P^{2-}$	-331.097	-467.460	48.24	37.71	142.39	2.2606	96.923	-18.459	-1.2278	101.1	-16.40	3.3
$HCMP^-$	$C_9H_{13}N_3O_8P^{1-}$	$-340,147$	$-466,110$	83.09	90.60	168.91	2.3474	114.36	-18.863	-1.9487	158.8	-18.76	3.3
H_2 CMP ⁻	$C_9H_{14}N_3O_8P$	$-345,337$	$-470,410$	86.11	96.06	168.37	2.3411	113.10	-18.834	-1.8965	154.1	-16.01	2.8
GMP^{2-} $HGMP^-$ H_2 -GMP ⁻	$C_{10}H_{12}N_5O_8P^{2-}$ $C_{10}H_{13}N_5O_8P^{1-}$ $C_{10}H_{14}N_5O_8P$		$-306,486$ $-455,676$ 52.39 -315.586 -454.226 $-320,786$ $-458,526$ 90.79	87.77	65.81 118.45 123.82	159.80 2.3194 186.32 185.79	2.4062 2.3990	108.74 126.18 124.73	-18.733 -19.137 -19.104	-1.7163 -2.4372 -2.3774	198.5 192.3	$140.8 - 21.21$ -23.70 -20.70	3.5 3.5 2.9
TMP^{2-} $HTMP^-$ $H2TMP-$	$C_{10}H_{13}N_2O_9P^{2-}$ $C_{10}H_{14}N_2O_9P^{1-}$ $C_{10}H_{15}N_2O_9P$	$-384,001$ $-393,021$ -398.221	$-525,514$ $-524,279$ $-528,579$	49.58 83.97 86.99	51.85 104.80 110.62	155.97 2.3042 182.49	2.3909 181.97 2.3838	105.68 123.11 121.67	-18.662 -19.066 -19.033	-1.5896 -2.3105 -2.2510	111.0 168.7 162.3	-14.76 -17.10 -13.76	3.2 3.2 2.6
UMP ²	$C_9H_{11}N_2O_9P^{2-}$	$-391,470$	$-382,420 -515,132$	46.49	36.19	141.33	2.2572	96.226	-18.442	-1.1990	101.1	-17.15	3.3
$HUMP^-$	$C_9H_{12}N_2O_9P^{1-}$		$-514,012$	80.6	89.05	167.85	2.3439	113.66	-18.847	-1.9199	158.8	-19.52	3.3
$H2UMP-$	$C_9H_{13}N_2O_9P$		$-396,670$ $-518,312$	83.62	94.70	167.31	2.3367	112.22	-18.813	-1.8601	152.5	-16.32	2.7

These values were generated as described in Section [5.](#page-21-0)

 $^{\rm a}$ cal mol⁻¹.

^e cal K mol⁻¹ bar⁻¹.
^f cal K mol⁻¹.

Table 13

Summary of equations of state parameters and the standard molal thermodynamic properties at 25°C and 1 bar for aqueous deoxynucleotide monophosphates (dNMPs)

dNMP	Formula	$\Delta G_f^{\circ a}$	$\Delta H_f^{\circ a}$	$S^{\circ b}$	$C_P^{\circ b}$	$V^{\circ c}$		$a_1^{\text{d}} \times 10 \quad a_2^{\text{a}} \times 10^{-2} \quad a_3^{\text{e}}$		$a^{4f} \times 10^{-4}$ c_1^b		$c_2^{\text{e}} \times 10^{-4}$	$\omega^a \times 10^{-5}$
$dAMP^{2-}$ d HAMP ^{$-$} $d^+H_2AMP^-$	$C_{10}H_{12}N_5O_6P^{2-}$ $C_{10}H_{13}N_5O_6P$ $C_{10}H_{14}N_5O_6P$	-212.111 -221.205 $-226,401$	$-347,206$ 50.63 $-346,166$ 84.61 $-350,466$ 87.62		53.02 105.70 111.28	160.05 186.57 2.4033 186.05 2.3962	2.3166	108.17 125.61 124.17	-18.720 $-19.124 -2.4138$ -19.091	-1.6929 -2.3543	121.5 179.3 172.9	-19.80 -22.32 -19.12	3.1 3.1 2.5
$dCMP^{2-}$ $dHCMP^-$ $d^+H_2CMP^-$	$C_9H_{12}N_3O_7P^{2-}$ $C_9H_{13}N_3O_7P^{1-}$ $C_9H_{14}N_3O_7P$	-297.270	$-425,354$ 52.5 $-306,660$ $-424,314$ 86.48 $-311,860$ $-428,614$ 89.5		86.48 86.59	28.13 144.34 2.2679 170.80 2.3547	170.32 2.3475	98.389 115.83 114.38	$-18.987 - 2.0093$ -18.864 -1.9495	$-18.493 -1.2884$	94.34 152.0 145.7	-17.34 -19.74 -16.54	3.4 3.4 2.8
$dGMP^{2-}$ $dHGMP^-$ $d^+H_2GMP^-$	$C_{10}H_{12}N_5O_7P^{2-}$ $C_{10}H_{13}N_5O_7P^{1-}$ $C_{10}H_{14}N_5O_7P$	-281.547 $-286,747$	$-272,457$ $-417,092$ 43.15 $-416,052$ 77.13 $-420,352$ 80.14 114.46 184.22 2.3938			56.41 158.23 2.3143 109.06 184.75 2.401		107.71 125.15 123.70	$-19.080 -2.3347$	-18.709 -1.6736 $-19.113 -2.3945$	131.4 189.1 182.9	-21.21 -23.70 -20.67	3.5 3.5 2.9
$dTMP^{2-}$ $dHTMP^-$ d^+H_2TMP-	$C_{10}H_{13}N_2O_8P^{2-}$ $C_{10}H_{14}N_2O_8P^{1-}$ $C_{10}H_{15}N_2O_8P$	-359.564 -364.764	-350.474 -483.408 53.83 $-482,368$ 87.81 $-486,668$ 90.83			43.05 156.72 2.3066 96.00 183.24 2.3934 101.82 183.72 2.3862		106.17 123.61 122.17	-19.078 -2.3309	$-18.673 -1.6100$ -19.044 -2.2714	102.2 159.9 153.5	-14.76 -17.10 -13.76	3.2 3.2 2.6
$dUMP^{2-}$ d HUMP ^{$-$} $d^+H_2UMP^-$	$C_9H_{11}N_2O_8P^{2-}$ $C_9H_{12}N_2O_8P^{1-}$ $C_9H_{13}N_2O_8P$	-348.893 $-357,983$ -363.183	$-473,026$ 50.75 $-471,986$ 84.73 $-476,286$ 87.74		27.36 84.73 85.83	140.78 2.2549 167.16 2.3417	166.62 2.3345	95.772 113.21 111.76	$-18.836 -1.9011$ -18.803	$-18.432 -1.1180$ -1.8413	92.27 145.0 143.7	-17.15 -19.55 -16.35	3.3 3.3 2.7

These values were generated as described in Section [5.](#page-21-0)

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

 d cal mol⁻¹ bar⁻¹

 $\rm f$ cal K mol⁻¹.

these species were calculated from the values of $\Delta G^{\circ}_{f(aq)}$ and $\Delta H_{f(aq)}^{\circ}$ using Eq. [\(42\)](#page-8-0), together with values of S_i° for the elements taken from [Cox et al. \(1989\)](#page-41-0).

Values of $\Delta G_{f(aq)}^{\circ}$ and $\Delta H_{f(aq)}^{\circ}$ for the *i*th ionized reference species, \widehat{NMP}_i^{2-} , NDP_i^{3-} , and NTP_i^{4-} were calculated

from experimental values of the standard molal Gibbs energies and enthalpies of the phosphorylation reactions for *nucleoside_i*, NMP_i^{2-} , and NDP_i^{3-} given in [Table 18](#page-26-0), i.e.,

$$
nucleoside_i + \text{HPO}_4^{2-} \rightleftharpoons \text{NMP}_i^{2-} + \text{H}_2\text{O},\tag{83}
$$

 b cal K⁻¹ mol⁻¹.

 \rm^c cm³ mol⁻¹.

 d cal mol⁻¹ bar⁻¹.

 \rm^c cm³ mol⁻¹.

^a cal mol⁻¹ bar⁻¹.
^e cal K mol⁻¹ bar⁻¹.

These values were generated as described in Section [5](#page-21-0).

^a cal mol⁻¹.
^b cal K⁻¹ mol⁻¹

 \int_{c}^{∞} cal K⁻¹ mol⁻¹.

c cm³ mol⁻¹.

 d cal mol⁻¹ bar⁻¹.

 e cal K mol⁻¹ bar⁻¹.

 f cal K mol⁻¹.

These values were generated as described in Section [5](#page-21-0). α cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

 \rm^c cm³ mol⁻¹.

 d cal mol⁻¹ bar⁻¹.

^e cal K mol⁻¹ bar⁻¹.
^f cal K mol⁻¹.

Summary of equations of state parameters and the standard molal thermodynamic properties at 25°C and 1 bar for aqueous nucleotide triphosphates (NTPs)

NTP	Formula	$\Delta G_{f}^{\circ}{}^{a}$	$\Delta H_{f}^{\circ}{}^{a}$	$S^{\circ b}$	$C_p^{\circ b}$	$V^{\circ c}$		$a_1^{\text{d}} \times 10 \quad a_2^{\text{a}} \times 10^{-2}$	a_3^{e}	$a_4^{\text{f}} \times 10^{-4}$	$c_1^{\ b}$	$c_2^{\text{e}} \times 10^{-4}$ $\omega^{\text{a}} \times 10^{-5}$	
ATP^{4-}	$C_{10}H_{12}N_5O_{13}P_3^{4-}$	$-657,038$	$-859,264$	47.96		21.34 196.77 2.4540		135.79	$-19.360 -2.8345$		128.4	-30.27	5.0
HATP ^{3–}	$C_{10}H_{13}N_5O_{13}P_3^{3-}$	$-667,538$	$-857,864$	87.87		92.83 212.26 2.5037		145.79		$-19.592 -3.2479$	199.2	-30.37	4.9
H_2ATP^{3-}	$C_{10}H_{14}N_5O_{13}P_3^{2-}$	$-673,738$	$-861,764$	95.59		133.39 211.73 2.5002		145.08		$-19.576 -3.2186$	239.3	-31.04	4.7
H_3ATP^{2-}	$C_{10}H_{15}N_5O_{13}P_3^{1-}$	$-676,438$	$-860,264$		109.67 194.02 222.95 2.5350			152.09		$-19.738 - 3.5083$	296.4	-30.22	4.5
H_4ATP^-	$C_{10}H_{16}N_5O_{13}P_3$		$-678,500 -858,553$ 122.33 250.04 228.09 2.5509					155.28		$-19.812 -3.6404$	351.9	-30.40	4.4
CTP^{4-}	$C_9H_{12}N_3O_{14}P_3^{4-}$	$-740,718$	-937,496	43.58		-2.79 178.13 2.3948		123.89		-19.084 -2.3427	99.59	-27.07	5.2
$HCTP^{3-}$	$C_9H_{13}N_3O_{14}P_3^{3-}$	$-751,148$	-935,746	84.44		67.84 193.62 2.4446		133.90		-19.316 -2.7564	171.0	-27.91	5.1
H_2CTP^{3-}	$C_9H_{14}N_3O_{14}P_3^{2-}$	$-757,348$	-939,646		92.15 108.54 193.09 2.4410			133.18		$-19.300 -2.7268$	211.1	-28.49	4.9
H_3CTP^{2-}	$C_9H_{15}N_3O_{14}P_3^{1-}$		$-760,048$ $-938,146$ 106.24 169.34 204.31 2.4759					140.20		$-19.462 -3.0169$	268.1	-27.53	4.7
H_4CTP^-	$C_9H_{16}N_3O_{14}P_3$		$-762,090$ $-936,314$ 119.23 225.00 209.45 2.4918					143.39		$-19.536 -3.1489$	323.3	-27.75	4.6
GTP^{4-}	$C_{10}H_{12}N_5O_{14}P_3^{4-}$	$-716,107$	$-925,542$	48.3		25.36 195.54 2.4522		135.43		$-19.352 -2.8198$	136.1	-30.73	5.3
$HGTP^{3-}$	$C_{10}H_{13}N_5O_{14}P_3^{3-}$	$-726,537$ $-923,792$		89.15		95.50 211.03 2.5028		145.62		$-19.588 - 3.2409$	209.2	-32.18	5.3
H_2GTP^{3-}	$C_{10}H_{14}N_5O_{14}P_3^{2-}$	$-732,737$	–927,692		96.86 135.94 210.5		2.4993	144.91		$-19.572 -3.2115$	249.3	-32.92	5.1
H_3GTP^{2-}	$C_{10}H_{15}N_5O_{14}P_3^{1-}$		$-735,437$ $-926,192$		110.95 196.82 221.72 2.5346			152.01		$-19.736 -3.5051$	307.2	-32.33	4.9
H_4GTP^-	$C_{10}H_{16}N_5O_{14}P_3$		$-737,480$ $-924,362$ 123.94 252.16 226.86 2.5505					155.20		$-19.810 -3.6372$	361.0	-32.04	4.8
TTP^{4-}	$C_{10}H_{13}N_2O_{15}P_3^{4-}$	$-793,622$	$-995,550$	44.92		11.48 191.72 2.4384		132.65		$-19.287 -2.7048$	109.4	-25.31	5.1
$HTTP^{3-}$	$C_{10}H_{14}N_2O_{15}P_3^{3-}$	$-803,972$	$-993,530$	86.4		81.89 207.21 2.4890		142.84		$-19.524 -3.1259$	182.4	-26.6	5.1
H_2 TTP ³⁻	$C_{10}H_{15}N_2O_{15}P_3^{2-}$		$-810,172$ $-997,430$	94.12		122.61 206.68 2.4854		142.12		$-19.507 -3.0962$	222.5	-27.18	4.9
H_3TTP^{2-}	$C_{10}H_{16}N_2O_{15}P_3^{1-}$		$-812,872$ $-995,930$		108.21 183.15 218.18 2.5221			149.50		-19.678 -3.4012	281.1	-26.69	4.8
H_4TTP^-	$C_{10}H_{17}N_2O_{15}P_3$		$-815,000$ $-994,118$ 121.42 237.83 223.04 2.5372					152.52		$-19.748 - 3.5260$	334.4	-26.45	4.7
UTP^{4-}	$C_9H_{11}N_2O_{15}P_3^{4-}$	$-792,041$	$-985,168$	41.83		-4.51 177.08 2.3909		123.11		-19.066 -2.3104	98.40	-27.33	5.2
$HUTP^{3-}$	$C_9H_{12}N_2O_{15}P_3^{3-}$	$-802,441$	$-983,278$	83.05		65.83 192.57 2.4416		133.30		$-19.302 -2.7314$	171.4	-28.66	5.2
$\mathrm{^{+}H_{2}UTP^{3-}}$	$C_9H_{13}N_2O_{15}P_3^{2-}$		$-808,641 -987,178$	90.77		106.77 192.03 2.4385		132.67		$-19.288 -2.7056$	212.3	-29.52	5.0
H_3 UTP ²⁻	$C_9H_{14}N_2O_{15}P_3^{1-}$	$-811,341$	$-985,678$		104.85 167.22 203.25 2.4742			139.86	$-19.455 - 3.0030$		270.9	-29.07	4.9
H_4 UTP ⁻	$C_9H_{15}N_2O_{15}P_3$		$-813,380$ $-983,806$ 117.97 222.65 208.39 2.4901					143.06	$-19.529 -3.1351$		324.6	-28.65	4.8

These values were generated as described in Section [5.](#page-21-0)

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

 \rm^c cm³ mol⁻¹.

 $\frac{c}{d}$ cal mol⁻¹ bar⁻¹.

 $\rm ^e$ cal K $\rm mol^{-1}$ bar $\rm ^{-1}$.

 f cal K mol⁻¹.

 $NMP_i^{2-} + HPO_4^{2-} + H^+ \rightleftharpoons NDP_i^{3-} + H_2O,$ (84)

and

 $NDP_i^{3-} + HPO_4^{2-} + H^+ \rightleftharpoons NTP_i^{4-} + H_2O$ (85)

for which we can write

$$
\mathcal{Z}_{\text{NMP}_i^{2-}}^{\circ} = \mathcal{Z}_{\text{nucleoside}_i}^{\circ} + \mathcal{Z}_{\text{HPO}_4^{2-}}^{\circ} - \mathcal{Z}_{\text{H}_2\text{O}}^{\circ} + \Delta \mathcal{Z}_{r(83)}^{\circ},\tag{86}
$$

$$
\mathcal{Z}_{\text{NDP}_{i}^{3-}}^{\circ} = \mathcal{Z}_{\text{NMP}_{i}^{2-}}^{\circ} + \mathcal{Z}_{\text{HPO}_{4}^{2-}}^{\circ} - \mathcal{Z}_{\text{H}_{2}\text{O}}^{\circ} + \Delta \mathcal{Z}_{r(84)}^{\circ},\tag{87}
$$

and

$$
\mathcal{Z}_{\text{NTP}_{i}^{4-}}^{\circ} = \mathcal{Z}_{\text{NDP}_{i}^{3-}}^{\circ} + \mathcal{Z}_{\text{HPO}_{4}^{2-}}^{\circ} - \mathcal{Z}_{\text{H}_{2}\text{O}}^{\circ} + \Delta \mathcal{Z}_{r(85)}^{\circ},\tag{88}
$$

respectively, where Ξ_i° stands for either $\Delta G_{f(aq)}^{\circ}$ or $\Delta H_{f(aq)}^{\circ}$ of the subscripted species in the reactions and $\Delta \Xi_{r(83)}^{\circ}$, $\Delta \Xi_{r(84)}^{\circ}$, and $\Delta \mathcal{Z}_{r(85)}^{\circ}$ denote the corresponding properties of the reactions, which are given in [Table 18.](#page-26-0) Although experimental values of the latter reaction properties are not available in the literature for the phosphorylation of all of the nucleotides, provisional values of $\Delta \mathcal{Z}_{r(83)}^{\circ}$, $\Delta \mathcal{Z}_{r(84)}^{\circ}$, and $\Delta \vec{E}_{r(85)}^{\circ}$, can be estimated by taking the average of the values for the nucleotides for which experimental data are available to be equal in a first approximation to those of the nucleotides for which no experimental data are available. These estimates, taken together with corresponding values of $\mathcal{Z}_{\text{HPO}_4^{2-}}^{\circ}$ are listed in [Tables 18 and A.10](#page-26-0) in Appendix A. The values of $\mathcal{Z}_{nucleoside_i}^{\circ}$ used in the calculations were taken from [Table 2](#page-6-0). Values of additional reaction properties are also given in [Table A.10](#page-38-0) in Appendix A.

