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Abstract

A series of 1 atm experiments has been performed to test the influence of iron content and oxidation state on the saturation of phos-
phate minerals in magmatic systems. Four bulk compositions of different iron content have been studied. The experiments cover a range
of temperature from 1030 to 1070 °C and oxygen fugacity from 1.5 log units below to 1.5 log units above the Fayalite-Magnetite-Quartz
buffer. The results demonstrate that neither iron content of the liquid nor oxidation state play a significant role on phosphate saturation.
On the other hand, SiO, and CaO contents of the liquid strongly influence the appearance of a crystalline phosphate. Our results are
combined with data from the literature to define an equation which predicts the P,Os content of silicate liquids saturated in either whit-
lockite or fluorapatite:

ms —0.8579 ;
M5 = exp {T (7 + 0,0165> —3.3333In (M, } :
e 139.00 — Mg, ( )

where M represents the molar percentage of the relevant oxides and 7 is temperature in K. This equation is valid over extremely wide
ranges of liquid composition and temperature (e.g., M SiO, from 10% to 80%), including peraluminous liquids. The equation is used to
illustrate the relative effects of melt chemistry and temperature on phosphate saturation, both in general terms and in particular for the
case of ferrobasaltic differentiation relevant to the late stage differentiation of mafic layered intrusions. It is concluded that magmatic
liquids may reach high concentrations in both iron and phosphorus, not through direct association of P°* and Fe>", but rather as a
consequence of the variations of CaO and SiO, content of the liquid. These results may help explain the petrogenesis of certain enigmatic
rock types dominated by association of apatite and iron-titanium oxides, such as nelsonites.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Apatite is a common mineral in many plutonic rocks,
ranging from granites (e.g., Bea et al., 1992) to the late
stage cumulates of mafic systems (e.g., Wager and Brown,
1967; Von Gruenewaldt, 1993). Furthermore, volatile-free
phosphates, for example whitlockite, are present in igneous
rocks of extraterrestrial origin, such as lunar samples (Grif-
fen et al., 1972) and achondrite meteorites (Delaney et al.,
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1984; Lundberg et al., 1988). The presence of a crystalline
phosphate in such rocks is of interest because it provides a
potential constraint on the composition of the liquid with
which the minerals were in equilibrium or the conditions
of temperature and pressure. For example, the work of
Watson (1979) and Harrison and Watson (1984) showed
that temperature and liquid composition, in particular
SiO, content, are important factors affecting how much
P,Os is required to saturate silicate melts. The model pro-
posed by Harrison and Watson (1984) has been shown to
work well for peralkaline and subaluminous granites,
although modification is required when predicting apatite
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saturation in peraluminous compositions (Bea et al., 1992;
Pichavant et al., 1992; Wolf and London, 1994). Further-
more, it has been suggested that SiO, concentration is
not the only compositional factor affecting apatite satura-
tion in granitic systems and that CaO content may also
play a role (Bea et al., 1992).

Mafic systems have received less attention than felsic
systems, a notable exception being the study of Sha
(2000) who considered both apatite and whitlockite satura-
tion in a wide range of liquid compositions at temperatures
in the range 1200-1400 °C. However, the fact remains that
few experimental data exist for phosphate saturation in fer-
robasaltic liquids at the temperatures corresponding to the
late stage differentiation of layered intrusions such as the
Skaergaard (e.g., Wager, 1960) or the Bushveld (Harney
and Von Gruenewaldt, 1995) and it is with these systems
in mind that the present study was initiated.

One potentially important characteristic of evolved maf-
ic systems is the high FeO™ content of the liquids (total iron
expressed as FeO) which may reach ~18 wt% (Brooks
et al., 1991; Toplis and Carroll, 1995), or possibly even
more (McBirney and Naslund, 1990). Such high iron con-
tents may affect phosphate saturation because of associa-
tion of P°* and Fe’" in the liquid (Mysen, 1992; Gwinn
and Hess, 1993; Toplis et al., 1994a,b). For example, the
existence of P-Fe®" complexes has been held responsible
for the fact that small additions of P,Os dramatically influ-
ence the stability field of magnetite (Toplis et al., 1994a).
This is also consistent with the general finding that P°* is
associated with trivalent cations in silicate liquids, for
example, rare earth elements (Ryerson and Hess, 1978),
and AI’" (Toplis and Schaller, 1998; Schaller et al., 1999).

A strong interaction of P>" and Fe*" in silicate liquids
may therefore retard the saturation of both crystalline phos-
phates and iron—titanium oxides during magmatic differen-
tiation, leading to extremely high concentrations of Fe and P
in the liquid. A further consequence of this interaction may
be that once either magnetite or apatite finally appears on
the liquidus, the other phase will precipitate in abundance.
This in turn may potentially explain the petrogenesis of enig-
matic rock types dominated by apatite and iron-titanium
oxides such as nelsonites found at the highest stratigraphic
levels of certain layered intrusions and anorthosites (Phil-
potts, 1967, Davies and Cawthorn, 1984; Vermark and
Von Gruenewaldt, 1986; Cimon, 1998; Dymek and Owens,
2001; Nabil, 2003; Barnes et al., 2004).

In order to test the influence of melt composition on
phosphate saturation, in particular the role of ferric iron,
we have experimentally saturated ferrobasaltic composi-
tions of variable iron content over a wide range of oxygen
fugacity (fO,) at 1 atm. Our new data are combined with
the literature database of liquid compositions coexisting
with crystalline phosphate to construct a predictive model
for saturation of apatite (Cas(PO,4)3;(OH, F, Cl)) and whit-
lockite ((Ca, Mg, Fe>")3(POy),) valid over extremely wide
ranges of liquid composition. Some applications to natural
systems are briefly discussed.

2. Experimental approach and methods
2.1. Starting materials and compositions studied

The starting materials used for these experiments were
synthetic glass powders prepared from mixtures of reagent
grade oxides (SiO,, TiO,, Al,03, Fe,0O5; and MgO) and car-
bonates (CaCO3, Na,CO; and K,CO3). Two different P-free
compositions were prepared: SC4, the ferrobasaltic composi-
tion studied by Toplis et al. (1994a) which contains ~15 wt%
FeO”, and SC4-8, a composition which maintains the same
relative proportions of all oxides as SC4 with the exception
of FeO", which is present at a level of only ~8 wt% (Table
1). These compositions, representative of natural liquids,
were chosen because the phase relations of SC4 are known
as a function of temperature and oxygen fugacity (Toplis
and Carroll, 1995) and because the effects of adding P,Os
have been quantified at 1072 °C (Toplis et al., 1994a).