Standard molal Gibbs energies and enthalpies of formation for the i th protonated nucleotide mono-, di- and triphosphate $(H_n \ NMP_i^{(n-2)}$, $H_nNDP_i^{(n-3)}$, and $H_nNTP_i^{(n-4)}$) can be calculated from experimental values of ΔG_r° , ΔH_r° , and ΔS_r° for the generic protonation reactions represented by

$$
H_{(n-1)}NMP_i^{(n-3)} + H^+ \rightleftharpoons H_nNMP_i^{(n-2)},\tag{89}
$$

$$
H_{(n-1)}NDP_i^{(n-4)} + H^+ \rightleftharpoons H_nNDP_i^{(n-3)},\tag{90}
$$

and

$$
H_{(n-1)}NTP_i^{(n-5)} + H^+ \rightleftharpoons H_nNTP_i^{(n-4)}
$$
\n(91)

for $n = 1$ and 2 in Reaction (89) and $n = 1, 2$, and/or 3 for Reactions (90) and (91). Reactions (89)–(91) represent the successive protonation of the generic NMP_i^{2-} , NDP_i^{3-} , and NTP_i^4 species. The generalized equations used to calculate values of $\Delta G^{\circ}_{f(aq)}$, $\Delta H^{\circ}_{f(aq)}$, and $S^{\circ}_{(aq)}$ for these protonated nucleotides can be written as

Summary of equations of state parameters and the standard molal thermodynamic properties at 25°C and 1 bar for aqueous deoxynucleotide triphosphates (dNTPs)

dNTP	Formula	$\Delta G_{f}^{\circ}{}^{a}$	$\Delta H_{f}^{\circ}{}^{a}$	$S^{\circ b}$	$C_p^{\circ b}$	$V^{\circ c}$	$a_1^{\text{d}} \times 10 \quad a_2^{\text{a}} \times 10^{-2} \quad a_3^{\text{e}}$		$a_4^{\text{f}} \times 10^{-4}$	$c_1^{\ b}$	$c_2^{\text{e}} \times 10^{-4}$ $\omega^{\text{a}} \times 10^{-5}$	
$dATP^{4-}$	$C_{10}H_{12}N_5O_{12}P_3^{4-}$		$-621,732$ $-817,322$	45.7		12.60 195.80 2.4508	135.150	$-19.345 -2.8081$		119.7	-30.27	5.0
dHATP ^{3–}	$C_{10}H_{13}N_5O_{12}P_3^{3-}$ -632,233 -815,922			85.61		84.15 211.29 2.5014	145.335		$-19.581 -3.2292$	190.5	-30.37	4.9
$d^+H_2ATP^{3-}$	$C_{10}H_{14}N_5O_{12}P_3^{2-}$ -638,432 -819,822			93.33		124.71 210.76 2.4988	144.803	$-19.569 - 3.2071$		230.6	-31.04	4.7
$d^+H_3ATP^{2-}$	$C_{10}H_{15}N_5O_{12}P_3^{-1}$ -641,132 -818,322 107.42					185.29 221.98 2.5346	151.996		$-19.736 -3.5045$	287.7	-30.22	4.5
$d^+H_4ATP^-$	$C_{10}H_{16}N_5O_{12}P_3$ -643,200 -816,614 120.08					241.34 227.12 2.5505	155.198		$-19.810 -3.6369$	343.2	-30.40	4.4
$dCTP^{4-}$	$C_9H_{12}N_3O_{13}P_3^{4-}$	$-707,191 -895,390$			$47.84 - 12.00 180.08 2.4012$		125.175		$-19.114 -2.3957$	90.63	-27.07	5.2
$dHCTP^{3-}$	$C_9H_{13}N_3O_{13}P_3^{3-}$	$-717,621 -893,640$		88.69		58.82 195.57 2.4518	135.360		$-19.350 -2.8168$	162.0	-27.91	5.1
$d^+H_2CTP^{3-}$	$C_9H_{14}N_3O_{13}P_3^{2-}$		$-723,821 -897,540$	96.41		99.57 195.04 2.4492	134.834		$-19.338 -2.7950$	202.1	-28.49	4.9
$d^+H_3CTP^{2-}$	$C_9H_{15}N_3O_{13}P_3^{1-}$		$-726,521 -896,040$	110.49		160.34 206.26 2.4850	142.028		$-19.505 -3.0924$	259.1	-27.53	4.7
$d^+H_4CTP^-$	$C_9H_{16}N_3O_{13}P_3$ -728,570 -894,253			123.36		216.00 211.40 2.5009	145.223		$-19.579 -3.2245$	314.3	-27.75	4.6
$dGTP^{4-}$	$C_{10}H_{12}N_5O_{13}P_3^{4-}$ -682,078 -886,958			39.06		16.20 193.97 2.4475	134.492		$-19.330 -2.7809$	127.9	-30.73	5.3
$dHGTP^{3-}$	$C_{10}H_{13}N_5O_{13}P_3^{3-}$		$-692,508$ $-885,208$	79.91		87.27 209.46 2.4982	144.678		$-19.566 - 3.2020$	201.0	-32.18	5.3
$d^+H_2GTP^{3-}$	$C_{10}H_{14}N_5O_{13}P_3^{2-}$ -698,708 -889,108			87.63		127.74 208.93 2.4955	144.145		$-19.554 -3.1800$	241.1	-32.92	5.0
$d^+H_3GTP^{2-}$	$C_{10}H_{15}N_5O_{13}P_3^{1-}$		$-701,408$ $-887,608$	101.71		188.66 220.15 2.5313	151.345		$-19.721 -3.4776$	299.0	-32.33	4.9
$\rm{d^+H_4GTP^-}$	$C_{10}H_{16}N_5O_{13}P_3$	$-703,450$ $-885,778$ 114.7				243.96 225.29 2.5472	154.540		$-19.795 -3.6097$	352.8	-32.04	4.8
$dTTP^{4-}$	$C_{10}H_{13}N_2O_{14}P_3^{4-}$		$-760,095$ $-953,444$	49.17		2.64 192.47 2.4408	133.144		-19.299 -2.7252	100.5	-25.31	5.1
d HTTP ³⁻	$C_{10}H_{14}N_2O_{14}P_3^{3-}$ -770,445 -951,424			90.66		72.98 207.96 2.4915	143.330		$-19.535 -3.1463$	173.5	-26.6	5.1
$d^+H_2TTP^{3-}$	$C_{10}H_{15}N_2O_{14}P_3^{2-}$ -776,645 -955,324			98.38		113.73 207.43 2.4888	142.797		$-19.523 -3.1242$	213.6	-27.18	4.9
$d^+H_3TTP^{2-}$	$C_{10}H_{16}N_2O_{14}P_3^{1-}$		$-779,345$ $-953,824$ 112.46			174.23 218.65 2.5246	149.991		$-19.689 - 3.4216$	272.2	-26.69	4.8
$d^+H_4TTP^-$	$C_{10}H_{17}N_2O_{14}P_3$ -781,370 -954,020 118.6					228.93 223.79 2.5405	153.186		$-19.764 - 3.5537$	325.5	-26.45	4.7
d UTP ⁴⁻	$C_9H_{11}N_2O_{14}P_3^{4-}$	$-758,514$ $-943,062$		46.09	-12.88 176.39 2.3886		122.656		-19.055 -2.2916	89.57	-27.33	5.2
d HUT P^{3-}	$C_9H_{12}N_2O_{14}P_3^{3-}$		$-768,914$ $-941,172$	87.31		57.01 191.87 2.4393	132.841		$-19.292 -2.7127$	162.6	-28.66	5.2
d^+H_2 UTP ³⁻	$C_9H_{13}N_2O_{14}P_3^{2-}$	$-775,114$ $-945,072$		95.02		97.96 191.34 2.4367	132.309	$-19.279 - 2.6907$		203.5	-29.52	5.0
d^+H_3 UTP ²⁻	$C_9H_{14}N_2O_{14}P_3^{1-}$		$-777,814$ $-943,572$	109.11		158.49 202.56 2.4720	139.411		$-19.444 - 2.9842$	262.1	-29.07	4.9
$d^+H_4UTP^-$	$C_9H_{15}N_2O_{14}P_3$ -779,850 -940,671 125.67 213.85 207.70 2.4888						142.790		$-19.522 -3.1239$	315.8	-28.65	4.8

These values were generated as described in Section [5](#page-21-0).

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

 $cm³$ mol⁻¹.

 $\frac{c}{d}$ cal mol⁻¹ bar⁻¹.

 e cal K mol⁻¹ bar⁻¹.

f cal K mol⁻¹.

$$
\Xi_{\mathrm{H}_{n}\mathrm{NMP}_{i}^{(n-2)}}^{\circ} = \Xi_{\mathrm{H}_{(n-1)}\mathrm{NMP}_{i}^{(n-3)}}^{\circ} + \Delta\Xi_{r(89)}^{\circ},\tag{92}
$$

$$
\mathcal{Z}^{\circ}_{\mathbf{H}_{n}\mathbf{NDP}_{i}^{(n-3)}} = \mathcal{Z}^{\circ}_{\mathbf{H}_{(n-1)}\mathbf{NDP}_{i}^{(n-4)}} + \Delta \mathcal{Z}^{\circ}_{r(90)},
$$
\n(93)

and

$$
\Xi_{\mathrm{H}_{n}\mathrm{NTP}_{i}^{(n-4)}}^{\circ} = \Xi_{\mathrm{H}_{(n-1)}\mathrm{NTP}_{i}^{(n-5)}}^{\circ} + \Delta\Xi_{r(91)}^{\circ},\tag{94}
$$

where Ξ_i° stands for values of $\Delta G_{f(aq)}^{\circ}$, $\Delta H_{f(aq)}^{\circ}$, or $S_{(aq)}^{\circ}$ for the subscripted species, and $\Delta \vec{z}$ represents the corresponding standard molal reaction properties. The values of $\Delta \mathcal{Z}_r^{\circ}$ used to evaluate Eqs. (92)–(94) are listed in [Table 19.](#page-26-0) The values of $\Delta \mathbb{E}_{r}^{\circ}$ for Reactions (92)–(94) for the cases of $n = 2$, $n = 2$ and 3, and $n = 2$ and 3, respectively, for all of the nucleotides except the adenosine nucleotides were taken in a first approximation to be equal to experimental values of $\Delta \mathcal{Z}_r^{\circ}$ for the analogous adenosine reactions. For example, the values of ΔG_r° , ΔH_r° , and ΔS_r° for

$$
HCMP^{-} + H^{+} \rightleftharpoons {}^{+}H_{2}CMP^{-}
$$
\n(95)

were taken to be equal to those of

$$
HAMP^{-} + H^{+} \rightleftharpoons {}^{+}H_{2}AMP^{-}.
$$
\n(96)

Additional experimental values of $\Delta \mathcal{Z}_r^{\circ}$ reported in the literature for Reactions [\(89\)–\(91\)](#page-24-0) are listed in [Table A.11](#page-38-0) in Appendix A.

Although there are no calorimetric data available in the literature for the protonation reaction forming the ith overall neutral nucleotide triphosphate zwitterion, $^{+}H_{4}NTP_{i}^{-}$, values of $\Delta G_{f(aq)}^{\circ}$ for these species can be calculated in a first approximation using a correlation between charge and values of $\Delta G_{f(aq)}^{\circ}$ for the nucleotides in a given charge series. For example, the symbols shown in [Fig. 16](#page-26-0) represent values of $\Delta G_{f(aq)}^{\circ}$ for ATP⁴⁻, HATP³⁻, H₂ATP²⁻, and H₃ ATP⁻ taken from [Table 16](#page-24-0), which are plotted against the square of the overall charge of each species. It can be demonstrated that similar plots for the other $H_n\text{NTP}_i^{(n-4)}$ charge series exhibit the same dependence on charge (slope) with different intercepts. Hence, the equations of all of these straight lines in all of these plots can be expressed as

$$
\Delta G^{\circ}_{f, \mathbf{H}_n \mathbf{N} \mathbf{T} \mathbf{P}_i^{(n-4)}} = \Delta G^{\circ}_{f, \mathbf{H}_4 \mathbf{N} \mathbf{T} \mathbf{P}_i^{\circ}} + mZ^2
$$
\n(97)

where $\Delta G^{\circ}_{f, H_n\text{NTP}_i^{(n-4)}}$ denotes the Gibbs energy of formation of $H_nNTP_i^{(n-4)}$ for $n = 0, 1, 2,$ and 3 and Z refers to the overall charge of the nucleotide. Values of m are given in [Table 20](#page-27-0). Eq. (97) was used to calculate values of $\Delta G_{f(aq)}^{\circ}$ for all of the H_4NTP_i species, which are shown in [Table 16.](#page-24-0)

Provisional values of $S^{\circ}_{(aq)}$ for the H₄NTP[°] species can be estimated from a correlation between experimentally derived values of $S^{\circ}_{(aq)}$ for the *i*th NTP species $(S^{\circ}_{H_n \text{NTP}_i^{(n-4)}})$

Standard molal Gibbs energies, enthalpies and entropies of reaction at $25 \degree C$ and 1 bar for selected phosphorylation reactions

See [Table A.10](#page-38-0) in Appendix A for additional literature values.

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹mol⁻¹</sup>

^o cal K⁻¹mol⁻¹.

^c Calculated from $\Delta S_r^{\circ} = (\Delta H_r^{\circ} - \Delta G_r^{\circ})$

 α Average of values taken from [Table A.10](#page-38-0) in Appendix A.

^e Taken in a first approximation to be the same as ΔG_r° for the first $AMP²⁻ reaction above.$

^f [Tewari et al. \(1988\).](#page-43-0)

^g Average of ΔH_{r}° for the AMP²⁻ and GMP²⁻ reactions.
^h [Goldberg and Tewari \(1994\).](#page-41-0)

ⁱ Average of values taken from [Table A.11](#page-38-0) in Appendix A.

^j Taken in a first approximation to be the same as ΔG_r° for the ADP^{3–} reaction.

^k Calculated from ΔH_r° for the sixth and seventh reactions given in Table taken from [Table A.10](#page-38-0) in Appendix A.

¹ Average of ΔH_r° ¹ Average of $\Delta H_{\rm p}^{\circ}$ for the ADP³⁻ and GDP³⁻ reactions.
^m Average of values of $\Delta G_{\rm p}^{\circ}$ taken from Table A.10 in A

ⁿ Average of values of ΔG_r° taken from [Table A.10](#page-38-0) in Appendix A.
ⁿ Average of values of ΔH_r° taken from Table A.10 in Appendix A.

ⁿ Average of values of ΔH_r° taken from [Table A.10](#page-38-0) in Appendix A. ^o Taken in a first approximation to be the same as ΔG_r° for the ATP^{4–} reaction.

^p Taken in a first approximation to be the same as ΔH_r° for the ATP^{4–} reaction.

and corresponding experimental values of $S^{\circ}_{(aq)}$ for likecharged diphosphates, $S_{H, P_2O_2(n-4)}^{\circ}$. For example, it can be seen in [Fig. 17](#page-27-0) that the values of $S^{\circ}_{(aq)}$ for $H_nATP^{(n-4)}$ increase as a linear function of the corresponding values of $S^{\circ}_{(aq)}$ for like-charged diphosphate species [\(Table 21](#page-27-0)). The equation of the straight line representing this correlation for all of the like-nucleotides is given by

$$
S_{\mathrm{H}_{n}\mathrm{NTP}_{i}^{(n-4)}}^{\circ} = b_{i} + m_{i}(S_{\mathrm{H}_{n}\mathrm{P}_{2}\mathrm{O}_{7}^{(n-4)}}), \tag{98}
$$

where b_i and m_i denote the intercept and slope for for the ith kind of nucleotide (e.g., $H_nATP^{(n-4)}$, $H_nGTP^{(n-4)}$, etc.). Values of b_i and m_i are given in [Table 20](#page-27-0).

The values of $S^{\circ}_{(aq)}$ shown in [Table 16](#page-24-0) for the $^{+}H_{4}NTP_{i}^{-}$ species were calculated from the appropriate expressions of Eq. (98) using values of $S_{H_nNTP_i^{(n-4)}}^{\circ}$ taken from [Table](#page-38-0) [A.9](#page-38-0) in Appendix A. The values of $\Delta H_{f(aq)}^{\circ}$ shown in table for the $H_4NTP_i^-$ species were calculated from the values of $\Delta G_{f(aq)}^{\circ}$ and $S_{(aq)}^{\circ}$ using a rearranged version of Eq. [\(42\)](#page-8-0), together with values of S_i° taken from [Cox et al. \(1989\)](#page-41-0).

5.2. Equations of state parameters

Experimental values of C_p° , V° , and κ_T° have not been reported in the literature for nucleotides. Nevertheless, provisional values of their revised HKF equations of state

Table 19

Standard molal Gibbs energies, enthalpies, and entropies of reaction at 25° C and 1 bar for the nucleotide protonation reactions considered in the current study

Reaction	$\Delta G_r^{\circ a}$	$\Delta H_r^{\circ a}$	$\Delta S_r^{\circ b}$
$AMP^{2-} + H^{+} \leftrightarrow HAMP^{-}$	-8200°	840 ^d	32.0 ^d
$GMP^{2-} + H^+ \leftrightarrow HGMP^-$	$-9100e$	1450 ^e	35.3 ^e
$\text{CMP}^{2-} + \text{H}^+ \leftrightarrow \text{HCMP}^-$	-9040°	1350 ^e	34.8 ^e
$UMP^{2-} + H^+ \leftrightarrow HUMP^-$	-9050 ^e	1120 ^e	34.0°
$TMP^{2-} + H^+ \leftrightarrow HTMP^-$	-9020 ^f	1235 ^g	34.4^{8}
$dAMP^{2-} + H^{+} \leftrightarrow dHAMP^{-}$	-9090 ^e	1040°	33.8°
$HAMP^- + H^+ \leftrightarrow ^+ H_2AMP^-$	-5200°	$-4300d$	3.1 ^d
$ADP^{3-} + H^+ \leftrightarrow HADP^{2-}$	-9900 ^c	840 ^d	35.9^{d}
$GDP^{3-} + H^+ \leftrightarrow HGDP^{2-}$	$-9800e$	1480 ^e	37.7 ^e
$CDP^{3-} + H^+ \leftrightarrow HCDP^{2-}$	-9790°	1340°	37.4°
$\text{UDP}^{3-} + \text{H}^+ \leftrightarrow \text{HUPP}^{2-}$	-9780°	1080 ^e	36.4^e
$TDP^{3-} + H^+ \leftrightarrow HTDP^{2-}$	$-9800f$	1210 ^g	36.9 ^g
$HADP^{2-} + H^+ \leftrightarrow {}^+H_2ADP^{2-}$	-5700°	$-4400d$	4.4 ^d
$H_2ADP^{2-} + H^+ \leftrightarrow H_3ADP^-$	-2500°	2560 ^d	17 ^d
$ATP^{4-} + H^+ \leftrightarrow HATP^{3-}$	$-10,500^{\circ}$	1400 ^d	40 ^d
$GTP^{4-} + H^+ \leftrightarrow HGTP^{3-}$	$-10,430^e$	1750 ^e	40.8 ^e
$CTP^{4-} + H^+ \leftrightarrow HCTP^{3-}$	$-10,430^e$	1750 ^e	40.8 ^e
$UTP^{4-} + H^+ \leftrightarrow HUTP^{3-}$	$-10,350^e$	2020 ^e	41.4^e
$TTP^{4-} + H^+ \leftrightarrow HTTP^{3-}$	$-10,400f$	1890 ^g	41.4 ^g
$HATP^{3-} + H^+ \leftrightarrow {}^+H_2ATP^{3-}$	-6200°	$-3900^{\rm d}$	7.6 ^d
$H_2ATP^{3-} + H^+ \leftrightarrow H_3ATP^{2-}$	-2700 ^c	1500 ^d	14 ^d

The standard molal Gibbs energies, enthalpies, and entropies of reaction at 25 \degree C and 1 bar for the deoxyribonucleotide protonation reactions were taken in a first approximation to be equal to the corresponding properties of the analogous ribonucleotide reactions given above. Supporting this hypothesis is the observation that the values of the aforementioned reaction properties for the $dAMP^{2-} + H^{+} \rightleftharpoons dHAMP^{-}$ reaction are within several percent of the reaction properties among the ribonucleotide monophosphates. See [Table A.11](#page-38-0) in Appendix A for additional literature values.

- b cal K⁻¹ mol⁻¹.
- ^c Calculated from $\Delta G_r^{\circ} = \Delta H_r^{\circ} T \Delta S_r^{\circ}$.
^d [Oscarson et al. \(1995\).](#page-42-0)
- ^d Oscarson et al. (1995).
^e [Phillips et al. \(1965\)](#page-42-0).
-
- $E_r^{\circ} = \Delta H_r^{\circ} T \Delta S_r^{\circ}$

^r Calculated from $\Delta G_r^{\circ} = \Delta H_r^{\circ} - T \Delta S_r^{\circ}$.
^g Estimated in a first approximation by averaging the values of ΔS_r° for the other pyrimidines.

Fig. 16. $\Delta G_{fH_nATP^{(n-4)}}^{\circ}$ as a function of the square of the charge (Z^2) for $n = 0,1,2$, and 3. The values of $\Delta G_{fH_n\text{ATP}}^{(n-4)}$ were taken from [Table 16](#page-24-0).

parameters can be estimated by taking account of experimental enthalpies of reaction involving reference model compounds, and group additivity and correlation algorithms.

 $^{\rm a}$ cal mol⁻¹.

Table 20 Values of m and b_i and m_i for Eqs. [\(97\) and \(98\),](#page-25-0) respectively

Nucleotide series	m	b_i	m_i
$H_nATP_i^{(n-4)}$	1.3019	75.032	0.9275
$H_nCTP_i^{(n-4)}$	1.3019	71.176	0.94233
$\mathbf{H}_n\mathbf{GTP}_i^{(n-4)}$	1.3019	75.891	0.94217
$\mathbf{H}_n \mathbf{TTP}_i^{(n-4)}$	1.3019	72.861	0.95214
$\mathbf{H}_n\mathbf{UTP}_i^{(n-4)}$	1.3019	69.625	0.94794
$dH_nATP_i^{(n-4)}$	1.3085	72.774	0.92764
$dH_nCTP_i^{(n-4)}$	1.3039	75.310	0.94217
$dH_nGTP_i^{(n-4)}$	1.3039	66.651	0.94217
$dH_n TTP_i^{(n-4)}$	1.2986	70.493	0.94327
$dH_n UTP_i^{(n-4)}$	1.3019	77.114	0.95215

Fig. 17. $S_{\text{H}_{n}\text{P}_{2}\text{O}_{q}^{(n-4)}}^{\circ}$ plotted against $S_{\text{H}_{n}\text{AP}}^{\circ}$ for equally protonated phosphate groups. Although the overall charge on the $H_nATP^{(n-4)}$ species may not be the same as that for the corresponding $H_nP_2O_7^{(n-4)}$ species (some nucleotides are zwitterionic), the charge contributed by the phosphate groups on the nucleotides are equal to those of the corresponding diphosphate species.

5.2.1. The ω , c_1 , and c_2 parameters

In the absence of experimental calorimetric data, provisional values of c_1 , c_2 , and ω for the nucleotides can be obtained by progressively regressing estimated values of C_P° for these species with a combined expression of Eqs. [\(49\)](#page-11-0) [and \(50\)](#page-11-0) using trial values of ω (see below). The reactions and corresponding equations used to calculate values of C_p° as a function of temperature for the aqueous nucleotides considered in the present study, other than the overall neutral nucleotide triphosphates, correspond to those denoted as (1A–11A) in [Table 22](#page-28-0). The values of $\Delta C_{P,r}^{\circ}$ in these equations were taken in a first approximation to be equal to the corresponding isobaric standard molal heat capacities of reaction for the corresponding reference model reactions designated as (1B–11B) in [Table 22.](#page-28-0) The reactions from which (1B–11B) were derived are shown in the lower section of the first column in [Table 22](#page-28-0). The equations and strategies employed to generate the revised HKF equations of state parameters used to calculate values of C_p° as a function of temperature for (*ribose-5-phosphate*)²⁻ and the citrate species are discussed in Appendix B. The equations used to calculate values of C_p° as a function of temperature for the other reactant and product species in the reference model reactions are discussed below.

Values of C_p° for HAMP⁻, ⁺H₂AMP⁻, ADP³⁻, ATP⁴⁻, $HATP³⁻, ⁺H₂ATP³⁻, and ⁺H₃ATP²⁻ were calculated in$ the present study by taking finite difference derivatives of experimentally derived values of the standard molal enthalpy of formation of each of these species as a function of temperature in accord with

$$
C_p^\circ \equiv \left(\frac{\partial H^\circ}{\partial T}\right)_P \approx \left(\frac{\delta H^\circ}{\delta T}\right)_P,\tag{99}
$$

where δ stands for the finite difference derivative. The values of δH° required for these calculations were computed as a function of temperature using the equations listed in the second column of [Table 23](#page-28-0) next to the reactions from which the equations were derived.

The validity of using the equations and reference model reactions listed in [Table 22](#page-28-0) to estimate values of C_p° for nucleotides as a function of temperature can be inferred from comparisons of other experimental standard molal thermodynamic properties of reaction involving nucleotides for which calorimetric data are available in the literature. For example, it can be deduced from [Table 19](#page-26-0) that the respective experimentally derived values of ΔG_r° and ΔH_r° for the protonation of GMP^{2-} , CMP^{2-} , UMP^{2-} , TMP^{2-} , and dAMP²⁻ to HGMP⁻, HCMP⁻, HUMP⁻, HTMP⁻, and $dHAMP^-$ are within 80 and 410 cal mol⁻¹ of each other, respectively, which is of the order of the uncertainties in the experimental values. This observation supports by inference the hypothesis adopted in the present study that the values of $\Delta C_{P,r}^{\circ}$ for Reactions (2) and (3) in [Table](#page-28-0) [22](#page-28-0) are essentially equivalent to those of protonation reactions for nucleotide monophosphate species containing different bases. Note also that the experimentally derived values of ΔH_r° for the nucleotide phosphorylation reactions given in [Table 18](#page-26-0) differ from one another by 250 cal mol⁻¹ or less for the monophosphates and by only 10 cal mol⁻¹

Table 21

Summary of values of ΔH_r° in cal mol⁻¹ for selected phosphorylation reactions as a function of temperature at 1 bar

Reaction	Temperatures (K)							
	298.15	304.15	304.55	304.65	309.95	310.15		
Ribose-5-phosphate ²⁻ + H ₂ O \leftrightarrow ribose + HPO ₄ ²⁻	$-1202^{\rm a}$			$-1331^{\rm a}$		$-1377^{\rm a}$		
$AMP2- + H2O \leftrightarrow adenosine + HPO42-$	215 ^b		67 ^b			143 ^b		
$ATP^{4-} + H_2O \leftrightarrow ADP^{3-} + HPO_4^{2-} + H^+$	-4892 ^c	-5251°			-5557 °			

^a [Tewari et al. \(1988\).](#page-43-0)

^b [Gajewski et al. \(1986\)](#page-41-0).

 \textdegree [Larson et al. \(1993\)](#page-42-0).

The values of $\Delta C_{P,r}^{\circ}$ for Reactions (1B)–(11B) were used in a first approximation to evaluate the equations used to calculate values of C_P° for the subscripted nucleotides. That is, values of $\Delta C_{P,r1B}^{\circ}$ are taken to be equal to those of $\Delta C_{P,r1A}^{\circ}$ and $\Delta C_{P,r2B}^{\circ} = \Delta C_{P,r2A}^{\circ}$ and so on. The reference model reactions are discussed further in the text.

The values of C_p° as a function of temperature required to evaluate the equations in column 2 were calculated with the aid of the SUPCRT92 software package [Johnson et al. \(1992\)](#page-42-0) using the revised HKF equations of state parameters for the subscripted species given in [Tables 2, 12, 14, and 16, and B.1](#page-6-0) in Appendix B. The strategies used to generate values of the equations of state parameters for $R5P²$ and the citrate species are discussed in Appendix B. $R5P^{2-}$ stands for (ribose-5-phosphate)²⁻.

Table 23

Summary of the reactions (left column) and corresponding equations (right column) used to calculate the values of ΔH° as a function of temperature required to evaluate Eq. [\(99\)](#page-27-0) for selected reference model nucleotide species

Reactions for which experimental values of ΔH_{ν}° are available in the literature		Equations used to calculated ΔH° of the subscripted nucleotide
$AMP2- + H+ \rightleftharpoons HAMP-$	$^{(1)}$	$\Delta H_{\text{HAMP}_1}^{\circ} = \Delta H_{\text{AMP}_1}^{\circ} + \Delta H_{r1}^{\circ}$
$HAMP^- + H^+ \rightleftharpoons$ H_2AMP^-	(2)	$\Delta H_{\rm ^0H_2AMP}^{\circ} = \Delta H_{\rm HAMP}^{\circ} + \Delta H_{r2}^{\circ}$
$ADP^{3-} + HPO42- + H+ \rightleftharpoons ATP4- + H2O$	(3)	
$ADP^{3-} + HPO42- + H+ \rightleftharpoons ATP4- + H2O$	$\left(4\right)$	$\begin{array}{c} \Delta H_{\rm{ADP}^3}^\circ = \Delta H_{\rm{AMP}^2}^\circ + \Delta H_{\rm{HPO}_4^2}^\circ - \Delta H_{\rm{H}_2O}^\circ + \Delta H_{\rm{r3}}^\circ, \\ \Delta H_{\rm{ATP}^{4-}}^\circ = \Delta H_{\rm{ADP}^3}^\circ + \Delta H_{\rm{HPO}_4^2}^\circ - \Delta H_{\rm{H}_2O}^\circ + \Delta H_{\rm{r4}}^\circ \end{array}$
$ATP^{4-} + H^+ \rightleftharpoons HATP^{3-}$	(5)	$\Delta H^{\circ}_{HATP^{3-}} = \Delta H^{\circ}_{ATP^{4-}} + \Delta H^{\circ}_{r5}$
$HATP^{3-} + H^+ \rightleftharpoons H_2ATP^{2-}$	(6)	$\Delta H^\circ_{\mathrm{^{+}H_{2}ATP^{3-}}}=\Delta H^\circ_{\mathrm{HATP^{3-}}}+\Delta H^\circ_{r6}$
$H_2ATP^{3-} + H^+ \rightleftharpoons H_3ATP^{2-}$	(7)	$\Delta H_{\text{+H}_3 \text{ATP}^2}^{\circ} = \Delta H_{\text{+H}_2 \text{ATP}^3}^{\circ} + \Delta H_{r7}^{\circ}$

The values of ΔH° as a function of temperature required to evaluate the equations in column 2 were calculated with the aid of the SUPCRT92 software package [Johnson et al. \(1992\)](#page-42-0) using the revised HKF equations of state parameters for the subscripted species given in [Tables 12, 14, and 16, and A.9](#page-22-0) in Appendix A. The values of ΔH_{r3}° as a function of temperature were taken from [Larson et al. \(1993\)](#page-42-0) and those for all of the other equations from [Oscarson](#page-42-0) [et al. \(1995\).](#page-42-0)

for the diphosphates. Hence, in a first approximation the standard molal thermodynamic properties of phosphorylation reactions between nucleotides containing different bases but the same number of phosphate groups can be taken to be equivalent within experimental uncertainty.

The validity of using values of $\Delta C_{P,r}^{\circ}$ for reference model Reactions (5B)–(7B) in Table 22 as respective proxies for those of analogous nucleotide diphosphate anion protonation reactions can be assessed by comparing calculated standard molal thermodynamic properties of species in the protonated ADP series with the few experimental data available in the literature for these species. This can be done by first adopting a constant heat capacity approximation representing the difference of ΔH_r° at 125 °C and that at 25 °C given by [\(Oscarson et al., 1995\)](#page-42-0) for

$$
ADP3- + H+ \rightleftharpoons HADP2-,
$$
\n(100)

$$
HADP2- + H+ \rightleftharpoons H2ADP-,
$$
 (101)

$$
H_2ADP^- + H^+ \rightleftharpoons H_3ADP. \tag{102}
$$

This approach results in values of $\Delta C_{p,r}^{\circ}$ for Reactions (100) – (102) of 62.10, 23.07, and 36.89 cal mol⁻¹ K⁻¹, respectively. The corresponding values of $\Delta C_{P,r}^{\circ}$ computed for Reactions (5B)–(7B) in [Table 22](#page-28-0) and inserted into the corresponding equations in [Table 22](#page-28-0) at temperatures ranging from 25 to 125 °C are 66.05–62.76, 28.82–25.29, and $32.96-41.84$ cal mol⁻¹ K⁻¹. Hence, both approaches lead to similar values of $\Delta C_{P,r}^{\circ}$ for protonation of the $H_nADP^{(n-3)}$ series of dinucleotides.

The validity of using values of $\Delta C_{P,r}^{\circ}$ for Reaction (9B) in [Table 22](#page-28-0) to estimate values of C_p° for the other trivalent nucleotide triphosphate anions can be assessed by comparing experimental standard molal properties of reaction for analogous nucleotide reactions. For example, it can be de-duced from [Table 19](#page-26-0) that the respective values of ΔG_r° and ΔH_{r}° for the protonation of GTP^{4-} , CTP^{4-} , UTP^{4-} , and TTP^{4-} to form $HGTP^{3-}$, $HCTP^{3-}$, $HUTP^{3-}$, and $HTTP³⁻$, respectively, differ from one another by only 80 and 270 cal mol⁻¹ or less. This observation supports the hypothesis that the values of $\Delta C_{P,r}^{\circ}$ for Reaction (9) in [Ta](#page-28-0)[ble 22](#page-28-0) can be taken in a first approximation to be equivalent, within experimental uncertainty, to those of protonation reactions for nucleotide triphosphates species containing different bases.

Values of c_1 and c_2 for the all of the nucleotides other than the overall neutral zwitterionic nucleotide triphosphate species considered in the present communication

were generated by first calculating values of $\Delta C_{P,n}^{\circ}$ from Eq. [\(49\)](#page-11-0) as a function of $1/(T - \Theta)^2$ for these species using corresponding values of C_P° determined in the manner described above for various temperatures, together with trial values of ω . In the case of ADP³⁻, an initial estimate of ω was calculated from $\omega = 4.8107 - 0.01516$ (S°), which represents a correlation algorithm for trivalent anions taken from [Shock and Helgeson \(1988\)](#page-43-0). Following the procedure discussed above in Sections [3.2.2 and 4.2.2](#page-11-0), these values of $\Delta C_{P,n}^{\circ}$ were then plotted as trial values against $1/(T - \Theta)^2$. Successive perturbation of the trial values of ω used to generate those of $\Delta C_{P,n}^{\circ}$ resulted in the straight lines shown in Figs. 18 and 19, which are consistent with the revised HKF equations of state ([Tanger and Helgeson, 1988; Shock](#page-43-0) [et al., 1992; Amend and Helgeson, 1997b, 2000\)](#page-43-0). The intercepts and slopes of the straight regression lines representing the values $\Delta C_{P,n}^{\circ}$ for the nucleotides as a function of 1/ $(T - \Theta)^2$ in Figs. 18 and 19 correspond, respectively, to values of c_1 and c_2 for these species. For example, the symbols shown in Fig. 18 correspond to calculated values of $\Delta C_{P,n}^{\circ}$ for ADP³⁻ and ATP⁴⁻ and HAMP⁻, H₂AMP, $H\ddot{AT}P^{3-}$, H_2ATP^{2-} , and H_3ATP^- as a function of 1/ $(T - \Theta)^2$. The intercepts and slopes, respectively, of the straight lines in these figures correspond to values of c_1 and c_2 in the equations of state for ADP³⁻ and ATP⁴⁻ and HAMP⁻, H₂AMP, HATP³⁻, H₂ATP²⁻, and H₃ ATP⁻. It can be seen in Figs. 18 and 19 that the straight lines representing the revised HKF equations of state closely represent the values of $\Delta C_{P,n}^{\circ}$ corresponding to the symbols. The values of c_1 and c_2 corresponding to the

Fig. 18. $\Delta C_{p,n}^{\circ}$ for aqueous ribose-5-phosphate²⁻, AMP^{2-} , ADP^{3-} , and ATP^{4-} as a function of $10^4/(T-\Theta)^2$ at 1 bar. The symbols denote values of $\Delta C_{p,n}^{\circ}$ computed from Eqs. [\(17\) and \(24\)](#page-4-0) using values of ω and C_p° taken from [Tables 2, 12, 14, and 16](#page-6-0) (see text). The regression lines represent fits of Eq. [\(17\)](#page-4-0) to the data.

Fig. 19. $\Delta C_{P,n}^{\circ}$ for aqueous HAMP⁻, ⁺H₂AMP⁻, HADP²⁻, ⁺H₂ADP²⁻, ⁺H₃ADP⁻, HATP³⁻, ⁺H₂ATP³⁻, and ⁺H₃ATP²⁻as a function of 1/(T – Θ)² at 1 bar. The symbols represent values of $\Delta C_{p,n}^{\circ}$ computed from Eqs. [\(17\) and \(24\)](#page-4-0) using values of ω and C_p° taken from [Tables 12, 14, and 16](#page-22-0) (see text). The regression lines represent fits of Eq. [\(17\)](#page-4-0) to the data.

intercepts and slopes of the regression lines depicted in [Figs. 18 and 19](#page-29-0) are listed in [Tables 2 and 12–17](#page-6-0), together with the values of ω used to generate the straight lines.