Two different amounts of P,Os (5 and 10 wt%) were add-
ed to each base composition to ensure saturation in a crystal-
line phosphate. Glasses SC4(5) and SC4(10) (where the
number in parentheses is the P,O5 content) are those whose
density was measured by Toplis et al. (1994b), while glasses
SC4-8(5) and SC4-8(10) were synthesised for this study.
The P-free base compositions were heated above their liqui-
dus in air for 1 h in thin-walled platinum crucibles. The lig-
uids were quenched by pouring onto a metal plate, then
crushed and remelted for another hour to ensure chemical
homogeneity. Phosphorous was incorporated as P,Os
through addition of NH4POj; (for composition SC4) and
H;PO, (for composition SC4-8). The P-bearing composi-
tions were then remelted and crushed two further times. In
this way, four bulk compositions have been studied,
although it should be appreciated that the liquids present
at the end of each experiment are variable in composition be-
cause of the different phase relations as a function of temper-
ature and fO, as detailed below.

2.2. Experimental techniques

All experiments were carried out in a vertical rapid
quench gas mixing furnace at atmospheric pressure (de-
scribed by Toplis et al., 1994a). Although working at
1 bar has the drawback that whitlockite rather than apatite
crystallises in this volatile-free system, it has the advantage
that oxygen fugacity may be carefully controlled and

Table 1
Starting compositions. All concentration in wt%

SC4-B SC4-8
SiO, 49.5 54.41
TiO, 43 4.80
ALO; 11.5 12.85
FeO* 14.6 8.07
MgO 4.8 5.14
CaO 10.0 10.84
Na,O 2.9 3.35
K,0 0.48 0.54
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monitored, an essential consideration when assessing the
effect of ferric iron on phosphate saturation. Oxygen fugac-
ity was controlled using CO-CO, gas mixtures (Deines
et al., 1974) and measured using a yttrium-stabilised zirco-
nia probe. Experiments were carried out at four different
1O, values from 1.5 log;( units below the Fayalite-Magne-
tite-Quartz buffer (FMQ —1.5) to approximately 1.5 logq
units above (FMQ +1.5), as summarised in Table 2.

For each experiment ~100 mg of starting material was
pressed onto a loop of 0.2 mm diameter platinum wire,
using polyvinyl alcohol as a binder. Before each formal
experiment the Pt loops were presaturated in Fe by equili-
bration with composition SC4 for 12 h at 1300 °C at the
relevant fO, before cleaning in warm HF. A Pt basket, to
which four Pt loops were attached (one for each bulk com-
position), was suspended in the hot spot of the furnace.
The furnace temperature was controlled using a Eurotherm
818 controller and measured by an independent Pt-Pt;,Rh

Table 2
Cooling history and run products

thermocouple located less than 1cm from the samples.
Thermocouple calibration was checked against the melting
point of gold (1064 °C). The samples were maintained
above their liquidus at 1130 °C for 8 h (D;) in order to
equilibrate the Fe’*/Fe?" ratio of the liquid, then cooled
at a constant rate of 3°C/h to the final temperature
(1030, 1055 or 1070 °C). This temperature was maintained
for a duration D, to allow equilibration between crystalline
phases and coexisting melts (see Table 2). All experimental
charges were drop-quenched into water.

2.3. Analytical techniques

Quenched samples were lightly crushed and mounted as
chips in polished sections for petrographic and electron-mi-
croprobe analyses. The electron-microprobe analyses were
performed using a Cameca SX100 (Université Henri Poin-
caré, Nancy, France), operated at 15kV and 15 nA beam

Run no. Cooling history Final conditions Run products

DI* (h) Ramp (°C/h) D2° (h) Tf® (°C) log10/0, AFMQ*? Phases®
FMQ —1.5
6-sc4-b5 8 3 132 1055 —11.795 —1.51 Wht, Gl, Pl, Ilm, Cpx
6-sc4-b10 8 3 132 1055 —11.795 —1.51 Wht, Gl, Pl, Mt, Ilm, Qtz, LoCaPx
6-sc4-85 8 3 132 1055 —11.795 —1.51 Wht, Gl, Pl, Ilm, Psd, Cpx
6-sc4-810 8 3 132 1055 —11.795 —1.51 Wht, Gl, P, Mt, Psd, Qtz, LoCaPx
FMQ —0.5
7-sc4-b5 8 3 179 1032 —11.186 —0.57 Wht, Gl, Pl, Ilm, Cpx
7-sc4-b10 8 3 179 1032 —11.186 —0.57 Wht, Gl, Pl, Mt, Ilm, Qtz, Cpx
7-sc4-85 8 3 179 1032 —11.186 —0.57 Wht, Gl, Pl, Mt, Ilm, Qtz, Cpx
7-sc4-810 8 3 179 1032 —11.186 —0.57 Wht, Gl, Pl, Mt, Ilm, Qtz, LoCaPx, Stan
2-sc4-b5 8 3 86.5 1054 —10.815 —0.51 Wht,Gl
2-sc4-b10 8 3 86.5 1054 —10.815 —0.51 Wht, GI, Mt, Ilm, Qtz
2-sc4-85 8 3 86.5 1054 —10.815 —0.51 Wht, Gl, Pl, Ilm, Psd, Cpx
2-sc4-810 8 3 86.5 1054 —10.815 —0.51 Wht, Gl, PI, Mt, Ilm
3-sc4-b5 8 3 72 1075 —10.472 —0.47 Wht, Gl, Pl
3-sc4-b10 8 3 72 1075 —10.472 —0.47 Wht, Gl, P, Mt, Qtz
3-sc4-85 8 3 72 1075 —10.472 —0.47 Wht, Gl, P, Psd, Cpx
3-sc4-810 8 3 72 1075 —10.472 —0.47 Wht, Gl, P, Mt, Ilm, Qtz
FMOQ +0.5
4-sc4-b5 8 3 99 1056 —9.736 0.54 Wht, Gl, Pl, Ilm, Cpx
4-sc4-bl0 8 3 99 1056 —9.736 0.54 Wht, Gl, Pl, Mt, Ilm, Qtz
4-sc4-85 8 3 99 1056 -9.36 0.54 Wht, Gl, Pl, Ilm, Qtz, Cpx
4-5c4-810 8 3 99 1056 —9.736 0.54 Wht, Gl, Pl, Mt, Ilm, Cpx, Stan
FMQ +1.5
5-sc4-b5 8 3 82 1056 —8.690 1.58 Wht, Gl, Pl, Mt, Ilm, Qtz, Cpx
5-sc4-b10 8 3 82 1056 —8.690 1.58 Wht, Gl, Pl, Mt, Ilm, Qtz, Cpx, Stan
5-sc4-85 8 3 82 1056 —8.690 1.58 Wht, Gl, P, Mt, Psd, Qtz, Cpx
5-sc4-810 8 3 82 1056 —8.690 1.58 Wht, Gl, Pl, Mt, Ilm, Qtz, Cpx, Stan
FMQ +5.5
8-sc4-b5 8 3 140.5 1055 —4.950 5.34 Wht, Gl, Pl, Mt, Ilm, Qtz, Cpx