Despite the dearth of experimental calorimetric data reported in the literature for the overall neutral zwitterionic nucleotide triphosphates, values of the c_1 , c_2 , and ω equation of state parameters for these species $(^{+}H_4 NTP_i^-)$ can be estimated by comparing corresponding values of the c_1 , c_2 , and ω parameters for the other nucleotide triphosphates listed in [Table 16](#page-24-0). For example, it can be deduced from this table that the values of ω for a given series of protonated NTP species (e.g., ATP^{4-} , $HATP^{3-}$, H_2ATP^{2-} , and H_3 ATP⁻) decrease by $0.1 - 0.2 \times 10^5$ cal mol⁻¹ per proton added to the NTP_i^{4-} nucleotide. Hence, it appears that values of ω for the $H_4NTP_i^-$ species can be taken in a first approximation to be 0.1×10^5 cal mol⁻¹ less than the corresponding values of the respective ${}^{+}H_{3}NTP_{i}^{2-}$ species. Note also in [Table 16](#page-24-0) that the values of c_2 for a given protonation series of nucleotide species are nearly the same. Hence, the values of c_2 for the overall neutral zwitterionic nucleotide triphosphates were taken to be equal in a first approximation to the average of the c_2 values for the other triphosphate species in the series containing the same nucleoside. Values of c_1 were then calculated from Eq. [\(24\)](#page-4-0) for $P = 1$ bar and constant ω using the values of ω , c_2 , and the estimated values of C_p° for the overall neutral zwitterionic nucleotide triphosphate at 25° C. The latter estimates were calculated from the group additivity algorithm represented by

$$
C_{P,H_4\text{NTP}_i^{\circ}}^{\circ} = C_{P,H_3\text{NTP}_i^-}^{\circ} + (c_{1,H_4\text{NTP}_i} - c_{1,H_3\text{NTP}_i^-}). \tag{103}
$$

Values of the c_1 , c_2 , and ω parameters for all of the deoxynucleotides considered in the present communication were calculated using a strategy analogous to that adopted above to calculate values of these parameters for the corresponding nucleotides. However, in the case of the deoxynucleotides, the standard molal thermodynamic properties of these species were used in place of the corresponding properties for ribonucleosides and ribonucleotides in the equations employed in the calculations. For example, values of C_P° for the *i*th deoxynucleoside $(C_{P, deocynucleoside_i}^{\circ})$ were used to evaluate the first equation listed in [Table 22](#page-28-0), instead of values of $C_{P, nucleoside_i}^{\circ}$.

The standard molal reaction properties for ribonucleotides and the corresponding deoxyribonucleotides were taken in a first approximation to be equal in these calculations. The validity of this hypothesis is supported by the scant thermodynamic data available in the literature. For example, experimentally derived values of ΔG_r° and ΔH_r° for the protonation of AMP^{2-} and those for the deoxy-analog reaction involving $dAMP²$ shown in [Table 19](#page-26-0) differ, respectively, by \sim 900 and 200 cal mol⁻¹, which are less than the corresponding experimental uncertainty.

5.2.2. Non-solvation volume and the compressibility parameters, a_1 , a_2 , a_3 , and a_4

Although no experimental values of V° or κ_T° have been reported in the literature for aqueous nucleotides, values of the a_1 , a_2 , a_3 , and a_4 parameters for the nucleotides considered in the present study can be calculated from correlation algorithms for charged organic species given by [Shock](#page-43-0) [\(1995\)](#page-43-0) using estimated values of V° at 25 °C and 1 bar and the values of ω given for the nucleotides in [Tables](#page-22-0) [12–17](#page-22-0) (see above). The correlation algorithms used for this purpose are similar to those employed in Section [3.2.4](#page-13-0) to calculate values of the a_1 , a_2 , a_3 , and a_4 parameters for guanine.

Values of the a_1 parameters for the nucleotides can be calculated from the correlation algorithm presented by ([Shock, 1995](#page-43-0))

$$
a_1 = 0.013684 \left(\frac{\Delta V_n^{\circ}}{41.8393}\right) + 0.1765. \tag{104}
$$

The requisite values of ΔV_n° at 25 °C were calculated from Eqs. [\(14\) and \(25\)](#page-4-0) using estimated values of V° (see below) and values of ω taken from [Tables 12–17.](#page-22-0) Values of the a_2 parameters were then calculated from these values of a_1 using Eq. [\(20\)](#page-4-0) and values of σ , which were calculated from the correlation algorithm given by [Shock \(1995\)](#page-43-0)

$$
\sigma = 1.0714(\Delta V_n^{\circ}) + 3.0. \tag{105}
$$

The a_2 parameters were in turn used to calculate values of a_4 from [\(Shock, 1995\)](#page-43-0)

$$
a_4 = 27790 - 4.134(a_2). \tag{106}
$$

Finally, values of a_3 were computed from the values of a_4 using the first identity in Eq. [\(18\),](#page-4-0) together with Eq. [\(21\)](#page-4-0).

Owing to the dearth in the literature of experimental values of the standard molal volumes of nucleotides, the values of V° at 25 °C and 1 bar used in the calculations described above were computed by first estimating values of the standard molal volumes of the crystalline (V_{cr}°) nucleotides, together with the standard molal volumes of

solution (ΔV_{sol}°) for the hypothetical non-zwitterionic⁴ $H₂NMP$ reference species using the relation,

$$
V^{\circ} = V^{\circ}_{cr} + \Delta V^{\circ}_{sol}. \tag{107}
$$

This approach makes it possible to use the few experimental values of V_{cr}° , ΔV_{sol}° , and V° for nucleic-acid bases, nucleosides, ribose, and phosphate species that are available in the literature to estimate values of V° for the nucleotides in the manner described below.

The values of V_{cr}° required to evaluate Eq. (107) can be calculated for the ith fully protonated crystalline NMP species $(V_{\text{H}_2\text{NMP}_{i(\sigma)}}^{\circ})$ from values of V_{cr}° for the *i*th nucleoside $(V^{\circ}_{nucleoside_{i(\sigma)}})$ and V° for phosphoric acid $(V^{\circ}_{H_3PO_{4(\sigma)}})$ and $H_2O\left(V_{H_2O_{(I)}}^{\circ} \right)$ using

$$
V_{\mathrm{H}_{2}\mathrm{NMP}_{i(cr)}}^{\circ} = V_{\text{nucleoside}_{i(cr)}}^{\circ} + V_{\mathrm{H}_{3}\mathrm{PO}_{4(cr)}}^{\circ} - V_{\mathrm{H}_{2}\mathrm{O}_{(l)}}^{\circ} + \Delta V_{r}^{\circ},\tag{108}
$$

where ΔV_r° corresponds to the standard molal volume of reaction for

$$
\mathit{nucleoside}_{i(\mathit{cr})} + H_3PO_{4(\mathit{cr})} \rightleftharpoons H_2NMP_{i(\mathit{cr})} + H_2O_{(l)}. \quad (109)
$$

Because values of ΔV_r° are not available in the literature for the set of reactions represented by this reaction, values of ΔV_r° in Eq. (108) were taken in a first approximation to be equal to ΔV_r° of the dehydration reaction represented by

$$
base_{i(cr)} + ribose_{(cr)} \rightleftharpoons nucleoside_{i(cr)} + H_2O_{(l)} \tag{110}
$$

for which we can write

$$
\Delta V_r^{\circ} = V_{nucleoside_{i(cr)}}^{\circ} + V_{H_2O_{(l)}}^{\circ} - V_{base_{i(cr)}}^{\circ} - V_{ribose_{(cr)}}^{\circ}.
$$
 (111)

The values of V° for *ribose* $(V^{\circ}_{ribose_{(cr)}})$ and the *i*th *base* $(V^{\circ}_{base_{i(c)})}$ and *nucleoside* $(V^{\circ}_{nucleoside_{i(c)})}$ required to calculate ΔV_r° from Eq. (111) were taken from [Table 3](#page-7-0). $V_{\rm H_2O}^{\circ}$ was computed using SUPCRT92. The calculated values of ΔV_r° were used together with Eq. (108) to calculate estimates of $V_{\text{H}_2\text{NMP}_{i(\text{cr})}}^{\circ}$ for the various nucleotides.

The values of ΔV_{sol}° required to evaluate Eq. (107) for $25 \degree C$ and 1 bar can be calculated from the standard molal volumes of solution for the *i*th base $(\Delta V_{sol base_i}^{\circ})$, the *i*th nucleoside, $(\Delta V^{\circ}_{sol \, nucleoside_i}), \, \text{H}_3 \text{PO}_4 \; (\Delta V^{\circ}_{sol \, \text{H}_3 \text{PO}_4}),$ and ribose $(\Delta V_{\textit{solv}_\textit{s}}^{\circ})$ using

$$
\Delta V_{sol\,H_2NMP_i}^{\circ} = \Delta V_{sol\,H_3PO_4}^{\circ} + \Delta V_{sol\,nucleoside_i}^{\circ} - \delta V_{sol}^{\circ} \tag{112}
$$

together with values of δV_{sol}° which were taken to be equal in a first approximation to those represented by

$$
\delta V_{sol}^{\circ} = \Delta V_{solbase_i}^{\circ} + \Delta V_{solribase}^{\circ} - \Delta V_{solnucleoside_i}^{\circ}.
$$
 (113)

The values of ΔV_{sol}° for the nucleosides, nucleic-acid bases, ribose, and phosphoric acid used to evaluate Eqs. (112) and (113) were calculated from the corresponding values of V° and V°_{cr} given in [Tables 2 and 3](#page-6-0). The values of $\Delta V_{solH_2NMP_i}^{\circ}$ generated in this manner were then combined with Eq. (107) and the values of $V_{H_2NMP_{i(c\tau)}}^{\circ}$ computed in

⁴ Because some nucleotides are thought to be zwitterions [\(Oscarson](#page-42-0) [et al., 1995](#page-42-0)) the overall charge of a nucleotide is only partially attributable to the phosphate group(s) in the species.

Summary of the reactions (left column) and corresponding equations (right column) used to calculate values of V° for the subscripted nucleotides

Reactions from which the equations used to calculate V° were derived		Equations used to calculate values of V° for the subscripted nucleotides
$+H_2NMP_i^- + H_3PO_4 \rightleftharpoons +H_3NDP_i^- + H_2O$ $H_3NDP_1^- + H_3PO_4 \rightleftharpoons H_4NTP_1^- + H_2O$ $H N M P^-_i + H^+ \rightleftharpoons {}^+ H_2 N M P^-_i$ $HNDP2- + H+ \rightleftharpoons$ $+H2NDP2-$ $HNTP_i^{3-} + H^+ \rightleftharpoons {}^+H_2NTP_i^{3-}$ $HNMP_i^- \rightleftharpoons NMP_i^{2-} + H^+$ $+H_3NDP_1^- \rightleftharpoons +H_2NDP_1^{2-} + H^+$ $H_4NTP_i \rightleftharpoons H_3NTP_i + H^+$ $HNDP_i^{2-} \rightleftharpoons NDP_i^{3-} + H^+$ ${}^{+}H_{3}NTP_{i}^{2-} \rightleftharpoons {}^{+}H_{2}NTP_{i}^{3-} + H^{+}$ $HNTP_i^{3-} \rightleftharpoons NTP_i^{4-} + H^+$	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)	$V_{\pm H_3 NDP_1^-}^{\circ} = V_{\pm H_2 NMP_1^-}^{\circ} + V_{H_3PO_4^{\circ}}^{\circ} - V_{H_2O}^{\circ} + \Delta V_{r1}^{\circ}$ $V_{+H_4 N T P^-}^{\circ} = V_{+H_3 N D P^-}^{\circ} + V_{H_2 P O^{\circ}}^{\circ} - V_{H_2 O}^{\circ} + \Delta V_{r2}^{\circ}$ $V^{\circ}_{\text{H NMP}_i^-} = V^{\circ}_{\pm_{\text{H}_2\text{NMP}_i^-}} - \Delta V^{\circ}_{r3}$ $V^{\circ}_{\text{HNDP}^{2-}} = V^{\circ}_{\text{+H}_{2}\text{NDP}^{2-}} - \Delta V^{\circ}_{r4}$ $V^{\circ}_{\text{HNTP}^{3-}} = V^{\circ}_{\text{+H}_2 \text{NTP}^{3-}} - \Delta V^{\circ}_{r5}$ $V^{\circ}_{\text{NMP}_{i}^{2-}} = V^{\circ}_{\text{HNMP}_{i}} + \Delta V^{\circ}_{r6}$ $V_{+{\rm H}_2{\rm NDP}_i^{\rm 2-}}^{\circ}=V_{+{\rm H}_3{\rm NDP}_i^-}^{\circ}+\Delta V_{r7}^{\circ}$ $V^{\circ}_{+H_{3}\text{NTP}_i^{2-}}=V^{\circ}_{+H_{4}\text{NTP}_i^-}+\Delta V^{\circ}_{r8}$ $V^{\circ}_{\text{NDP}^{3-}} = V^{\circ}_{\text{HNDP}^{2-}} + \Delta V^{\circ}_{r9}$ $V_{+{\rm H_2NTP_{i}^{3-}}}^{\circ}=V_{+{\rm H_3NTP_{i}^{2-}}}^{\circ}+\Delta V_{r10}^{\circ}$ $V^{\circ}_{\text{NTP}^{4-}} = V^{\circ}_{\text{HNTP}^{3-}} - V^{\circ}_{\text{H}^+} + \Delta V^{\circ}_{r11}$
Reactions from which the equations used to calculate ΔV_r° were derived		Equations used to calculate ΔV_r°
$H_2PO_4^- + H_3PO_4^{\circ} \rightleftharpoons H_3P_2O_7^- + H_2O$ Average of $Arg^+ \rightleftharpoons Arg + H^+$ and $Lys^{+} \rightleftharpoons Lys + H^{+}$	(A) (B)	$\Delta V_{rA}^{\circ} = V_{H_3P_2O_7}^{\circ} + V_{H_2O}^{\circ} - V_{H_2PO_4}^{\circ} - V_{H_3PO_4}^{\circ}$ $\Delta V_{rB}^{\circ} = (V_{\text{Arg}}^{\circ} - V_{\text{Arg}^{+}}^{\circ} + V_{\text{Lys}}^{\circ} - V_{\text{Lys}^{+}}^{\circ})/2$
$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$ $H_3P_2O_7 = H_2P_2O_7^2 + H^+$ $H_2P_2O_7^{2-} \rightleftharpoons HP_2O_7^{3-}+H^+$ $HP_2O_7^{3-} \rightleftharpoons P_2O_7^{4-} + H^+$	(C) (D) (E) (F)	$\Delta V_{rC}^{\circ} = V_{\text{HPO}_{4}^{2-}}^{\circ} - V_{\text{H}_{2}\text{PO}_{4}^{-}}^{\circ}$ $\Delta V_{r\mathbf{d}}^{\circ} = V_{\mathrm{H}_2\mathrm{P}_2\mathrm{O}_7^{2-}}^{\circ} - V_{\mathrm{H}_3\mathrm{P}_2\mathrm{O}_7^-}^{\circ}$ $\begin{array}{l}\n\Delta V_{rE}^{\circ} = V_{\text{HP}_2\text{O}_7^3}^{\circ} - V_{\text{HP}_2\text{O}_7^2}^{\circ} \\ \Delta V_{rF}^{\circ} = V_{\text{P}_2\text{O}_7^4}^{\circ} - V_{\text{HP}_2\text{O}_7^2}^{\circ} \\ \end{array}$

The values of ΔV_r° calculated using Reactions (A)–(F) were used in a first approximation to evaluate Eqs. [\(1\)–\(11\).](#page-1-0) The value of ΔV_{rA}° is taken to be equal to that for Reactions (1) and (2), ΔV_{rB}° for Reactions (3)–(5), ΔV_{rC}° for Reaction (6), ΔV_{rD}° for Reactions (7) and (8), ΔV_{rE}° for Reactions (9) and (10), and $\Delta V_{\text{rF}}^{\circ}$ for Reaction (11). The reference model reactions are discussed further in the text.

The values of V° required to evaluate the equations in column 2 were taken from [Tables 12, 14 and 16, A.9](#page-22-0) in Appendix A, and in the case of Arg, Lys, Arg^+ , and Lys⁺, from Dick J.M., LaRowe D. E., and Helgeson, H. C., Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins, Biogeosciences, submitted.

the manner described above to calculate values of V° for the various hypothetical non-zwitterionic reference aqueous nucleotides represented by H_2NMP_i .

Let us now consider the zwitterionic aqueous nucleotides represented by $H_2NMP_i^-$ [\(Oscarson et al., 1995](#page-42-0)) in the context of the hypothetical reference model species, H_2NMP_i . The volume change associated with the simultaneous ionization of the phosphate group and protonation of a nitrogen atom in H_2 NMP[°] in accord with

$$
H_2NMP_i \rightleftharpoons {}^+H_2NMP^-
$$
\n(114)

can be estimated in a first approximation from

$$
\Delta V_r^\circ = V_{\text{H}_2\text{NMP}_i}^\circ - V_{\text{H}_2\text{NMP}_i}^\circ = \Delta V_{\text{prot}}^\circ + \Delta V_{\text{ioniz}}^\circ,\tag{115}
$$

where ΔV_{prot}° stands for the volume change associated with protonation of the nitrogen atom and ΔV_{ioniz}° refers to the volume change accompanying ionization of the phosphate group. The volume change due to the protonation of the nitrogen atom in the nucleic-acid base $(\Delta V_{prot}^{\circ})$ in this equation can be estimated from the average volume change associated with protonation of the nitrogen atom in the positively charged amino acids, lysine $(\Delta V_{prot, Lys}^{\circ})$ and arginine $(\Delta V_{prot,\text{Arg}}^{\circ})$ using

$$
\Delta V_{prot}^{\circ} = (\Delta V_{prot, Lys}^{\circ} + \Delta V_{prot, Arg}^{\circ})/2.
$$
\n(116)

The volume change due to the ionization of the phosphate group $(\Delta V^{\circ}_{ioniz})$ in Eq. (115) can be estimated in a first approximation from that resulting from the ionization of phosphoric acid represented by

$$
H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+ \tag{117}
$$

using

$$
\Delta V_{ioniz}^{\circ} = V_{\mathrm{H}_{2}\mathrm{PO}_{4}^{-}}^{\circ} - V_{\mathrm{H}_{3}\mathrm{PO}_{4}}^{\circ},\tag{118}
$$

together with the standard molal volumes of the subscripted species taken from [Table A.9](#page-38-0) in Appendix A. After combining and rearranging the second identity in Eqs. (115) and (118) and (116), the standard molal volume of the ith zwitterionic nucleotide monophosphate $(V_{+ \; H_2 NMP_i^-}^{\circ})$ can be expressed as

$$
V^{\circ}_{+H_2NMP_i^-} = V^{\circ}_{H_2NMP_i} + (\Delta V^{\circ}_{prot, Lys} + \Delta V^{\circ}_{prot, Arg})/2 + V^{\circ}_{H_2PO_4^-} - V^{\circ}_{H_3PO_4},
$$
(119)

which was used to calculate the value of V° for these species given in [Table 12.](#page-22-0)

Values of V° for the other nucleotide mono-, di-, and triphosphate species considered in the present study were calculated using Eqs. (1) – (11) , corresponding to the adjacent reactions, listed in Table 24. Provisional values of ΔV_r° required to evaluate these algorithms were estimated in a first approximation using reference model Reactions (A)–(F) in Table 24, which correspond to the adjacent reactions. The values of V° for the reactants and products depicted in the reference model reaction listed in Table 24 are taken from [Table A.9](#page-38-0) in Appendix A and the source cited in the preceding footnote.