% Dl:duration above the liquidus to allow the equilibration of the iron redox ratio, before cooling.

® D2:duration at the final temperature.
¢ Tf: final temperature of the experiment.
4 AFMQ: represents log fO5 (experiment) — log fO, (FMQ buffer).

¢ Phases: Wht, whitlockite; Gl, glass; Pl, plagioclase; Cpx, clinopyroxene; LoCaPx, low-Ca pyroxene; Mt, magnetite—ulvospinel solid solution; Ilm,
ilmenite—haematite solid solution; Psd, pseubroockite-Fe,TiOs solid solution; Qtz, quartz; Stan, stanfieldite.
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current. Standards used were albite for Na and Al, ortho-
clase for Si and K, hematite for Fe, wollastonite for Ca,
olivine for Mg, MnTiO; for Ti and chlorapatite for P.
Counting times of 20 s on the peak and 10 s on the back-
ground were typically employed. Incident-beam diameter
was 5 um on glass (where space permitted) to minimise
alkali volatility under the electron beam. A focused beam
(1-2 um) was used in all other cases.

2.4. Attainment of equilibrium

At the studied temperatures experiments on bulk compo-
sitions SC4(5) and SC4(10) contain liquid proportions typi-
cally in excess of 50% (Figs. 1a and b), a fact which promotes
the rate of solid-liquid reactions. In this respect it may be
noted that experiments of similar melt fraction, duration
and temperature (Toplis et al., 1994a) were demonstrated
to be in equilibrium based upon reversal experiments. Fur-
thermore, in the experiments described here, minerals are
generally unzoned (as evidenced from backscattered electron
images) and the standard deviations of multiple analyses on
glass and phosphate are typically small (Table 3). All these
lines of evidence point to a good approach to equilibrium
for these samples. On the other hand, experiments on bulk
compositions SC4-8(5) and SC4-8(10) contained consider-

ably less glass, typically on the order of 20%. In these cases,
some extent of mineral zoning could be observed in backscat-
tered electron images, particularly for pyroxenes (e.g.,
Fig. 1c) and the standard deviations of multiple analyses of
glasses are greater than for the bulk composition SC4,
although those of whitlockite remain small (Table 3). How-
ever, although the approach to equilibrium at the sample
scale would not appear to be as complete for experiments
using SC4-8 we have reason to believe that local equilibria
between phosphate and adjacent liquid were reached, as dis-
cussed further below.

3. Results
3.1. Phase equilibria

The observed phase relations are listed in Tables 2 and 3
and illustrated in Fig. 1. All experiments contain whitlock-
ite (Wht) and glass (Gl). In experiments with additions of
10 wt% P,Os5 (but not in experiments with additions of
5 wt% P,0s) two coexisting liquids occur, an observation
consistent with the fact that P is known to promote li-
quid-liquid immiscibility in silicate systems (e.g., Visser
and Koster van Groos, 1979). Although the high bulk
P,Os concentration in these experiments precludes any di-

Liq e

50 pm

50 pm

50 pm

Fig. 1. Backscattered electron images of the FMQ +1.5 run products quenched from 1055 °C. (a) Sample SC4-B-5: Liq + Wht + P1 + Mt + Ilm +
Qtz+ Cpx, (b) sample SC4-B-10: Liq + Wht + Pl + Mt + Ilm + Qtz + Cpx + Stan, (c) sample SC4-8-5: Liq + Wht + P1 + Mt + Psd + Qtz + Cpx,

(d) sample SC4-8-10: Liq + Wht + Pl + Mt + Ilm + Qtz + Cpx + Stan.



Table 3

Electron microprobe analyses (wt%) of run products

Run no. Phase® % modal = Number SiO, TiO, AlLO4 FeO MgO CaO Na,O K,O P,Os Total

of analyses

FMQ —1.5

6-sc4-b5 Wht 5 9 0.18 (0.06) 0.05 (0.02) 0.04 (0.03) 3.80 (0.16) 3.07 (0.08) 47.17 (0.42)  0.25(0.03)  0.02 (0.01) 44.79 (0.37) 99.37
Liq 60 8 51.01 (1.22) 3.62 (0.17)  10.51 (0.45)  16.95 (0.64) 2.86 (0.20) 8.65 (0.3) 1.95(0.12)  0.77 (0.06) 3.06 (0.25) 99.38
Plag 20 1 57.84 0.15 26.69 0.54 0.17 9.07 5.53 0.28 0.05 100.31
Ilm 5 1 0.09 52.37 0.19 42.52 3.35 0.23 0.03 0.01 0.01 98.79
Cpx 10 1 50.71 1.06 1.26 21.99 17.68 6.77 0.07 0.00 0.06 99.59

6-sc4-bl10  Wht 8 6 0.32 (0.31) 0.08 (0.03) 0.08 (0.07) 3.83 (0.19) 4.07 (0.10)  44.92(0.19)  0.20 (0.03)  0.02 (0.01) 43.48 (0.64) 97.00
Lig 1 25 4 31.56 (1.34) 3.78 (0.18) 7.42(0.52)  21.30 (0.28) 8.57(0.48)  10.41 (0.59)  1.12(0.03)  0.25(0.03) 14.68 (0.77) 99.09
Liq 2 25 7 69.19 (0.86) 1.39 (0.1) 13.20 (1.03) 6.17 (0.29) 1.53 (0.14) 2.79 (0.61)  1.08 (0.25)  1.71 (0.14) 1.44 (0.14) 98.49
Plag 20 1 59.00 0.41 24.68 2.10 0.34 8.64 4.66 0.55 0.41 100.78
Mt 5 1 0.20 16.46 3.74 71.50 3.31 0.10 0.00 0.02 0.00 95.33
Ilm 3 1 0.04 44.33 0.59 47.88 391 0.61 0.00 0.01 0.04 97.39
Qtz 8 1 97.50 0.43 2.37 0.44 0.00 0.22 0.27 0.03 0.03 101.29
Lpx 6 1 52.19 0.65 1.65 22.83 22.64 1.05 0.03 0.00 0.12 101.17

6-sc4-85 Wht 22 5 0.99 (0.39) 0.11 (0.04) 0.27 (0.13) 3.27 (0.15) 3.19 (0.08)  46.70 (0.68)  0.35(0.02)  0.03 (0.02) 42.92 (0.59) 97.83
Liq 15 7 72.31 (1.77) 2.02 (0.14)  11.72 (0.28) 4.62 (0.82) 0.90 (0.07) 3.28 (0.51)  0.75(0.21)  1.24 (0.05) 0.70 (0.37) 97.54
Plag 20 1 57.20 0.21 26.92 0.89 0.16 10.06 5.19 0.11 0.01 100.75
Ilm 5 1 0.20 50.78 0.19 41.85 3.90 0.49 0.01 0.04 0.01 97.47
Psd 8 1 0.13 67.30 1.58 22.39 5.88 0.33 0.02 0.01 0.01 97.65
Cpx 30 1 50.12 1.57 2.13 17.94 17.22 10.59 0.20 0.02 1.03 100.81

6-sc4-810  Wht 12 8 0.43 (0.27) 0.09 (0.02) 0.10 (0.08) 2.96 (0.12) 4.78 (0.05)  44.55(0.48) 0.23(0.04)  0.03 (0.02) 47.01 (0.23)  100.16
Liq 25 6 71.73 (0.91) 0.95(0.09)  12.96 (1.08) 3.21 (0.24) 1.12 (0.18) 2.27(0.64) 1.20(0.43) 1.35(0.11) 1.63 (0.41) 96.42
Plag 30 1 56.07 0.17 26.87 1.34 0.16 9.67 4.87 0.15 0.27 99.57
Mt 10 1 6.27 5.04 4.95 73.19 4.04 0.72 0.07 0.18 0.38 94.84
Psd 5 1 3.88 43.28 2.75 39.21 3.24 2.52 0.15 0.05 2.18 97.26
Qtz 10 1 91.50 0.39 5.41 0.23 0.03 0.90 0.53 0.02 0.02 99.02
Lpx 8 8 52.10 (1.28) 0.59 (0.20) 2.95(047) 15.17 (0.44)  27.49 (0.63) 1.14 (0.59)  0.04 (0.03)  0.03 (0.022) 1.00 (0.69)  100.510

FMQ —0.5

7-sc4-b5 Wht 12 7 1.42 (1.37) 0.13 (0.06) 0.31 (0.17) 4.33 (0.15) 2.64 (0.12)  45.39(0.88)  0.26 (0.03)  0.07 (0.05) 45.15 (0.69) 99.70
Liq 35 6 67.20 (1.92) 1.43 (0.09)  11.46 (0.27) 9.21 (1.49) 0.77 (0.08) 3.98 (0.63) 1.24(0.19)  1.99 (0.09) 0.70 (0.21) 97.98
Plag 24 1 59.08 0.18 26.29 0.64 0.14 8.82 5.34 0.25 0.06 100.81
Ilm 5 1 0.16 48.05 0.28 4597 1.91 0.32 0.16 0.04 0.00 96.89
Cpx 24 1 48.55 1.05 1.32 32.20 12.14 4.38 0.09 0.01 0.09 99.83

7-sc4-b10  Wht 30 8 0.16 (0.07) 0.05 (0.01) 0.16 (0.11) 4.66 (0.18) 3.89 (0.06) 44.26 (0.29)  0.20 (0.03)  0.01 (0.02) 45.56 (0.35) 98.96
Liql 5 5 12.78 (0.83) 2.17 (0.53) 3.10 (0.24) 22.86(0.55) 11.14 (0.48) 14.50 (0.48)  0.62 (0.12)  0.14 (0.03) 31.33 (1.02) 98.65
Liq2 8 7 71.86 (1.47) 0.99 (0.09)  12.85(0.27) 4.32 (0.25) 0.78 (0.06) 1.43 (0.12)  0.76 (0.06)  2.54 (0.08) 1.22 (0.13) 96.75
Plag 22 1 57.47 0.11 26.65 1.16 0.07 9.16 5.40 0.35 0.13 100.51
Mt 7 1 0.15 16.79 4.04 71.85 2.70 0.10 0.02 0.01 0.01 95.67
Ilm 3 1 0.143 44.631 0.343 47.969 3.134 0.133 0.000 0.000 0.025 96.379
Qtz 10 1 94.89 0.39 2.57 0.41 0.00 0.23 0.25 0.03 0.07 98.83
Lpx 20 1 50.63 0.52 1.71 25.28 20.13 0.88 0.02 0.01 0.10 99.27
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0.11 (0.05)
1.16 (0.15)
0.78 (0.06)
0.20
6.22

44.87
0.34
2.07 (1.49)

0.13 (0.02)

(
(

0.07 (0.04)
4.62 (0.10)

0.08 (0.03)
1.86 (0.10)
3.10 (0.09)
9.84 (0.22)
0.44 (0.04)

0.09 (0.05)
2.92 (0.14)
0.23 (0.04)

53.03 (0.01)

67.37 (0.41)
1.92 (0.14)
0.13 (0.11)
2.02 (0.22)

1.07 (0.13)

0.38 (0.07)

4.40 (0.14)

46.21

0.07 (0.03)
4.81 (0.11)
0.16 (0.01)

0.07 (0.02)
2.03 (0.09)
1.08 (0.05)
0.13 (0.01)

21.65 (0.37)
0.49 (0.03)
0.12 (0.04)
2.69 (0.15)

0.20 (0.10)
10.85 (0.70)
25.36 (1.55)

1.80

1.10

3.75

1.80

0.22 (0.07)

4.50 (0.17)
12.14 (0.63)
23.37

3.80

3.18

7.20

3.49 (0.51)

0.57 (0.53)

0.11 (0.17)
11.18 (0.15)

0.08 (0.04)
13.46 (0.15)
10.71 (0.43)
5.41 (0.34)
2.62 (0.23)