The standard molal volumes of the deoxynucleotide analogs of the nucleotides shown in [Tables 13, 15, and 17](#page-22-0) were generated in the same manner as that described above for the nucleotides, except that the crystalline volumes and

volumes of solution of deoxyribose and the deoxynucleosides were used instead of the crystalline volumes and volumes of solution of ribose and the nucleosides. The standard molal volumes listed in [Tables 12–17](#page-22-0) for the nucleotides and deoxynucleotides were used in conjunction with the corresponding values of ω given in these tables to estimate the values of a_1 , a_2 , a_3 , and a_4 shown in the tables for the nucleotides and deoxynucleotides using Eqs. [\(14\),](#page-4-0) [\(20\), \(25\), and \(104\), \(105\), \(106\)](#page-4-0).

6. Uncertainties

Because so few pertinent experimental data are available in the literature, it is difficult to assess the uncertainties associated with values of the standard molal thermodynamic properties and the revised HKF equations of state parameters adopted in the present study for aqueous nucleic-acid bases, nucleosides, and nucleotides. However, the uncertainties associated with $\Delta G^{\circ}_{f(aq)}$, $\Delta H^{\circ}_{f(aq)}$, $S^{\circ}_{(aq)}$, $C^{\circ}_{P(aq)}$ and $V^{\circ}_{(aq)}$ at 25 °C and 1 bar and the ω , a_1 , a_2 , a_3 , a_4 , c_1 , and c_2 parameters of the species considered above can be estimated by propagating the uncertainties associated with the experimental data used to generate values for these properties and parameters.

6.1. Nucleic-acid bases and nucleosides

6.1.1. ΔG_f° , ΔH_f° , S° , C_p° and V° at 25 $^{\circ}$ C and 1 bar

The uncertainties associated with the values of $\Delta G_{f(aq)}^{\circ}$, $\Delta H_{f(aq)}^{\circ}$, and $S_{(aq)}^{\circ}$ adopted in the present study for aqueous adenine, guanine, and adenosine at 25° C and 1 bar can be assessed by combining the uncertainties associated with the experimentally determined values of $\Delta G^{\circ}_{f(aq)}$, $\Delta H^{\circ}_{f(aq)}$, and $S^{\circ}_{(aq)}$ in the crystalline state with those associated with ΔG_{sol}° , ΔH_{sol}° , and ΔS_{sol}° for these compounds. Uncertainties characterized in this manner for $\Delta G^{\circ}_{f(aq)}$ and $\Delta H^{\circ}_{f(aq)}$ for adenine, guanine, and adenosine are approximately ± 500 cal mol⁻¹, and ± 3 cal mol⁻¹ K⁻¹ for $S^{\circ}_{(aq)}$. In the absence of similar experimentally determined calorimetric data for the other nucleic-acid bases and nucleosides, the uncertainties associated with the values of $\Delta G_{f(aq)}^{\circ}$, $\Delta H_{f(aq)}^{\circ}$, and $S_{(aq)}^{\circ}$ for adenine, guanine, and adenosine can be considered to represent minimum values of the uncertainties associated with the values of $\Delta G^{\circ}_{f(aq)}$, $\Delta H^{\circ}_{f(aq)}$, and $S^{\circ}_{(aq)}$ for the other nucleic-acid bases and nucleosides.

The uncertainties associated with the values of $C_{P(aq)}^{\circ}$ and $V^{\circ}_{(aq)}$ at 25 °C and 1 bar for most of the nucleic-acid bases and nucleosides can be assessed by comparing the values of these properties reported in the literature (see Appendix A [Tables A.2 and A.4](#page-36-0)) . The resulting uncertainties associated with values of $C_{P(aq)}^{\circ}$ and $V_{(aq)}^{\circ}$ at 25 °C and 1 bar for nucleic-acid bases and nucleosides are \leq ±3 cal mol⁻¹ K⁻¹ and \leq 1 cm³ mol⁻¹, respectively.

6.1.2. Revised HKF equations of state parameters

Maximum uncertainties associated with the revised HKF equations of state non-solvation parameters can be assessed by taking into account the scatter of the experimental data reported in the literature for values of $C_{P(aq)}^{\circ}$ and $V_{(aq)}^{\circ}$ and $\kappa_{(aq)}^{\circ}$ as a function of $(T - \Theta)^{-2}$ and $(T - \Theta)^{-1}$, respectively.

Because the values of c_1 and c_2 for cytosine, thymine, uracil, adenosine, cytidine, thymidine, uridine, and 2-deoxycytidine correspond to the intercepts and slopes, respectively, of the straight lines in [Figs. 2](#page-11-0) (nucleic-acid bases) and [10](#page-17-0) (nucleosides), the uncertainties associated with these parameters can be assessed by fitting alternate lines to the values of $\Delta C_{p,n}^{\circ}$ in these figures, and determining the corresponding slopes and intercepts. The intercepts and slopes of other reasonable lines that could be fitted to the values of $\Delta C_{P,n}^{\circ}$ in [Figs.](#page-11-0) [2 and 10](#page-11-0) only differ from the ones adopted in the present study by $\leq 5\%$ and 10%, respectively. The uncertainties in values of c_1 and c_2 for adenine, guanine, guanosine, and the deoxynucleotides other than deoxycytidine are inherently larger than those for the nucleic-acid bases and nucleosides for which experimental values of $C_{P(aq)}^{\circ}$ as a function of temperature are available in the literature.

Analogous to c_1 and c_2 , the relative uncertainties associated with the values of a_2 and a_4 for adenine, cytosine, thymine, uracil, adenosine, cytidine, guanosine, thymidine, uridine, deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxyuridine correspond to the intercepts and slopes, respectively, of the straight lines fitted to values of $\Delta \kappa_{T,n}^{\circ}$ as shown in [Figs. 6](#page-14-0) (nucleic-acid bases) and [14](#page-20-0) (nucleosides). The uncertainties for the values of these parameters can be assessed by determining the maximum and minimum slopes and intercepts of the lines reasonably fitted to values of $\Delta \kappa_{T,n}^{\circ}$ in these figures. The maximum and minimum intercepts and slopes of the lines that could be fitted to the values of $\Delta \kappa_{T,n}^{\circ}$ in [Figs. 6 and](#page-14-0) [14](#page-14-0) only differ from the ones adopted in the current study by $\leq 15\%$ and 30%, respectively. How this effects $\Delta G_{f(aq)}^{\circ}$ as a function of temperature and pressure is discussed below.

The uncertainties associated with values of a_1 and a_3 for adenine, cytosine, thymine, uracil, adenosine, cytidine, guanosine, thymidine, uridine, deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxyuridine can be assessed by the possible variations in the intercepts and slopes, respectively, fitted to the straight lines in [Figs. 5](#page-13-0) (nucleic-acid bases) and [13](#page-19-0) (nucleosides). The intercepts and slopes in these lines correspond to values of the σ and ξ parameters, respectively, which are in turn related to values of the a_1 and a_2 and a_3 and a_4 , respectively, through Eqs. [\(20\) and \(21\).](#page-4-0) The uncertainties associated with the σ and ξ parameters, and thus the a_1 and a_3 parameters, can be assessed by determining the maximum and minimum slopes and intercepts of reasonable lines fitted to values of ΔV_n° in these figures. The intercepts and slopes of these lines in [Figs. 5 and 13](#page-13-0) only differ from the ones adopted in the current study by $\leq 10\%$ and 15%, respectively.

Values of the uncertainties associated with values of a_1 , a_2 , a_3 , and a_4 for guanine and deoxythymidine are inherently larger than those for the nucleic-acid bases and nucleosides for which experimental values of $\kappa^{\circ}_{T(aq)}$ (or those that can be calculated from experimentally available values of κ_S°) and $V_{(aq)}^{\circ}$ as a function of temperature are available in the literature. But because values of a_1 , a_2 , a_3 , and a_4 for guanine and deoxythymidine were generated using correlations of these parameters for nucleic-acid bases and nucleosides for which experimental values of $\kappa_{T(aq)}^{\circ}$ and $V_{(aq)}^{\circ}$ as a function of temperature are available in the literature, the uncertainties for these species is not expected to significantly exceed those of the other nucleic-acid basis and nucleosides considered in the present study.

Uncertainties associated with the correlation algorithm from which values of the revised HKF non-solvation ω parameter for the nucleic-acid bases were calculated were not reported in the study from which they were taken [\(Plyasunov and Shock, 2001](#page-42-0)). Because the ω parameters for the nucleosides were estimated from an additivity algorithm using values of ω for the nucleic-acid bases, the uncertainties in the non-solvation ω parameters for the nucleosides are also difficult to assess.

The uncertainties associated with the values of $\Delta G_{f(aq)}^{\circ}$, $\Delta H^{\circ}_{f(aq)}$, $S^{\circ}_{(aq)}$, $C^{\circ}_{P(aq)}$, and $V^{\circ}_{(aq)}$ for nucleic-acid bases and nucleosides at elevated temperatures and pressures can be calculated by taking into account the maximum additive uncertainties of the equations of state parameters that have been assessed above. For example, using the maximum error in the equation of state parameters for cytosine as a function of temperature and as a function of temperature and pressure, the uncertainties associated with values of the Gibbs energy for this species under different conditions can be assessed. The maximum uncertainty in the HKF parameters for cytosine combine to yield an uncertainty of ± 50 cal mol⁻¹ to the value of Δ G° for cytosine at 150 °C and 5 bar. At 150 °C and 800 bar, the uncertainties increases to nearly ± 400 cal mol⁻¹. Combining the uncertainty in $\Delta G_{f(aq)}^{\circ}$ for cytosine at 25° C and 1 bar with these values results in a total maximum uncertainty on the order of ± 1 kcal mol⁻¹ at elevated temperatures and pressures.

6.2. Nucleotides

Because so few experimental thermodynamic data are available in the literature for the nucleotides considered in the present study, the relative uncertainties associated with values of $\Delta G^{\circ}_{f(aq)}$, $\Delta H^{\circ}_{f(aq)}$, $S^{\circ}_{(aq)}$, $C^{\circ}_{P(aq)}$, and $V^{\circ}_{(aq)}$ and the revised HKF equations of state parameters adopted in the present study cannot be easily determined. Nonetheless, uncertainties associated with the corresponding thermodynamic properties and parameters of the constituent nucleosides that comprise the nucleotides can be used to estimate the relative uncertainties associated with

these nucleotides. For example, if the relative uncertainties associated with the standard molal thermodynamic properties at 25° C and 1 bar and the HKF equations of state parameters for the nucleosides considered above can be taken to be of the same magnitude for those of the nucleotides, then the maximum uncertainty of ΔG° for HADP²⁻ at 150 °C and 5 bar is 1200 cal mol⁻¹ and at 150° C and 800 bar it is around 700 cal;mol⁻¹. See [Shock and Helgeson \(1988\) and Shock et al. \(1989\)](#page-43-0) for a detailed discussion of how uncertainties in values of the revised HKF parameters are propagated as a function of temperature and pressure.

7. Concluding remarks

The equations of state parameters and standard molal thermodynamic properties of aqueous nucleic-acid bases, nucleosides, and nucleotides computed above make it possible to quantify the thermodynamic properties of a wide variety of reactions among these and other aqueous species at both ambient and elevated temperatures and pressures. Calculations of this kind can be used to guide experimental studies of the relative stabilities of aqueous biomolecules by identifying possible metastable equilibrium states and providing a basis for calculating the chemical affinities (A) of a wide variety of biogeochemical reactions. Values of A are calculated using [\(Kondepudi](#page-42-0) [and Prigogine, 1998\)](#page-42-0)

$$
A = RT \ln\left(\frac{K}{Q}\right),\tag{120}
$$

where *stands for the gas constant,* $*T*$ *represents the abso*lute temperature in Kelvin, K refers the equilibrium constant, and Q denotes the reaction quotient given by

$$
Q = \prod_i a_i^{v_i}.\tag{121}
$$

Where a_i and v_i denote the activity and stoichiometric reaction coefficient, respectively, for the ith species in the reaction.

The thermodynamics of fundamental biochemical processes such as the energetics of the ATP-ADP cycle, the polymerization of nucleotides into nucleic acids (i.e., RNA and DNA), and the de novo synthesis of nucleotides can be generalized for extremophiles and mesophiles alike. For instance, the generic (unbalanced) reaction summarizing the synthesis of ATP from ADP and phosphate, P_i , which is usually represented in the biochemical literature by

$$
ADP + P_i \rightarrow ATP,\tag{122}
$$

can be rendered more explicit by writing

$$
H_{y}ADP^{(y-3)} + H_{n}PO_{4}^{(n-3)} + (2 + x - y - n)H^{+}
$$

\n
$$
\rightarrow H_{x}ATP^{(x-4)} + H_{2}O,
$$
\n(123)

where the acronyms ATP, ADP, and P_i in Reaction [\(122\)](#page-34-0) stand for the sum of the variously charged and complexed aqueous adenosine triphosphates, adenosine diphosphates, and monophosphate species, respectively, and y, n , and x in Reaction [\(123\)](#page-34-0) refer to the number of moles of H bonded per mole of the respective reference species.⁵ Speciation calculations can now be carried out to determine which ADP and ATP species predominate at a given pH, temperature, and pressure so that the energetics of Reaction [\(123\)](#page-34-0) can be calculated for a range of different environments. Similarly, the thermodynamic properties and parameters reported in the present communication contribute to quantifying the energetics of the polymerization of nucleotides into nucleic acids at high and low temperatures and pressures. This can be done by first writing a polymerization reaction such as

$$
\sum_{i} n \text{NMP}_i \to \text{RNA} + (n-1) \text{H}_2\text{O},\tag{124}
$$

which represents the sequence of dehydration reactions that characterizes the synthesis of RNA from nucleotide monophosphates. Although the thermodynamic properties of strands of RNA have not been reported in the literature, an additivity algorithm using the reaction properties reported above could be used in a first approximation to calculate those of short strands of RNA. Similarly, the deoxy-equivalent of RNA could be taken into account as well by replacing NMP_i with $dNMP_i$ and RNA with DNA.

The thermodynamic properties generated in the present study can also be used to characterize quantitatively part of the energetic cost of living in a hydrothermal environment by examining the thermodynamic potential of synthesizing nucleotides de novo (see [Amend and](#page-41-0) [Shock, 1998\)](#page-41-0). For example, the chemical affinity of the synthesis reaction for $AMP²⁻ (C₁₀H₁₂N₅O₇P²⁻)$ at a given pressure and temperature can be quantified by calculating $\ln K$ for

$$
10CO_{2(aq)} + 5NH_{4}^{+} + HPO_{4}^{2-} + 15H_{2(aq)}
$$

\n
$$
\rightarrow C_{10}H_{12}N_{5}O_{7}P^{2-} + 5H^{+} + 17H_{2}O,
$$
\n(125)

and combining it in Eq. (120) with values of Q computed from the activities of $CO_{2(aq)}$, NH⁺₄, HPO₄²⁻, H_{2(aq)}, C_{10} H₁₂N₅O₇P²⁻, and H⁺ in the hydrothermal fluid. Furthermore, quantifying reactions like Reaction 125 can help to constrain under what conditions the nucleic-acid bases, nucleosides, and nucleotides could form abiotically.

Assessing the accuracy of the estimation strategies employed to compute the standard molal thermodynamic properties and revised HKF equations of state parameters for the species considered in the present study requires more calorimetric, densimetric, and sound velocity data. Of particular interest in this regard is the experimental determination of the standard molal heat capacities and volumes of nucleotides at temperatures in excess of 25° C and preferably beyond 100° C. In the interim, the standard molal thermodynamic properties and revised HKF equations of state parameters generated in the present study from the group additivty algorithms and reference model compounds summarized above provide a provisional comprehensive and internally consistent frame of reference for thermodynamic investigation of biogeochemical systems at elevated temperatures and pressures. The equations of state parameters and standard molal thermodynamic properties at 25° C and 1 bar generated in the present study are being incorporated into a biogeochemical analog of the SUPCRT92 software package called OBIGT (OrganoBioGeoTherm). This software package will be available at no cost from affinity.berkeley.edu at the Laboratory of Theoretical Geochemistry and Biogeochemistry (otherwise known as Prediction Central) at the University of California, Berkeley.

Acknowledgments

The research reported above represents part of the senior author's Ph.D. dissertation at the University of California, Berkeley. The research was supported by the National Science Foundation (NSF Grants EAR-9613753 and EAR-0309829), the Department of Energy (DOE Grants DE-FG03-85ER13419 and DE-FG02- 03ER15418), the ARCS Foundation, and the Graduate Opportunity Program and the Committee on Research at the University of California, Berkeley. This contribution was substantially improved by constructive reviews by Laurent Richard, Phil Neuhoff and an anonymous reviewer. Additionally, we are indebted to Jeff Dick for helpful discussions, encouragement, and assistance during the course of this study, and to Doug Clark and Bill Berry for serving on DEL's Ph.D. dissertation committee. Furthermore, DEL would like to thank Don Depaolo, Mark Bukowinski, John Baross, and Doug Clark for serving on his oral examination committee. We are especially grateful to Juliana Boerio-Goates for sharing with us the results of her heat capacity data for crystalline ribose in advance of publication. Finally, we would like to thank Fred Mackenzie, Chris Measures, and the Department of Oceanography at the University of Hawaii, Manoa for their hospitality and support during HCH's 2002-2003 sabbatical year.

Associate editor: Jan P. Amend

Appendix A. Standard molal thermodynamic data retrieved from the literature

See [Tables A.1–A.10, and A.11.](#page-36-0)

 5 The reference basis species for ADP and ATP adopted here are ADP^{3–} and ATP^{4-} , which correspond to $C_{10}H_{12}N_5O_{10}P_2^{3-}$ and $C_{10}H_{12}N_5O_{13}P_3^{4-}$, respectively.

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

^c Calculated from $\Delta G_{fg}^{\circ} = \Delta G_{fer}^{\circ} + \Delta G_{sub}$. The values of ΔG_{fer}° and ΔG_{sub} are taken from [Tables 3 and 11.](#page-7-0)

^d Calculated from $\Delta H_{fg}^{\circ} = \Delta H_{fer}^{\circ} + \Delta H_{sub}$. The values of ΔH_{fer}° and ΔH_{sub} are taken from [Tables 3 and 11](#page-7-0).