0.08 (0.04)
11.91 (0.28)
25.95 (0.31)
0.23 (0.02)
1.42 (0.12)
1.96 (0.33)

0.25 (0.30)
4.43 (0.37)
11.89 (0.52)

22.90 (0.79)
4.09 (0.27)
2.46

0.10 (0.12)
10.85 (0.06)
27.28 (0.16)

0.08 (0.03)
4.11 (0.14)

12.57 (0.18)

26.87 (0.60)
1.27 (0.04)
2.5(0.32)

0.21 (0.18)
11.73 (0.08)

2.75 (0.10)
0.57 (0.12)
1.47 (0.35)
77.19
37.68
0.37
19.57

3.15 (0.08)

12.10 (0.76)
2.60 (0.20)
1.36

76.45

38.69
0.33

16.63 (0.84)
7.23 (0.28)

3.03 (0.19)
14.65 (0.15)

3.21 (0.09)
8.53 (0.61)
15.79 (0.41)
75.22 (1.11)
0.40 (0.08)

2.87 (0.15)
7.11 (0.90)
0.64 (0.09)
39.71 (0.02)
24.48 (0.73)
13.34 (0.91)

2.56 (0.66)
12.87 (0.34)

4.27 (0.71)

1.87 (0.35)
76.14 (1.12)
4223

3.02 (0.11)
15.42 (0.09)
0.70 (0.07)

2.45 (0.20)
12.04 (0.55)
4.35 (0.45)
1.46 (0.09)
66.76 (0.59)
0.41 (0.05)

2.60 (0.09)
8.13 (0.46)

3.49 (0.04)
0.31 (0.18)
0.23 (0.07)
2.46
3.01
0.10

20.26

4.59 (0.09)
14.28 (0.55)
1.35 (0.41)
0.27
3.73
3.84
0.06
24.75 (1.98
17.59 (0.51

3.57 (0.15
4.69 (0.12

4.40 (0.07
3.51 (0.35
8.20 (0.49
4.11 (0.16
0.01 (0.01

)
)
)
)
)
)
)
)
)
3.39 (0.06)
1.80 (0.13)
0.19 (0.03)
4.79 (0.04)
5.14 (0.13)
20.15 (1.19)
)

)

)

)

)

5.22 (0.68

16.62 (0.78
277 (1.14
0.88 (0.42
5.93 (0.16
4.11

3.68 (0.01
4.95 (0.60
0.51 (0.50

)
)
)
5.09 (0.08)
17.81 (0.46)
2.25 (0.34)
0.27 (0.13)
3.28 (0.22)
0.01 (0.02)
)

)

3.67 (0.05
2.28 (0.17

46.99 (0.65)
2.74 (1.75)
9.88 (0.55)
0.28
0.42
0.69
4.40

46.00 (0.91)
17.18 (0.63)

2.34 (0.89)

8.00

0.38

1.47

1.48

2.37 (1.09)
26.35 (0.55)

47.26 (0.33)
10.17 (0.19)

45.60 (0.45)
5.01 (0.42)
9.33 (0.26)
0.17 (0.04)
0.28 (0.02)

46.57 (0.26)
5.11(0.34)
9.60 (0.30)
0.21 (0.00)
0.23 (0.02)

10.79 (1.45)

44.56 (1.63)

14.59 (1.42)
2.90 (0.58)
8.19 (0.28)
0.23 (0.03)
0.87

46.99 (0.33)
10.05 (0.14)
9.91 (0.20)

4549 (0.21)
15.10 (0.58)
2.79 (0.52)
10.46 (0.25)
0.29 (0.06)
0.20 (0.03)

46.14 (0.38)
5.71 (0.44)

0.36 (0.04)
1.27 (0.99)
5.27 (0.18)
0.00
0.01
0.44
0.13

0.27 (0.04)
1.34 (0.31)
1.05 (0.22)
5.16
0.03
0.15
1.20
0.12 (0.14
0.14 (0.08

0.39 (0.09
2.12 (0.18

0.18 (0.04
2.33 (0.41
1.45 (0.10
0.02 (0.03
0.40 (0.07

)
)
)
)
)
)
)
)
)
0.23 (0.03)
2.14 (0.14)
5.40 (0.13)
0.01 (0.02)
0.01 (0.02)
0.15 (0.02)

)

)

)

)

)

0.24 (0.06
0.82 (0.10
0.84 (0.25
4.82 (0.35
0.00 (0.01
0.01

0.27 (0.02
2.12 (0.06
5.42 (0.13

)
)
)
0.18 (0.02)
0.81 (0.13)
0.84 (0.11)
4.84 (0.14)
0.01 (0.01)
0.26 (0.10)

)

)

0.29 (0.05
2.06 (0.36

0.04 (0.02)
0.81 (0.81)
0.24 (0.18)
0.04
0.04
0.02
0.07

0.04 (0.03)
0.31 (0.12)
1.82 (0.14)
0.28
0.04
0.00
0.08
0.10 (0.15)
0.06 (0.02)

0.04 (0.05)
0.52 (0.02)

0.02 (0.02)
0.63 (0.06)
0.20 (0.02)
0.011 (0.01)
0.03 (0.04)

0.03 (0.01)
1.01 (0.05)
0.12 (0.03)
0.01 (0.00)
0.02 (0.01)
0.01 (0.01)

0.02 (0.03)
0.08 (0.03)
1.18 (0.07)
0.38 (0.09)
0.01 (0.01)
0.05

0.01 (0.01)
0.51 (0.02)
0.18 (0.01)

0.02 (0.02)
0.09 (0.03)
1.43 (0.14)
0.19 (0.01)
0.01 (0.01)
0.03 (0.01)

0.02 (0.01)
0.88 (0.07)

44.40 (0.27)
1.17 (0.98)
0.51 (0.49)
0.01
0.00
0.30
0.47

44.00 (0.33)
33.91 (0.63)

2.17 (0.54)

0.64

0.00

1.40

0.16

2.55 (0.70)
45.04 (1.04)

44.32 (0.65)
4.63 (0.10)

47.32 (1.10)
3.88 (0.64)
11.33 (0.86)
0.03 (0.04)
0.02 (0.03)

47.36 (0.56)
1.19 (0.15)
0.12 (0.06)

0 (0)

0.03 (0.04)
0.39 (0.44)

46.92 (1.99)

26.79 (1.31)
2.27 (0.94)
1.10 (0.60)
0.05 (0.01)
0.53

45.43 (0.94)
4.36 (0.07)
0.06 (0.02)