^e Calculated using Eq. [\(42\).](#page-8-0)

^f Sabbah (1980).

^g [Nabavian et al. \(1977\).](#page-42-0)

Table A.2

Values of standard molal heat capacities $(C_p^{\circ})^a$ for aqueous nucleic-acid bases, nucleosides, and sugars reported in the literature for temperatures at and above 25° C at 1 bar

Compound	Temperature (K)							
	298.15	308	318	328	333	363		
Adenine	54.64^b , 57.8^c							
Cytosine	$42.1d$, 41.1 ^d ,		47.3^d 51.9 ^d 55.9 ^d					
	42.1 ^d , 49.71 ^d							
Thymine	$52.6^{\circ}, 57.4^{\circ}$		$61.7d$ 66.2 ^d , 70.3 ^d 69.3 ^e 82.0 ^e					
	57.6^d , 57.1^d ,		59.8°					
	61.2^d							
Uracil	36.6^d , 32.7^e		$39.7d$ 43.0 ^d , 46.4 ^d 49.2 ^e 63.1 ^e					
			39.9 ^e					
Adenosine	121 ^d	128 ^d	135 ^d	142 ^d				
Cytidine	96.6^d , 93^d , 95.4^d		103^d 109^d 113^d					
Thymidine	$111d$, $112d$		116^d 122^d 126^d					
Uridine	95.4 ^d , 96.1 ^d , 95.1 ^d		102^d 10^d	113 ^d				
2'-Deoxycytidine	$87.2^{\rm d}$		93.2^d 99.4 ^d	104 ^d				
Ribose	$65.97^{\rm f}$, 70.3 ^{g,h} ,		81.3^k 93.0 ^k					
	$68.1^{\rm i}, 65.0^{\rm j},$							
	67.7^{k}							
2'-Deoxyribose	$75.6^{g,h}$							

^a cal K^{-1} mol⁻¹.

^b [Zielenkiewicz et al. \(1994b\)](#page-44-0).

^c [Kishore and Ahluwalia \(1990a\).](#page-42-0)

d [Patel and Kishore \(1995\).](#page-42-0)
 [Szeminska et al. \(1979\)](#page-43-0).

^f [Goldberg and Tewari \(1989\).](#page-41-0)

^g 303 K.

h [Jasra and Ahluwalia \(1982\)](#page-42-0).

ⁱ [Morel et al. \(1986\)](#page-42-0).
^j [Galema et al. \(1993\).](#page-41-0)

^k [Banipal et al. \(1997\).](#page-41-0)

Table A.3

Values of standard molal expansibilities $(E^{\circ})^a$ for aqueous nucleic-acid bases, nucleosides, and sugars reported in the literature for a range of temperatures (K) at 1 bar

Compound	Temperature (K)							
	291	298.15	313	328				
Adenine	0.27^{b}	0.23 ^b	0.13^{b}	0.06 ^b				
Cytosine	0.11 ^b	0.10 ^b	0.08 ^b	0.06 ^b				
Thymine	0.24 ^b	0.20 ^b	0.11 ^b	0.03 ^b				
Uracil	0.21 ^b	0.18^{b}	0.1 ^b	0.02 ^b				
Adenosine	0.19 ^b	0.26° , 0.18°	0.16^{b}	0.13^{b}				
Guanosine	0.36 ^b	0.28^{b}	0.1 ^b	$-0.08^{\rm b}$				
Cytidine	0.15^{b}	0.14^{b}	0.1 ^b	0.07 ^b				
Thymidine	0.14^{b}	0.13^{b}	0.01 ^b	0.07 ^b				
Uridine	$0.15^{\rm b}$	0.13^{b}	0.01 ^b	0.06 ^b				
2'-Deoxyadenosine	0.11^{b}	$0.25^{\circ}, 0.13^{\circ}$	0.18^{b}	$0.22^{\rm b}$				
2'-Deoxyguanosine	0.11 ^b	0.13^{b}	0.17^{b}	0.21 ^b				
2'-Deoxycytidine	0.15^{b}	0.14^{b}	0.1 ^b	0.07 ^b				
2'-Deoxyuridine	$0.2^{\rm b}$	0.17^{b}	0.11 ^b	0.06 ^b				
Ribose		0.12°						
2'-Deoxyribose		0.09 ^c						

 $^{\rm a}$ cm³ mol⁻¹ K⁻¹.

^b [Lee and Chalikian \(2001\)](#page-42-0).

 \textdegree [Buckin et al. \(1989\)](#page-41-0).

Table A.4

Values of standard molal volumes $(V^{\circ})^a$ for aqueous nucleic-acid bases, nucleosides, and sugars reported in the literature for a range of temperatures (K) at 1 bar

Compound	Temperature (K)						
	291	298.15		308 313	328		
Adenine		88.0 ^b 89.3 ^c , 90.4 ^d , 89.6 ^b		92.4^{b}	93.5^{b}		
Cytosine		72.5 ^b 73.3 ^c , 73.6 ^d , 73.15 ^e 73.5 ^b		74.6^{b}	75.8^{b}		
Thymine		$86.3b$ 88.2°, 88.8 ^d , 88.49°, 88.7 ^b		90.1 ^b	91.6^{b}		
Uracil		70.2^b 71.7°, 72.3 ^d , 71.94°, 71.8 ^b		73.6 ^b	74.6^{b}		
Adenosine		169.2^b 171.4 ^d , 171.38 ^e , 170.8 ^f , 170.8 ^b		173 ^b	175.3^{b}		
Guanosine		172.0 ^b 178.2 ^f , 175.4 ^b		177 ^b	177.8^{b}		
Cytidine		152.2 ^b 154.2 ^d , 153.59 ^e ,		155 ^b	156.7 ^b		
		153.5^g , 153.4^b , 153.7^f					
Thymidine		166.4^{b} 168.0 ^d , 167.9 ^e ,		169 ^b	170 ^b		
		167.55^8 , 167.6 ^h					
Uridine		$150.7^{\rm b}$ 152.3 ^d , 152.1 ^e , 151.45 ^g ,			$153.4^{\rm b}$ 154.8 ^b		
		$152.2^{\rm b}$, $151.7^{\rm f}$					
2'-Deoxyadenosine		168.9^b 169.8 ^f , 170.3 ^b		$172^{\rm b}$	175.3^{b}		
2'-Deoxyguanosine		172.0 ^b 173.7 ^f , 173.4 ^b			$175.1^{\rm b}$ 178.3 ^b		
2'-Deoxycytidine		153.0^b 153.4 ^f , 154.0 ^b			$155.8^{\rm b}$ 157.1 ^b		
2'-Deoxyuridine		$149.4^{\rm b}$ 152.2 ^f , 151.9 ^b			$152.7^{\rm b}$ 154.6 ^b		
2'-Deoxythymidine		167.6^{f}					
Ribose		95.1 ^f , 95.3 ^h , 95.2 ^{i,j} ,		96.111 , $96.5j$ 97.081 ,			
		$95.56^{k}, 95.26^{l}$	97.4^{j}				
2'-Deoxyribose		$94.7^{\rm f}$, $93.5^{\rm k}$					

 $^{\rm a}$ cm³ mol⁻¹.

^b [Lee and Chalikian \(2001\)](#page-42-0).

^c [Buckin \(1988\).](#page-41-0)

 d [Kishore et al. \(1989\)](#page-42-0).

 e^e [Patel and Kishore \(1995\).](#page-42-0)
 f^f [Buckin et al. \(1989\)](#page-41-0).

^g [Høiland et al. \(1984\)](#page-42-0).

^h [Franks et al. \(1972\)](#page-41-0).

ⁱ [Høiland and Holvik \(1978\)](#page-42-0).
^j [Paljk et al. \(1990\).](#page-42-0)

^k [Jasra and Ahluwalia \(1982\)](#page-42-0).

 $¹$ [Banipal et al. \(1997\)](#page-41-0).</sup>

Table A.7

Table A.5 Values of standard molal compressibilities $(\kappa^{\circ})^a \times 10^4$ for aqueous nucleicacid bases, nucleosides, and sugars reported in the literature for a range of

temperatures (K) at 1 bar Compound Temperature (K) 291 298.15 313 328 Adenine -1.8^b -4.6^c , 6.2^b
Cytosine -16.8^b -11.8^c . -1 14.7^b 15.4^b
-3.0^b 1.5^b Cytosine -16.8^b -11.8^c , -10.9^b -3.0^b 1.5^b Thymine -7.53^b
Uracil -8.24^b $-1.4^{\circ},0.34^{\circ}$ 8.4° 10°
 $-3.1^{\circ},-1.0^{\circ}$ 4.9° 7.3° -8.24^b
 -9.31^b $-3.1^{\circ}, -1.0^{\circ}$ 4.9° 7.3°
 $3.1^{\circ}, 0.41^{\circ}$ 14° 21.7° Adenosine -9.31
Guanosine -11^b 14^b 14^b 21.7^b
-1.26^d, -1.76^b 3.2^b -4.4^b Guanosine -11^b
Cytidine -19^b -1.26^d , -1.76^b 3.2^b -4.4^b
-13.5^e, -12.3^d , -10.3^b -1.4^b 3.8^b Cytidine -19^b
Thymidine -5.5^b $, -12.3^d, -10.3^b$ -1.4^b 3.8^b Thymidine -5 .
Uridine -2^b 0.2^e, 0.353^b 9.2^b 22^b
-12.7^e, -9.5^d, -7.10^b -2.7^b 5.9^b Uridine -2^{b} -12.7^{e} , -9.5^{d} -7.10^{b} -2.7^{b} 5.9^b
21.6^b 36.9^b 2^{\prime} -Deoxyadenosine $-10.4^{\rm b}$ 9.9^d 9.9^d , 6.32^b 2'-Deoxyguanosine -7.4^b -1.6^d , -0.794^b 12^b 28^b 2'-Deoxycytidine -6.2^b -1.5^d $, -0.097^b$ 9.4^b 15.3^b $2'$ -Deoxyuridine 3.26^d 3.26^d, 3.10^b 11^b 16.4^b 2^{\prime} -Deoxythymidine 2.4^d Ribose -8.03^d , -8.93^f

 a cm³ mol⁻¹ bar⁻¹. [Lee and Chalikian \(2001\).](#page-42-0)

 $2'$ -Deoxyribose -1.8^d

[Buckin \(1988\)](#page-41-0).

 d [Buckin et al. \(1989\)](#page-41-0).

^e [Høiland et al. \(1984\).](#page-42-0)
^f [Franks et al. \(1972\)](#page-41-0).

Table A.6

Summary of standard molal thermodynamic properties of sublimation at 25 C and 1 bar reported in the literature for gaseous nucleic-acid bases

 $^{\rm a}$ cal mol⁻¹.

 $\frac{b}{c}$ Calculated from vapor pressure data.

[Zielenkiewicz \(2000\)](#page-44-0).

^d [Zielenkiewicz et al. \(1984\).](#page-43-0)

^e [Yanson et al. \(1974\)](#page-43-0).

[Ferro et al. \(1980\)](#page-41-0).

 $\frac{g}{h}$ [Zielenkiewicz et al. \(1998\).](#page-43-0)

h Sabbah (1980).

[Burkinshaw and Mortimer \(1984\)](#page-41-0).

^j [Zielenkiewicz \(1995\)](#page-43-0).

- [Nabavian et al. \(1977\)](#page-42-0).
- ¹ [Teplitsky et al. \(1980\).](#page-43-0) ^m [Bardi et al. \(1980\).](#page-41-0)
-

Summary of values of ΔG_f° , ΔH_f° , S° , C_p° , and V° at 25 °C and 1 bar reported in the literature for selected crystalline nucleic-acid bases, sugars, and nucleosides

Compound Formula		$\Delta G_f^{\circ a}$	$\Delta H_{f}^{\circ}{}^{a}$	$S^{\circ b}$	$C_P^{\circ b}$	$V^{\circ c}$
Purines						
Adenine	$C_5H_5N_5$	$71860^{\rm d}$			23160^e 36.09 ^f 35.21 ^f ,	91.1 ^e
					34.21 ^f	
Guanine	$C_5H_5N_5O$		11402^d -43953 ^g 38.29 ^f 37.51 ^f ,			
					$38.41^{\rm h}$	
Pyrimidines						
Cytosine	$C_4H_5N_3O$		-52890^1		31.69 ^f	
Thymine	$C_5H_6N_2O_2$		-110612 ^j		35.90 ^f	86.68^{k}
Uracil	$C_4H_4N_2O_2$		$-101400i$		28.9 ¹	70.5 ^k
			-102667			
<i>Monosaccharides</i>						
Ribose	$C_5H_{10}O_5$		$-177660^d - 250294^m$ 41.99 ⁿ 44.70 ⁿ			94.42°
Deoxyribose $C_5H_{10}O_4$			$-207770^{\rm m}$			84.36°
<i>Nucleoside</i>						
Adenosine	$C_{10}H_{13}N_5O_4$ -48850 ^p -156200 ^p 71.36 ^p 69.36 ^p					173.53 ^p

cal mol^{-1}.

 $\frac{a}{b}$ cal $\frac{1}{b}$ mol⁻¹.

 \rm° cm³ mol⁻¹.

^d Calculated from ΔH_f° and S° using values of S° of the elements taken from [Wagman et al. \(1982\)](#page-43-0).

^e [Kirklin and Domalski \(1983\)](#page-42-0).

^f [Domalski and Hearing \(1996\)](#page-41-0).
^g Kilday (1981).

 h [Cox and Pilcher \(1970\).](#page-41-0)

ⁱ [Wilson et al. \(1979\)](#page-43-0).

^j [Nabavian et al. \(1977\)](#page-42-0).

^k Calculated from density from [Nabavian et al. \(1977\)](#page-42-0) and molecular weight.
 $\frac{1}{1}$ Kilday (1978d).

 m [Colbert et al. \(1987\).](#page-41-0)

ⁿ Personal communication from J. Boerio-Goates.

^o Calculated from density data in [Boyer et al. \(2003\)](#page-41-0) and molecular weight.

^p [Boerio-Goates et al. \(2001\)](#page-41-0).

Table A.8

Summary of values of ΔG_{sol}° and ΔH_{sol}° at 25 °C (unless otherwise noted) and 1 bar reported in the literature for selected crystalline compounds

Compound	Formula	$\Delta G_{\rm sol}^{\rm o}{}^{\rm a}$	$\Delta H_{sol}^{\circ}^{\circ}$ ^a
Purines			
Adenine	$C_5H_5N_5$	$3000b$, $1300b,c$, $5170d,e$	8000 ^d , 7070 ^{f,e} , 8150 ^g
		2810^8 , 2920^h , 2900^i	
Guanine	$C_5H_5N_5O$	$4600^{\rm d}$, $6000^{\rm g}$	6500 ^{$\,$} , 11,800 ^g
Pyrimidines			
Cytosine	$C_4H_5N_3O$	1610^k , 1600^b , 3750^f ^e , 1620 ⁱ	5450^1 , 7676 ^{f,e} , 6500 ^k
Thymine	$C_5H_6N_2O_2$	$2120^{\rm m}$, $2000^{\rm b}$, $2110^{\rm i}$	5520^n , 5810^n , 5430^n , $5813^{\rm m}$
Uracil	$C_4H_4N_2O_2$	4430 ^{f,e} , 2000 ^b	6390° , 7000 ⁿ , 7050 ^p , 6700 ^{f,e}
Nucleosides			
Guanosine		$C_{10}H_{13}N_5O_5$ 3740 ^h , 3000 ^{b,q} , 1700 ^{b,c}	
Adenosine		$C_{10}H_{13}N_5O_4$ 2340 ^h , 2350 ⁱ 2364 ^r	7710 ^s
Deoxyadenosine $C_{10}H_{13}N_5O_3$ 2140 ^h , 2160 ⁱ			
Monosaccharides			
Ribose	$C_5H_{10}O_5$	-2079 ^t	3184^{u} , 3117^{v}
Deoxyribose	$C_5H_{10}O_4$		2900^{u} , 2565^{v} , $2961^{\mathrm{v,w}}$ (continued on next page)

Other

Table A.8 (continued)

 W At

 $x \, A$

Table A.9

Summary of the standard molal thermodynamic properties at 25 °C and 1 bar and equations of state parameters for aqueous mono- and diphosphates

The monophosphate properties and parameters are those given in SUPCRT92 [\(Johnson et al., 1992\)](#page-42-0). All diphosphate properties and parameters were taken from [Shock et al.](#page-43-0) (1997).

 $\frac{a}{2}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

 $\frac{c}{d}$ cm³ mol⁻¹.

 $\text{cal} \text{ mol}^{-1} \text{ bar}^{-1}$ \int_{e}^{α} cal mol⁻¹ bar⁻¹.

e cal K mol⁻¹ bar⁻¹.

Table A.10

Standard molal thermodynamic properties of reaction at 25 °C and 1 bar reported in the literature for selected phosphorylation reactions

 a cal mol⁻¹.

 $\frac{b}{c}$ cal K⁻¹ mol⁻¹.
^c Tewari et al. (1988).

^d [Goldberg and Tewari \(1994\).](#page-41-0)

^e [Alberty and Goldberg \(1992\).](#page-40-0)

^f [Goldberg and Tewari \(1991\).](#page-41-0)

[a](#page-39-0) $\Delta S_r^{\circ k}$

33.[4c](#page-39-0) , $35.1^{\rm f}$, 3[2g](#page-39-0)

3.[8f](#page-39-0) , 3.1^g

37.[4c](#page-39-0) , 37.[5f](#page-39-0) , 35.[7g](#page-39-0)

 $6.0^{\rm f}$, 4.[4g](#page-39-0)

40.[7c](#page-39-0) , 39.[9f](#page-39-0) , 40^g

850[c](#page-39-0) , $1290^{\rm f}$ $1290^{\rm f}$ $1290^{\rm f}$, 840[g](#page-39-0)

 -4300^f -4300^f -4300^f -4300^g -4300^g -4300^g

1370^{[c](#page-39-0)}, 1300[f](#page-39-0) , 840[g](#page-39-0)

 -4210^{f} -4210^{f} -4210^{f} , -4400^g -4400^g -4400^g

1680^{[c](#page-39-0)}, 1500[f](#page-39-0) , 1400^g 1400^g 1400^g

Table A.11 (continued)

Reaction	$\Delta G_v^{\circ a}$	$\Delta H_r^{\circ a}$	$\Delta S_{\cdot}^{\circ b}$
$GTP^{4-} + H^+ \leftrightarrow HGTP^{3-}$	-10430°	1750°	40.8°
$CTP^{4-} + H^+ \leftrightarrow + HCTP^{3-}$	-10430°	1750 ^c	40.8 ^c
$UTP^{4-} + H^+ \leftrightarrow + HUTP^{3-}$	-10350°	2020°	41.4°
$HATP^{3-} + H^+ \leftrightarrow {}^+H_2ATP^{3-}$	$-6380d$,	$-3560^{\rm f}$,	$9.6^{\rm f}$.
	-6200°	-3900°	7.6 ^g
$H_2ATP^{3-} + H^+ \leftrightarrow H_3ATP^{2-}$	-2700°	1500 ^g	14 ^g

 $^{\rm a}$ cal mol⁻¹.

 b cal K⁻¹ mol⁻¹.

- ^c [Phillips et al. \(1965\)](#page-42-0). ^d Calculated from ΔH_r° and ΔS_r°
- ^a Calculated from ΔH_{r}° and ΔS_{r}° reported in [Goldberg and Tewari \(1991\)](#page-41-0).
^e Calculated from ΔH_{r}° and ΔS_{r}° reported in Goldberg and Tewari (1991).
^f Goldberg and Tewari (1991).
-

^g [Oscarson et al. \(1995\).](#page-42-0)

Appendix B. Calculation of the revised HKF equations of state parameters and standard molal thermodynamic properties of miscellaneous species

B.1. Ribose-5-phosphate²⁻

Values of c_1 and c_2 for $R5P^2$ were generated in the present study from experimentally derived values of C_F° for this species as a function of temperature using Eqs. (13) and (24), together with a value of ω estimated from ([Shock and Helgeson, 1988](#page-43-0))

$$
\omega = 3.2134 - 0.015161(S^{\circ}). \tag{B.1}
$$

As in the case of other aqueous species considered above in Section [3.2.2](#page-11-0) and elsewhere, the values of c_1 and c_2 for $R5P²$ correspond to the intercept and slope of the straight line depicted in [Fig 18](#page-29-0)b. The symbols shown in this figure represent values of $\Delta C_{P,n}^{\circ}$ for $R5P^{2-}$ calculated from values of C_p° using Eq. [\(24\).](#page-4-0) Due to the dearth of experimental heat capacity measurements for $R5P^{2-}$, the values of C_P° required to evaluate Eq. [\(24\)](#page-4-0) were calculated as finite difference derivatives of experimental values of ΔH° for $R5P^{2-}$ at different temperatures at 1 bar using Eq. [\(99\).](#page-27-0) The values of ΔH° for $R5P^{2-}$ at the different temperatures were computed using corresponding values of ΔH° for HPO_{4}^{2-} , Ri*bose*, and $H₂O$ to evaluate

$$
\Delta H^{\circ}_{R5P^2} = \Delta H^{\circ}_{\text{HPO}_4^{2-}} + \Delta H^{\circ}_{\text{ribose}} - \Delta H^{\circ}_{\text{H}_2\text{O}} + \Delta H^{\circ}_{\text{r}}.\tag{B.2}
$$

Fig. B.2. $\Delta C_{P,n}$ for citric acid_(aq) as a function of $10^4/(T-\Theta)^2$ at 1 bar calculated in the manner described in the figure caption for Fig. B.1 using values of C_P reported by [Patterson and Woolley \(2001\)](#page-42-0) at 0.015 molal and infinite dilution, respectively (see text). The symbols denote the calculated values of $\Delta C_{P,n}$ and the straight lines represent fits of Eq. [\(17\)](#page-4-0) to the data.

Fig. B.1. $\Delta C_{P,n}^{\circ}$ for citric acid_(aq), H₂citrate⁻, Hcitrate²⁻, and citrate³⁻ as a function of $10^4/(T-\Theta)^2$ at 1 bar. The symbols denote values of $\Delta C_{P,n}^{\circ}$ computed from Eqs. (17) and (24) using values of ω and C_p° taken from [Table B.1](#page-40-0) and [Patterson and Woolley \(2001\)](#page-42-0), respectively. The regression lines represent fits of Eq. (17) to the data.

Table B.1

Summary of the standard molal thermodynamic properties at 25 °C and 1 bar and equations of state parameters for aqueous citric acid and deprotonated citrate species

Compound	Formula	$\Delta G_{c}^{\circ\, {\bf a}}$	$\Delta H_{\rm r}^{\rm o}$ ^a	\sim	\sim \circ ◡»	L^{∞} c,d		$10 - 4$ c_2 ⁻	$\omega^a \times 10^{-5}$
Citric $\text{acid}_{(q)}$	$C_6H_8O_7$	-297180 ^t	-364527°	78.89 ^h	112.98	73.47	96.43	-11.57	-0.06
Citrate ^{1–}	$C_6H_7O_7^-$	-292912 ¹	-363530^1	67.92 ¹	102.48	47.04	89.40	-14.12	1.50
Citrate ^{2–}	$C_6H_6O_7^{2-}$	-286417	-362947 ¹	48.09 ¹	91.08		73.14	-21.06	2.48
Citrate ^{3–}	$C_6H_5O_7^{3-}$	$-277690^{f,i}$	-363750 ¹	16.13^{1}	74.08	-43.16	31.50	-24.41	2.75

 a cal mol⁻¹.

 $\frac{a}{b}$ cal $\frac{1}{b}$ mol⁻¹.

 \rm^c cm³ mol⁻¹.

^d [Patterson and Woolley \(2001\)](#page-42-0).

 $^{\circ}$ cal K⁻² mol⁻¹.

 f [Evans et al. \(1962\).](#page-41-0)</sup>

^g Calculated from ΔH_{for}° and ΔH_{sol}° taken from [Table 3](#page-7-0) and an average of values from [Apelblat \(1986\)](#page-41-0) and [Bald and Barczynska \(1993\).](#page-41-0)
^h Calculated from S_{°c} taken from Table 3 and ΔS_{sol}° which was ca

 \int_{cr}^{∞} taken from [Table 3](#page-7-0) and ΔS_{sol}° which was calculated using ΔG_{sol}° and ΔH_{s}°

¹ Calculated from S_{cr}° taken from Table 3 and ΔS_{sol}° which was calculated using ΔG_{sol}° and ΔH_{sol}° .
ⁱ Calculated using $\Delta \Xi_{circ}^{\circ}$ and values of $\Delta \Xi_{r}^{\circ}$ for the ionization of each specie

The values of ΔH_r° in Eq. [\(B.2\)](#page-39-0) were taken from [Table 21](#page-27-0), but those for the other species shown in this equation were calculated for the different temperatures with the aid of the SUPCRT 92 software package and, in the case of ribose, the equations of state parameters listed in [Table 2.](#page-6-0) The calculated values of c_1 , c_2 , and ω of $R5P^{2-}$ are listed in [Table 2.](#page-6-0)

B.2. Citric acid and citrates

Values of the c_1 , c_2 , and ω parameters for *citric acid* and the first three ionized citrate species, H_2 citrate⁻, Hcitrate²⁻, and citrate³⁻, were calculated by regressing experimental high-temperature values of C_P° for these species with the revised HKF equations of state. Following the proce-dure discussed in Section [3.2.2,](#page-11-0) values of $\Delta C_{p,n}^{\circ}$ for citric acid, H_2 citrate⁻, Hcitrate²⁻, and citrate³⁻ were calculated using values of C_p° taken from [Patterson and Woolley](#page-42-0) [\(2001\)](#page-42-0), together with Eqs. 13, 17, and 24. These values are represented by the symbols shown in the graphs in [Fig. B.1.](#page-39-0) Eq. [\(24\)](#page-4-0) is consistent with the straight lines depicted in the graphs shown in [Fig. B.1](#page-39-0). It follows that the intercepts and slopes of the straight lines in these figures correspond, respectively, to values of c_1 and c_2 for citric acid, H_2 citrate⁻, Hcitrate²⁻, and citrate³⁻. It can be seen in [Figs. B.1a](#page-39-0)–d that the straight lines representing the revised-HKF equations of state are closely consistent with the experimentally derived values of $\Delta C_{P,n}^{\circ}$ as a function of $1/(\overline{T} - \Theta)^2$. The values of ω required to evaluate Eqs. 13, 17, and 24 were assessed by using successive trial values of ω in Eqs. (13) and (24) until the values of $\Delta C_{P,n}^{\circ}$ for temperatures ≥ 25 °C in [Figs. B.1](#page-39-0)a–d plotted on straight lines as a function of of $10^4/(T-\Theta)^2$ at 1 bar, which is consistent with the revised HKF equations of state and corresponding plots for many other aqueous species (e.g., see [Shock \(1993, 1995\);Schulte and Rogers \(2004\)\)](#page-43-0).

The higher temperature values of $\Delta C_{P,n}^{\circ}$ in [Fig. B.1](#page-39-0) were weighted more heavily than the lower temperature values in the calculations required to generate the regression lines in these plots. This was done because the extrapolation procedure that [Patterson and Woolley \(2001\)](#page-42-0) used to calculate values of C_p° at infinite dilution from calorimetric data obtained at higher concentrations disproportionately affects lower temperature values of C_p° more than those at higher temperatures. For example, it can be seen in [Fig. B.2](#page-39-0) that the values of $\Delta C_{P,n}^{\circ}$ computed from the C_P° data measured for 0.015 molal solutions of citric acid are nearly a linear function of $10^4/(T-\Theta)^2$ at the low-temperature end of the plot, whereas those calculated from the values of C_p° at infinite dilution exhibit a larger deviation from linearity. The c_1, c_2 , and ω parameters for citric acid, *citrate*⁻, *citrate*²⁻, $citrate³⁻ calculated in the present study are shown in Table$ B.1, together with the standard molal thermodynamic properties of these species at 25° C and 1 bar.

References

- Adachi, K., Suga, H., Seki, S., 1968. Phase changes in crystalline and glassy-crystalline cyclohexanol. Bull. Chem. Soc. Jpn 41 (5), 1073-1087.
- Adams, M.W.W., 1993. Enzymes and proteins from organisms that grow near and above 100 °C. Annu. Rev. Microbiol. 47, 627-658.
- Adams, M.W.W., Kelly, R.M. (Eds.) 1992. Biocatalysis at Extreme Temperatures: Enzyme Sytems Near and Above 100 °C. ACS Symposium Series, American Chemical Society.
- Ahmed, J.K., Derwish, G.A.W., Kanbour, F.I., 1981. Enthalpies of solution of thymine and uracil in water and dimethylsulfoxide. J. Sol. Chem. 10 (5), 343–350.
- Alberty, R.A., 1969. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J. Biol. Chem. 244 (12), 3290.
- Alberty, R.A., 1998. Change in the binding of hydrogen ions and magnesium ions in the hydrolysis of ATP. Biophys. Chem. 70 (2), 109– 119.
- Alberty, R.A., 2004a. Thermodynamic properties of nucleotide reductase reactions. Biochemistry 43 (30), 9840–9845.
- Alberty, R.A., 2004b. Use of standard Gibbs free energies and standard enthalpies of adenosine(aq) and adenine(aq) in the thermodynamics of enzyme-catalyzed reactions. J. Chem. Thermodyn. 36 (7), 593–601.
- Alberty, R.A., Goldberg, R.N., 1992. Standard thermodynamic formation properties for the adenosine 5'-triphosphate series. Biochemistry 31 (43), 10610–10615.
- Amend, J.P., Helgeson, H.C., 1997a. Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated tem-

peratures and pressures. 1. L-a-amino acids. J. Chem. Soc. Faraday Trans. 93 (10), 1927–1941.