46.43 (0.36)
29.78 (0.69)
1.85 (0.59)
0.42 (0.24)
0.01 (0.02)
0.04 (0.01)

44.53 (0.63)
1.4 (0.26)

(continued on next page)

99.26
95.25
99.51
93.58
94.05
98.07
99.06

99.09
102.42
96.09
99.81
90.93
96.77
97.36
100.17
99.38

99.28
100.24

101.05
99.49
100.24
94.93
100.87

100.90
99.71
100.39
98.05
98.83
100.51

100.97
101.03
97.17
100.74
91.01
97.10

99.89
99.71
101.40

99.92
99.28
93.78
97.50
93.33
96.10

98.64
94.93
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Table 3 (continued)

Run no. Phase® % modal  Number SiO, TiO, Al,O5 FeO MgO CaO Na,O K,O P,Os5 Total
of analyses

Plag 28 4 52.58 (0.63) 0.19 (0.02)  26.32(0.43) 1.27 (0.17) 0.21 (0.02)  10.27 (0.42) 5.05(0.19) 0.12(0.00) 0.13(0.14)  96.15

Psd 3 3 3.25(3.09) 57.89 (1.47) 1.85(0.30)  29.49 (0.88) 5.02 (0.10) 0.7 (0.18) 0.05(0.04)  0.06 (0.06) 0.08 (0.04) 98.39

Cpx 28 3 50.18 (1.01) 1.06 (0.25) 1.63(0.32) 13.01 (1.03)  23.68 (1.57) 6.95 (1.94) 0.13(0.08) 0.03(0.02) 0.13(0.12) 96.81

3-s¢4-810 Wht 6 8 0.19 (0.14) 0.09 (0.04) 0.13 (0.08) 1.83 (0.09) 5.32(0.07) 45.31(0.27) 0.20 (0.02) 0.02 (0.01) 45.11 (0.24) 98.18
Liql 6 8 21.29 (1.47) 1.74 (0.24) 4.51 (0.39) 1096 (0.63) 19.09 (1.44) 1342 (1.24) 0.81 (0.06) 0.08 (0.02)  26.26 (1.19) 98.16
Liq2 28 8 67.41 (1.16) 1.02 (0.05)  12.51 (0.34) 3.90 (0.15) 2.51 (0.33) 2.85(0.40) 2.10 (0.67) 1.23 (0.07) 1.78 (0.36) 95.32
Plag 40 3 53.53 (2.09) 0.17 (0.07)  25.93 (0.77) 1.81 (0.22) 0.52 (0.46) 9.87 (0.27)  5.04 (0.37)  0.12 (0.02) 0.70 (0.70) 97.68
Mt 5 2 0.10 (0.01) 3.15(0.09) 4.39 (0.02) 77.46 (0.14) 7.62 (0.07) 0.21 (0.04)  0.03 (0.01) 0.01 (0.02) 0.01 (0.02) 92.98
Ilm 5 2 0.11 (0.03)  42.34 (0.14) 2.00 (0.00) 45.10 (0.69) 2.95(0.02) 0.31 (0.03)  0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 92.83
Qtz 10 3 89.67 (1.68) 0.41 (0.03) 3.80 (0.27) 0.35(0.09) 0.01 (0.02) 0.42 (0.05)  0.26 (0.05) 0.02 (0.01) 0.04 (0.02) 94.98

FMQ +0.5

4-sc4-b5 Wht 5 7 0.98 (1.52) 0.07 (0.04) 0.54 (0.74) 3.19 (0.22) 3.46 (0.17)  45.68 (1.51)  0.21 (0.11)  0.02 (0.03)  43.46 (0.77) 97.60
Liq 65 10 48.98 (1.53) 4.38 (0.18)  11.08 (0.45) 15.43 (0.70) 4.32 (0.19) 9.23(0.32)  2.09 (0.13)  0.64 (0.04) 3.80 (0.36) 99.94
Plag 17 1 58.03 0.14 26.63 0.81 0.13 9.36 5.88 0.24 0.03 101.25
Ilm 3 3 0.03 (0.01)  48.48 (0.92) 0.32 (0.01)  44.55(0.94) 3.91 (0.33) 0.27 (0.03)  0.01 (0.02)  0.03 (0.03) 0.01 (0.02) 97.61
Cpx 10 1 52.00 0.80 1.00 23.39 19.16 4.96 0.08 0.02 0.06 101.46

4-sc4-b10  Wht 5 6 0.09 (0.03) 0.04 (0.04) 0.05 (0.02) 3.78 (0.13) 4.02 (0.12)  45.54 (0.37)  0.20 (0.01)  0.00 (0.01)  44.45(0.51) 98.17
Liql 29 8 34.38 (0.46) 3.79 (0.04) 7.80 (0.15)  20.58 (0.25) 8.39 (0.21)  10.31 (0.14)  1.27 (0.04)  0.21 (0.03)  13.16 (0.36) 99.89
Liq2 29 8 61.22 (1.32) 1.96 (0.06)  13.36 (0.17) 9.33 (0.50) 2.61 (0.38) 4.45(0.22) 1.52(0.07) 1.26 (0.06) 3.09 (0.31) 98.80
Plag 10 1 58.12 (0.13) 0.14 (0.01)  27.04 (0.07) 1.00 (0.06) 0.03 (0.01) 9.71 (0.07)  5.15(0.70)  0.19 (0.02) 0.12 (0.02) 101.49
Mt 5 3 0.03 (0.02) 16.44 (0.35) 3.34 (0.03)  71.49 (0.68) 3.64 (0.13) 0.10 (0.05)  0.02 (0.03)  0.00 (0.01) 0 (0) 95.07
Ilm 2 1 0.83 48.72 1.86 39.45 3.72 0.40 0.02 0.00 0.04 95.03