- Amend, J.P., Helgeson, H.C., 1997b. Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures. Geochim. Cosmochim. Acta 61 (1), 11–46.
- Amend, J.P., Helgeson, H.C., 2000. Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures II. Unfolded proteins. Biophys. Chem. 84 (2), 105–136.
- Amend, J.P., Plyasunov, A.V., 2001. Carbohydrates in thermophile metabolism: calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochim. Cosmochim. Acta 65 (21), 3901–3917.
- Amend, J.P., Shock, E.L., 1998. Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281 (5383), 1659–1662.
- Amend, J.P., Shock, E.L., 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25 (2), 175–243.
- Apelblat, A., 1986. Enthalpy of solution of oxalic, succinic, adipic, maleic, malic, tartaric, and citric acids, oxalic-acid dihydrate, and citric-acid monohydrate in water at 298.15 K. J. Chem. Thermodyn. 18 (4), 351– 357.
- Bald, A., Barczynska, J., 1993. Enthalpies of solution of citric-acid in water at 298.15 K—The effect of association processes on thermochemical properties of electrolyte solutions. Thermochim. Acta 222 (1), 33–43.
- Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C., 1997. Partial molar heat capacities and volumes of some mono-, di- and trisaccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans. 93 (1), 81–87.
- Bardi, G., Bencivenni, L., Ferro, D., Martini, B., Nunziantecesaro, S., Teghil, R., 1980. Thermodynamic study of the vaporization of uracil. Thermochim. Acta 40 (2), 275–282.
- Benson, S.W., 1968. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, second ed. John Wiley, New York.
- Boerio-Goates, J., Francis, M.R., Goldberg, R.N., da Silva, M.A.V., da Silva, M.D.M., Tewari, Y.B., 2001. Thermochemistry of adenosine. J. Chem. Thermodyn. 33 (8), 929–947.
- Boyer, J.S., Francis, M.R., Boerio-Goates, J., 2003. Heat-capacity measurements and thermodynamic functions of crystalline adenine: Revised thermodynamic properties of aqueous adenine. J. Chem. Thermodyn. 35 (12), 1917–1928.
- Brock, T.D., 1978. Thermophilic Microorganisms and Life at High Temperatures. Springer, New York.
- Brown, H.D. (Ed.), 1969. Biochemical Microcalorimetry. Academic Press, New York.
- Buckin, V.A., 1988. Hydration of nucleic bases in dilute aqueous solutions—Apparent molar adiabatic and isothermal compressibilities, apparent molar volumes, and their temperature slopes at 25 °C. Biophys. Chem. 29 (3), 283–292.
- Buckin, V.A., Kankiya, B.I., Kazaryan, R.L., 1989. Hydration of nucleosides in dilute aqueous solutions: ultrasonic velocity and density measurements. Biophys. Chem. 34 (3), 211-223.
- Burkinshaw, P.M., Mortimer, C.T., 1984. Enthalpies of sublimation of transition-metal complexes. J. Chem. Soc. Dalton Trans. 13 (1), 75–77.
- Chase Jr., M.W., 1998. NIST-JANAF Thermochemical Tables, fourth ed. J. Phys. Chem. Ref. Data, Mono. 9, 27, 1–1951.
- Colbert, J.C., Domalski, E.S., Coxon, B., 1987. Enthalpies of combustion of D-ribose and 2-deoxy-D-ribose. J. Chem. Thermodyn. 19 (4), 433– 441.
- Cox, J.D., Pilcher, G., 1970. Thermochemistry of Organic and Organometallic Compounds. Academic Press, London.
- Cox, J.D., Wagman, D.D., Medvedev, V.A., 1989. CODATA Key Values for Thermodynamics. Hemisphere, New York.
- Daniel, R.M., Cowan, D.A., 2000. Biomolecular stability and life at high temperatures. Cell. Mol. Life Sci. 57 (2), 250-264.
- Dawson, R.M.C., Elliott, D.C., Elliott, W.H., Jones, K.M., 1986. Data for Biochemical Research, third ed. Clarendon Press, Oxford.
- de Kruif, C.G., Van Miltenburg, J.C., Sprenkels, A.J.J., Stevens, G., DeGraaf, W., DeWit, H.G.M., 1982. Thermodynamic properties of citric acid and the system citric-acid water. Thermochim. Acta 58 (3), 341–354.
- Deming, J.W., Baross, J.A., 1986. Solid medium for culturing black smoker bacteria at temperatures to 120 °C. Appl. Environ. Microbiol. 51 (2), 238–243.
- Desnoyers, J.E., Philip, P.R., 1972. Isothermal compressibilities of aqueous solutions of tetraalkylammonium bromides. Can. J. Chem. 50, 1094–1096.
- DeVoe, H., Wasik, S.P., 1984. Aqueous solubilities and enthalpies of solution of adenine and guanine. J. Sol. Chem. 13 (1), 51-60.
- Domalski, E.S., Hearing, E.D., 1996. Heat capacities and entropies of organic compounds in the condensed phase. J. Phys. Chem. Ref. Data 25 (1), 1–525.
- Egan, E.P., Wakefield, Z.T., 1957. Low temperature heat capacity and entropy of crystalline orthophosphoric acid. J. Phys. Chem. 61 (11), 1500–1504.
- Evans, D.M., Hoare, F.E., Melia, T.P., 1962. Heat capacity, enthalpy and entropy of citric acid monohydrate. Trans. Faraday Soc. 58, 1511-1514.
- Ferro, D., Bencivenni, L., Teghil, R., Mastromarino, R., 1980. Vapor pressures and sublimation enthalpies of thymine and cytosine. Thermochim. Acta 42 (1), 75–83.
- Fischer, F., Zillig, W., Stetter, K.O., Schreiber, G., 1983. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic Archaebacteria. Nature 301 (5900), 511–513.
- Franks, F., Ravenhill, J.R., Reid, D.S., 1972. Thermodynamic studies of dilute aqueous solution of cyclic ethers and simple carbohydrates. J. Sol. Chem. 1, 3–16.
- Gajewski, E., Steckler, D.K., Goldberg, R.N., 1986. Thermodynamics of the hydrolysis of adenosine 5'-triphosphate to adenosine 5'-diphosphate. J. Biol. Chem. 261 (27), 2733–2737.
- Galema, S.A., Engberts, J.B.F.N., Høiland, H., Forland, G.M., 1993. Informative thermodynamic properties of the effect of stereochemistry on carbohydrate hydration. J. Phys. Chem. 97 (26), 6885–6889.
- Glukhova, O.T., Kiselev, V.D., Teplitsky, A.B., Ustyugov, A.N., Yanson, I.K., 1981. Hydration of nucleic-acid bases—Cytosine and its methylderivatives. Biofizika 26 (2), 351–352.
- Goldberg, R.N., Tewari, Y.B., 1989. Thermodynamic and transport properties of carbohydrates and their monophosphates—The pentoses and hexoses. J. Phys. Chem. Ref. Data 18 (2), 809–880.
- Goldberg, R.N., Tewari, Y.B., 1991. Thermodynamics of the disproportionation of adenosine 5'-diphosphate to adenosine 5'-triphosphate and adenosine 5'-monophosphate. 1. Equilibrium Model. Biophys. Chem. 40 (3), 241–261.
- Goldberg, R.N., Tewari, Y.B., 1994. Thermodynamics of enzymecatalyzed reactions. 2. Transferases. J. Phys. Chem. Ref. Data 23 (4), 547–617.
- Goldberg, R.N., Tewari, Y.B., 2002. Thermochemistry of the biochemical reaction: {pyrophosphate(aq)+H₂O(l) = 2 phosphate(aq)}. *J. Chem.* Thermodyn. 34 (6), 821–839.
- Helgeson, H.C., 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267, 729–804.
- Helgeson, H.C., Kirkham, D.H., 1974a. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 1. Summary of thermodynamic-electrostatic properties of the solvent. Am. J. Sci. 274 (10), 1089-1198.
- Helgeson, H.C., Kirkham, D.H., 1974b. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 2. Debye-Hückel parameters for activity coefficients and relative parital molal properties. Am. J. Sci. 274 (10), 1199–1261.
- Helgeson, H.C., Kirkham, D.H., 1976. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 3. Equation of state for aqueous species at infinite dilution. Am. J. Sci. 276 (2), 97–240.
- Helgeson, H.C., Delany, J.M., Nesbitt, H.W., Bird, D.K., 1978. Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278, 1–229.
- Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 4. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. Am. J. Sci. 281 (10), 1249– 1516.
- Helgeson, H.C., Owens, C.E., Knox, A.M., Richard, L., 1998. Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochim. Cosmochim. Acta 62 (6), 985–1081.
- Herskovits, T.T., Bowen, J.J., 1974. Solution studies of nucleic-acid bases and related model compounds—solubility in aqueous urea and amide solutions. *Biochemistry* 13 (27), 5474-5483.
- Høiland, H., Holvik, H., 1978. Partial molal volumes and compressibilities of carbohydrates in water. J. Sol. Chem. 7 (8), 587–596.
- Høiland, H., Skauge, A., Stokkeland, I., 1984. Changes in partial molar volumes and isentropic partial molar compressibilities of stacking of some nucleobases and nucleoside in water at 298.15 K. J. Phys. Chem. 88 (25), 6350–6353.
- Huber, H., Diller, S., Horn, C., Rachel, R., 2002. Thermovibrio ruber gen. nov., sp nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum. Aquificae. Int. J. Syst. Evol. Microbiol. 52, 1859–1865.
- Immirzi, A., Perini, B., 1977. Prediction of density in organic crystals. Acta Crystallogr. A 33, 216–218.
- Jasra, R.V., Ahluwalia, J.C., 1982. Enthalpies of solution, partial molal heat capacities and apparent molal volumes of sugars and polyols in water. *J. Sol. Chem.* **11** (5), 325-338.
- Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92—A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0 °C to 1000 °C. Comput. Geosci. 18 (7), 899– 947.
- Kanbour, F.I., Ahmed, J.K., Derwish, G.A.W., 1983. Enthalpies of solution of purine and adenine in water and in dimethylsulfoxide. J. Sol. Chem. 12 (11), 763–770.
- Kilday, M.V., 1978a. Enthalpies of solution of nucleic-acid bases. 1. Adenine in water. J. Res. Nat. Bur. Stand. 83 (4), 347–370.
- Kilday, M.V., 1978b. Enthalpies of solution of nucleic-acid bases. 2. Thymine in water. J. Res. Nat. Bur. Stand. 83 (6), 529-537.
- Kilday, M.V., 1978c. Enthalpies of solution of nucleic-acid bases. 3. Cytosine in water. J. Res. Nat. Bur. Stand. 83 (6), 539–546.
- Kilday, M.V., 1978d. Enthalpies of solution of nucleic-acid bases. 4. Uracil in water. J. Res. Nat. Bur. Stand. 83 (6), 547–554.
- Kilday, M.V., 1981. Enthalpies of solution of nucleic-acid bases. 6. Guanine in aqueous HCl and NaOH, and guanine hydrochlorides in aqueous HCl. J. Res. Nat. Bur. Stand. 86 (4), 367–382.
- Kirklin, D.R., Domalski, E.S., 1983. Enthalpy of combustion of adenine. J. Chem. Thermodyn. 15 (10), 941–947.
- Kishore, N., Ahluwalia, J.C., 1990a. Partial molar heat capacities and volumes of some nucleic-acid bases, nucleoside and nucleotides in aqueous urea solutions at 298.15 K. J. Chem. Soc. Faraday Trans. 86 (6), 905–910.
- Kishore, N., Ahluwalia, J.C., 1990b. Partial molar heat capacities and volumes of transfer of nucleic-acid bases, nucleosides and nucleotides from water to aqueous solutions of sodium and calcium chloride at 25 °C. J. Sol. Chem. 19 (1), 51-64.
- Kishore, N., Bhat, R., Ahluwalia, J.C., 1989. Thermodynamics of some nucleic-acid bases and nucleosides in water, and their transfer to aqueous glucose and sucrose solutions at 298.15 K. Biophys. Chem. 33 (3), 227–236.
- Kondepudi, D., Prigogine, I., 1998. Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons, New York.
- Krebs, H.F., Kornberg, H.L., 1957. Energy Transformations in Living Matter: A Survey. Springer, Berlin.
- Larson, J.W., Tewari, Y.B., Goldberg, R.N., 1993. Thermochemistry of the reactions between adenosine, adenosine 5'-monophosphate, inosine and inosine 5'-monophosphate—The conversion of L-histidine to (urocanic acid + ammonia). J. Chem. Thermodyn. 25 (1), 73–90.
- Lebedev, B.V., Kulagina, T.G., Kiparisova, E.G., 1981. Thermodynamics of 2,5-diketopiperazine in the 0–330 K region. Zh. Obshch. Khim. 51 (1), 199–203.
- Lee, A., Chalikian, T.V., 2001. Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92 (3), 209–227.
- Maier, C.G., Kelley, K.K., 1932. An equation for the representation of high-temperature heat content data. J. Am. Chem. Soc. 54, 3243-3246.
- Mavrovouniotis, M.L., 1990. Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solutions. Biotech. Bioeng. 36 (10), 1070–1082.
- Mavrovouniotis, M.L., 1991. Estimation of standard Gibbs energy changes of biotransformations. J. Biol. Chem. 266 (22), 14440–14445.
- Messerly, J.F., Todd, S.S., Finke, H.L., Good, W.D., Gammon, B.E., 1988. Condensed-phase heat capacity studies and derived thermodynamic properties for six cyclic nitrogen compounds. J. Chem. Thermodyn. 20 (2), 209–224.
- Morel, J.P., Lhermet, C., Moreldesrosiers, N., 1986. Interactions between cations and sugars. 2. Enthalpies, heat capacities, and volumes of aqueous solutions of Ca²⁺-D-ribose and Ca²⁺-D-arabinose at 25 °C. Can. J. Chem. -Rev. Can. Chim. 64 (5), 996–1001.
- Nabavian, P.M., Sabbah, R., Chastel, R., Laffitte, M., 1977 (Thermodynamique de composés azotés. II. Etude thermochimique des acides aminobenzoïques, de la pyrimidine, de l'uracile et de la thymine). J. Chim. Phys. 74, 115–126.
- Oscarson, J.L., Wang, P.M., Gillespie, S.E., Izatt, R.M., Watt, G.D., Larsen, C.D., Renuncio, J.A.R., 1995. Thermodynamics of protonation of AMP, ADP, and ATP from 50 °C to 125 °C. J. Sol. Chem. 24 (2), 171–200.
- Ould-Moulaye, C.B., Dussap, C.G., Gros, J.B., 2001. A consistent set of formation properties of nucleic acid compounds—purines and pyrimidines in the solid state and in aqueous solution. Thermochim. Acta 375 $(1-2)$, 93-107.
- Ould-Moulaye, C.B., Dussap, C.G., Gros, J.B., 2002. A consistent set of formation properties of nucleic acid compounds—Nucleosides, nucleotides and nucleotide-phosphates in aqueous solution. Thermochim. Acta 387 (1) , 1-15.
- Paljk, S., Klofutar, C., Kac, M., 1990. Partial molar volumes and expansibilities of some D-pentoses and D-hexoses in aqueous solution. J. Chem. Eng. Data 35 (1), 41–43.
- Patel, S.G., Kishore, N., 1995. Thermodynamics of nucleic-acid bases and nucleosides in water from 25 °C to 55 °C. J. Sol. Chem. 24 (1), 25–38.
- Patterson, B.A., Woolley, E.M., 2001. Thermodynamics of proton dissociations from aqueous citric acid: apparent molar volumes and apparent molar heat capacities of citric acid and its sodium salts at the pressure 0.35 MPa and at temperatures from 278.15 K to 393.15 K. J. Chem. Thermodyn. 33 (12), 1735–1764.
- Phillips, S.J., 1966. Adenosine and adenine nucleotides. Ionization metal complex formation and conformation in solution. Chem. Rev. 66 (5), 501–527.
- Phillips, S.J., Eisenberg, P., George, P., Rutman, R.J., 1965. Thermodynamic data for the secondary phosphate ionizations of adenosine, guanosine, inosine, cytidine, and uridine nucleotides and triphosphates. J. Biol. Chem. 240, 4393–4397.
- Plyasunov, A.V., Shock, E.L., 2001. Correlation strategy for determining the parameters of the revised Helgeson-Kirkham-Flowers model for aqueous nonelectrolytes. Geochim. Cosmochim. Acta 65 (21), 3879– 3900.
- Rabinovich, I.B., Karyakin, N.V., Dzharimova, E.S., Siling, S.A., Ponomarev, I.I., Vinogradova, S.V., 1984. Thermodynamics of condensation of pthalonitrile with m-phenlyenediamine. Bull. Acad. Sci. USSR, Div. Chem. Sci., 716–723.

Ramirez, F., Marecek, J.F., 1980. Phosphorylations by adenosine 5'triphosphate. Pure Appl. Chem. 52 (9), 2213–2227.

- Richard, L., Helgeson, H.C., 1998. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochim. Cosmochim. Acta 62 (23–24), 3591– 3636.
- Robinson, D.R., Grant, M.E., 1966. Effects of aqueous salt solutions on activity coefficients of purine and pyrimidine base and their relation to denaturation of deoxyribonucleic acid by salts. J. Biol. Chem. 241 (17), 4030–4042.
- Sabbah, R., 1980. Thermodynamics of nitrogen compounds. 5. Thermochemical study of cytosine. Thermochim. Acta 35 (1), 73–77.
- Sabbah, R., Nabavian, M., Laffitte, M., 1977. Enthalpy of formation of cytosine in solid state. Compt. Rend. Acad. Sci. C 284 (23), 953– 954.
- Schulte, M.D., Rogers, K.L., 2004. Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments. Geochim. Cosmochim. Acta 68 (5), 1087–1097.
- Scruggs, R.L., Ross, P.D., Achter, E.K., 1972. Thermodynamic effects of exposing nucleic-acid bases to water—solubility measurements in water and organic solvents. Biopolymers 11 (9), 1961–1972.
- Shock, E.L., 1992. Stability of peptides in high temperature aqueous solutions. Geochim. Cosmochim. Acta 56 (9), 3481-3491.
- Shock, E.L., 1993. Hydrothermal dehydration of aqueous organic compounds. Geochim. Cosmochim. Acta 57 (14), 3341–3349.
- Shock, E.L., 1995. Organic acids in hydrothermal solutions—standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. Am. J. Sci. 295 (5), 496–580.
- Shock, E.L., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52 (8), 2009–2036.
- Shock, E.L., Helgeson, H.C., 1990. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—standard partial molal properties of organic species. Geochim. Cosmochim. Acta 54 (4), 915–945.
- Shock, E.L., Helgeson, H.C., Sverjensky, D., 1989. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53 (9), 2157– 2183.
- Shock, E.L., Oelkers, E., Johnson, J., Sverjensky, D., Helgeson, H.C., 1992. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures—effective electrostatic radii, dissociation constants and standard partial molal properties to $1000 \, \text{°C}$ and 5 kbar. J. Chem. Soc. Faraday Trans. 88 (6), 803-826.
- Shock, E.L., Sassani, D., Willis, M., Sverjensky, D., 1997. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61 (5), 907–950.
- Stern, J.H., Hubler, P.M., 1984. Hydrogen bonding in aqueous solutions of D-ribose and 2-deoxy-D-ribose. J. Phys. Chem. 88 (9), 1680–1681.
- Stern, J.H., Oliver, D.R., 1980. Thermodynamics of nucleoside–solvent interactions—inosine and adenosine in water and in 1-m-ethanol between 25 °C and 35 °C . J. Chem. Eng. Data 25 (3), 221-223.
- Stetter, K.O., Fiala, G., Huber, G., Huber, R., Segerer, A., 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75 (2–3), 117–124.
- Stetter, K.O., Konig, H., Stackebrandt, E., 1983. Pyrodictium, gen. nov., a new genus of submarine disc-shaped sulfur-reducing archaebacteria growing optimally at 105 °C. Syst. Appl. Microbiol. 4 (4), 535–551.
- Stetter, K.O., Segerer, A., Zillig, W., Huber, G., Fiala, G., Huber, R., Konig, H., 1986. Extremely thermophilic sulfur-metabolizing archaebacteria. Syst. Appl. Microbiol. 7 (2–3), 393–397.
- Stiehler, R.D., Huffman, H.M., 1935a. Thermal data. IV. The heats of combustion of adenine, hypoxanthine, guanine, xanthine, uric acid, allantoin and alloxan. J. Am. Chem. Soc. 57, 1734–1740.
- Stiehler, R.D., Huffman, H.M., 1935b. Thermal data. V. The heat capacities, entropies, and free energies of adenine, hypoxanthine, guanine, xanthine, uric acid, allantoin and alloxan. J. Am. Chem. Soc. 57, 1741–1743.
- Sverjensky, D., Shock, E.L., Helgeson, H.C., 1997. Prediction of the thermodynamic properties of aqueous metal complexes to $1000\,^{\circ}\text{C}$ and 5 kb. Geochim. Cosmochim. Acta 61 (7), 1359–1412.
- Szeminska, J., Zielenliewicz, W., Wierzchowski, K.L., 1979. Thermochemistry of aqueous solutions of alkylated nucleic-acid bases. 1. Apparent molar heat capacities of uracil, thymine and their derivatives. Biophys. Chem. 10 (3–4), 409–414.
- Tanger, J.C., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288 (1), 19–98.
- Teplitsky, A.B., Glukhova, O.T., Sukhodub, L.F., Yanson, I.K., Zielenkiewicz, A., Zielenkiewicz, W., Kosinski, J., Wierzchowski, K.L., 1982. Thermochemistry of aqueous solutions of alkylated nucleic-acid bases. 4. Enthalpies of hydration of 5-alkyluracils. Biophys. Chem. 15 (2), 139–147.
- Teplitsky, A.B., Yanson, I.K., Glukhova, O.T., Zielenkiewicz, A., Zielenkiewicz, W., Wierzchowski, K.L., 1980. Thermochemistry of aqueous solutions of alkylated nucleic-acid bases. 3. Enthalpies of hydration of uracil, thymine, and their derivatives. Biophys. Chem. 11 (1), 17–21.
- Tewari, Y.B., Goldberg, R.N., Advani, J.V., 1991. Thermodynamics of the disproportionation of adenosine 5'-phosphate to adenosine 5'triphosphate and adenosine 5'-monophosphate. 2. Experimental data. Biophys. Chem. 40 (3), 263–276.
- Tewari, Y.B., Steckler, D.K., Goldberg, R.N., Gitomer, W.L., 1988. Thermodynamics of hydrolysis of sugar phosphates. J. Biol. Chem. 26 (8), 3670–3675.
- Van Bommel, M.J., Van Miltenburg, J.C., Schuijff, A., 1988. Heatcapacity measurements and thermodynamic function of 1,3,5-triazine and 1,3,5-trioxane. J. Chem. Thermodyn. 20 (4), 397–403.
- Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L., 1982. The NBS tables of chemical thermodynamic properties—selected values for inorganic and C-1 and C-2 organic substances in SI units. J. Phys. Chem. Ref. Data 11 (Suppl. 2), 1–392.
- Wilhoit, R.C., Shiao, D., 1964. Thermochemistry of biologically important compounds. Heats of combustion of solid organic acids. J. Chem. Eng. Data 9, 595–599.
- Wilson, S.R., Watson, I.D., Malcolm, G.N., 1979. Enthalpies of formation of solid cytosine, L-histidine, and uracil. J. Chem. Thermodyn. 11 (9), 911–912.
- Woese, C.R., Kandler, O., Wheelis, M.L., 1990. Towards a natural system of organisms—proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87 (12), 4576–4579.
- Yanson, I.K., Verkin, B.I., Shklyare, O.I., Teplitsk, A.B., 1974. Sublimation heats of nitrogen bases of nucleic-acids. Studia Biophys. 46 (1), 29– 44.
- Zielenkiewicz, A., Wszelaka-Rylik, M., Poznanski, J., Zielenkiewicz, W., 1998. Thermochemistry of aqueous solutions of alkylated nucleic acid bases. X. Enthalpies of hydration of cytosine and some methylated, hydroxy and methoxy derivatives of cytosine. J. Sol. Chem. 27 (3), 235–243.
- Zielenkiewicz, A., Zielenkiewicz, W., Sukhodub, L.F., Glukhova, O.T., Teplitsky, A.B., Wierzchowski, K.L., 1984. Thermochemistry of aqueous solutions of alkylated nucleic-acid bases. 5. Enthalpies of hydration of N-methylated adenines. J. Sol. Chem. 13 (11), 757–765.
- Zielenkiewicz, W., 1995. Thermochemistry of aqueous solutions of nucleic-acid bases and their alkylated derivatives. J. Therm. Anal. 45 (4), 615–629.
- Zielenkiewicz, W., 2000. Enthalpies of sublimation and vapor pressures of adenine, 1-methyladenine, 2-methyladenine, 3-methyladenine, and 8 methyladenine. J. Chem. Eng. Data 45 (4), 626–629.
- Zielenkiewicz, W., Poznanski, J., Zielenkiewicz, A., 2000. Partial molar volumes of aqueous solutions of some halo and amino derivatives of uracil. J. Sol. Chem. 29 (8), 757–769.
- Zielenkiewicz, W., Zielenkiewicz, A., Wierzchowski, K.L., 1993. Thermochemistry of aqueous solutions of alkylated nucleic-acid bases. 8. Enthalpies of hydration of 6-alkyluracils. J. Sol. Chem. 22 (11), 975– 981.
- Zielenkiewicz, W., Zielenkiewicz, A., Wierzchowski, K.L., 1994a. Thermochemistry of alkylated uracils in aqueous solutions—enthalpies of hydration of 3-alkyluracils. Pure Appl. Chem. 66 (3), 503–507.
- Zielenkiewicz, W., Zielenkiewicz, A., Wierzchowski, K.L., 1994b. Thermochemistry of aqueous solutions of alkylated nucleic-acid bases. 9. Enthalpies of hydration of 9-methyl-8-alkyladenines and 6,9-dimethyl-8-alkyladenines. J. Sol. Chem. 23 (10), 1125–1131.
- ZoBell, C.E., 1970. Pressure effects on morphology and life of bacteria. In: Zimmerman, A.M. (Ed.), High Pressure Effects on Cellular Processes. Academic Press, New York, pp. 85–130.
- Zolkiewski, M., Zielenkiewicz, W., 1991. Enthalpies of solvation of alkylated uracils in water, non-aqueous, and mixed solvents. J. Sol. Chem. 20 (5), 517–530.