4-sc4-85 Wht 10 7 0.78 (0.83) 0.12 (0.05) 0.10 (0.13) 3.09 (0.16) 3.33(0.07) 46.12(0.50) 0.28 (0.04)  0.03 (0.03)  44.74 (0.68) 98.58
Liq 30 8 68.27 (1.27) 1.70 (0.06)  11.62 (0.19) 5.47 (0.56) 0.99 (0.10) 3.14 (0.28)  1.73(0.14)  1.50 (0.06) 0.52 (0.08) 94.95
Plag 30 4 54.93 (0.85) 0.24 (0.06)  25.63 (0.63) 1.30 (0.26) 0.22 (0.05) 9.57 (0.47) 4.54(0.13)  0.16 (0.07) 0.09 (0.03) 96.69
Ilm 5 3 1.62 (0.43)  54.99 (1.19) 1.83 (0.65) 31.41 (2.07) 4.03 (0.90) 0.55(0.05)  0.10 (0.11)  0.02 (0.02) 0.03 (0.02) 94.58
Qtz 5 2 90.02 (1.97) 0.61 (0.08) 2.95 (0.05) 0.57 (0.35) 0.06 (0.06) 0.52 (0.15)  0.42 (0.11)  0.06 (0.07) 0.08 (0.08) 95.29
Cpx 20 3 47.49 (0.15) 1.81 (0.07) 2.48 (0.14) 1091 (0.43) 19.15(0.97) 14.33(1.13)  0.27 (0.06) 0 (0) 0.91 (0.21) 97.34

4-sc4-810  Wht 10 7 0.22 (0.06) 0.09 (0.01) 0.02 (0.04) 2.96 (0.13) 4.79 (0.13)  45.18 (0.41)  0.22 (0.03)  0.02 (0.03)  46.21 (0.29) 99.70
Liql 9 8 67.95 (1.92) 1.06 (0.17)  12.05 (1.45) 3.66 (0.17) 1.37 (0.76) 2.57 (1.66)  1.00 (0.46) 1.36 (0.12) 1.93 (1.41) 92.95
Liq2 20 3 14.17 (1.39) 1.75 (0.28) 3.36 (0.32) 16.65(0.71) 1574 (1.85) 14.54(1.52)  0.71 (0.08)  0.08 (0.01)  32.25(1.52) 99.23
Plag 45 2 55.96 (0.20) 0.21 (0.04)  25.07 (0.11) 1.40 (0.05) 0.17 (0.01) 8.77 (0.03)  5.18 (0.01)  0.26 (0.07) 0.43 (0.14) 97.45
Mt 3 4 1.05 (1.69) 6.72 (0.20) 4.21 (0.22)  76.77 (0.70) 4.13 (0.37) 0.35(0.15)  0.06 (0.10)  0.02 (0.02) 0.07 (0.06) 93.36
Ilm 5 1 0.83 48.72 1.86 39.45 3.72 0.40 0.02 0.00 0.04 95.03
Lpx 5 8 50.03 (0.83) 0.69 (0.13) 3.01 (0.35) 15.29 (1.15)  27.44 (1.15) 0.91 (0.29)  0.04 (0.02)  0.02 (0.02) 0.81 (0.54) 98.23
Stan 3 3 0.35 (0.12) 0.10 (0.02) 0.01 (0.01) 6.93 (0.07) 17.95(0.15) 26.78 (0.13)  0.08 (0.02) 0 (0) 48.24 (0.54)  100.44

FMQ +1.5

5-sc4-b5 Wht 5 7 0.23 (0.05) 0.07 (0.03) 0.01 (0.03) 3.02 (0.15) 3.46 (0.04) 46.43(0.36) 0.17 (0.03) 0.01 (0.01) 44.94 (0.33) 98.36
Liq 10 5 65.09 (1.35) 1.24 (0.10)  11.75(1.11) 4.93 (0.23) 0.91 (0.09) 3.06 (0.56) 0.71(0.24) 1.89 (0.17) 0.51 (0.08) 90.09
Plag 43 5 53.81 (2.18) 0.16 (0.04)  25.25 (0.69) 1.83 (0.11) 0.21 (0.04) 9.84 (0.34) 2.94(1.26) 0.20 (0.03) 0.20 (0.20) 94.44
Mt 10 3 0.11 (0.09)  11.00 (0.44) 2.01 (0.14)  76.02 (0.40) 2.66 (0.04) 0.26 (0.11) 0 (0) 0.02 (0.01) 0.01 (0.02) 92.09
Ilm 2 3 0.10 (0.01)  32.63 (0.31) 0.48 (0.08)  56.56 (0.97) 2.29 (0.08) 0.41 (0.08)  0.01 (0.01) 0.02 (0.02) 0.06 (0.09) 92.55

yesl

9ESTI-8IST (900Z) 0L IV 32 1vJjOL "N



Qtz
Cpx

5-sc4-b10 Wht
Liql
Liq2
Plag
Mt
Ilm
Qtz
Lpx
Stan

5-sc4-85 Wht
Liq
Plag
Mt
Psd
Cpx

5-sc4-810 Wht
Liql
Liq2
Plag

IIm
Qtz
Lpx
Stan

FMQ +5.5

8-sc4-b5 Wht
Liq
Plag
Mt
Tlm
Qtz
Cpx

5

15
5
40
13
7
5
15
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5
3
1
1
1
1
1

84.82 (0.53)
45.14 (0.24)

0.21 (0.12)
71.59 (1.15)
18.79 (0.62)
56.38

0.56 (0.76)

0.05 (0.06)
96.22
51.65 (0.64)

0.42 (0.23)

1.66 (0.72)
74.34 (0.68)
56.66

2.00

7.41
51.06

0.51 (0.39)
6.71 (0.43)
72.18 (1.43)
54.53
6.12
0.83
92.74
53.03 (1.62)
0.84 (0.68)

1.01 (0.67)
74.75 (0.72)
65.72

0.14

2.99
86.22
57.95

0.57 (0.31
1.19 (0.10

)
)
0.05 (0.04)
0.76 (0.04)
1.62 (0.10)

0.08

9.01 (0.09)
29.43 (1.3)

0.29

0.46 (0.05

0.04 (0.03

0.09 (0.02
1.12 (0.67
0.08
0.03

38.50
0.43

)
)
)
)

0.10 (0.02)
1.26 (0.59)
0.93 (0.08)
0.04
2.50

38.15
0.38
0.69 (0.05)
0.08 (0.04)

0.12 (0.03)
1.20 (0.19)
3.49

17.95

41.02
0.59

L.15

2.51 (0.41)
2.46 (0.16)

0.15 (0.06)
12.75 (0.33)
4.08 (0.20)
27.02
3.98 (0.23)
0.65 (0.04)
2.44
3.24 (0.26)
0.17 (0.09)

0.46 (0.33)
11.62 (0.76)
25.98 (1.16)

1.16

2.41

2.17

0.15 (0.11)

1.29 (0.12)
12.47 (0.68)
25.23

6.15

2.46

4.06

2.92 (0.03)

0.19 (0.17)

0.27 (0.28)
11.61 (0.81)
10.22

0.83

2.03

5.24
5.74

0.54 (0.17
14.18 (0.70

)
)
2.92 (0.21)
4.09 (0.37)
14.58 (0.94)
1.17
72.69 (1.03)
57.41 (1.7)
0.43
14.16 (1.76)
6.86 (0.22)
)
)

2.34 (0.08
2.60 (0.31
1.74
0.21

38.13

14.58

2.78 (0.21)

12.98 (0.60)
3.16 (0.17)
1.62

69.77

40.81
0.21

13.78 (0.23)
6.27 (0.09)

1.43 (0.14)
2.99 (0.24)
9.79

66.70

42.63
1.13

6.08

0.02 (0.02)
19.00 (0.80)

491 (0.13)
1.69 (0.26)
15.83 (0.48)
0.10
5.41 (0.05)
4.07 (0.27)
0.03
28.03 (1.12)
17.94 (0.22)

3.74 (0.05)
0.84 (0.15)
0.19 (0.06)
0.06
2.95

19.54

4.69 (0.33)
17.72 (0.58)
1.42 (0.33)
0.70
4.69
3.42
0.01
28.30 (0.10)
18.45 (0.07)

4.36 (0.05)
1.30 (1.00)
0.96

3.83

3.51

0.21
13.46

0.31 (0.09
11.34 (0.47

)
)
44.72 (0.46)
2.17 (0.31)
14.51 (1.27)
9.52
0.29 (0.06)
0.38 (0.01)
0.20
1.18 (0.64)
26.33 (0.40)
)
)

46.12 (0.25
2.01 (0.39
9.34
0.94
0.63
9.52

44.96 (0.76)
17.85 (0.83)

2.55 (0.77)

8.65

1.28

0.55

0.46

0.72 (0.05)
26.26 (0.34)

47.90 (0.29)
2.54(0.19)
2.39
0.33
0.66
241

14.38

0.10 (0.03)
0.12 (0.03)
0.23 (0.03)
0.88 (0.12)
0.81 (0.07)
5.41

0.01 (0.02)
0.02 (0.03)
0.29

0.01 (0.01
0.06 (0.02

(0.01)
(0.02)
0.34 (0.04)
(0.26)
(0.47)

0.07

0.56 (0.26
5.22(0.47
0.47
0.12
0.25

0.25 (0.06)
0.79 (0.14)
0.94 (0.19)
545
0.17
0.00
0.35
0.03 (0.02)
0.11 (0.02)

0.31 (0.04)
1.28 (0.23)
2.44
0.00
0.02
0.88
0.38

0.01 (0.01
0.01 (0.01

)
)
0.02 (0.01)
1.93 (0.10)
0.14 (0.03)
0.21

0.02 (0.03)
0.01 (0.02)
0.07

0.01 (0.02
0.01 (0.01

0.02 (0.02
1.15 (0.07
0.10
0.03
0.13
0.01

0.02 (0.02)
0.04 (0.01)
1.41 (0.07)
0.14
0.03
0.01
0.01
0.03 (0.03)
0.01 (0.01)

)
)
)
)

0.04 (0.01)
1.64 (0.13)
1.94
0.01
0.08
0.07
0.43

0.05 (0.08)
0.45 (0.08)

44.02 (0.58)
1.31 (0.57)
26.74 (0.74)
0.12
0.02 (0.02)
0.08 (0.05)
0.00
1.07 (0.87)
45.97 (0.04)

4371 (0.79)
0.63 (0.47)
0.15
0.08
0.03
1.34

44.39 (0.53)
38.52 (0.90)

2.35 (0.80)

1.72

0.40

0.16

0.05

0.54 (0.33)
45.92 (0.55)

44.26 (1.04)
0.61 (0.37)
1.03
0.04
0.27
1.02

0.83

88.93
93.89

97.23
97.17
97.09
100.00
92.00
92.10
99.97
99.81
97.80

98.47
94.87
99.47

0.74
90.30
98.89

97.83
97.15
97.40
98.07
91.09
86.40
98.28
100.04
98.13

99.70
97.91
97.99
89.83
93.20
97.76
100.39

Numbers in parantheses indicate the ecartype.
% Abbrevations used for the phases: Wht, whitlockite; liq, liquid; Pl, plagioclase; Cpx, clinopyroxene; Lpx, low-Ca pyroxene; Mt, magnetite—ulvospinel solid solution; Ilm, Ilmenite-haematite solid
solution; Psd, Pseubroockite-Fe,TiOs solid solution; Qtz, quartz; Stan, stanfieldite.
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rect implications for natural systems, immiscibility has the
consequence that liquid compositions are extremely vari-
able as detailed below.

In addition to liquid(s) and whitlockite, a wide range
of other silicate, oxide and phosphate minerals occur in
these experiments. Because the exact compositions and
nature of these other phases are not of primary impor-
tance in the context of the present study, the number
of analyses of each is commonly restricted (Table 3).
Furthermore, it is also possible that certain phases were
present in the experimental charges but not described, for
example, because they were low in abundance and did
not intersect the surface exposed for electron-microprobe
analysis. However, several broad generalisations can be
made concerning the phase relations of the studied com-
positions. Crystalline silicates are ubiquitous, notably
plagioclase (Pl) and at least one pyroxene, either high-
Ca clinopyroxene (Cpx) or low-Ca pyroxene (LoCapx).
The latter are more common at low oxygen fugacity
and high P,Os, an observation consistent with the results
of Toplis et al. (1994a). In addition, a large number of
the experiments contained quartz, generally those with
additions of 10 wt% P,Os. This observation is consistent
with the strong increase in the activity coefficient of Si
caused by the incorporation of P in silicate melts (e.g.,
Kushiro, 1975; Gan and Hess, 1992; Toplis et al.,
1994a). Three different Fe-Ti oxides are described in
our experiments; magnetite—ulvospinel solid solution
(Mt), ilmenite-haematite solid solution (Ilm) and pseudo-
brookite-Fe,TiOs solid solution (Psd). Finally, in addi-
tion to whitlockite, certain experiments, particularly
those with the highest P contents, crystallise the Ca-—
Mg phosphate stanfieldite (Stan: (Cas;Mgz(POy))4;
Huminicki and Hawthorne, 2002).

3.2. Variability of liquid composition

The range of glass compositions observed in this
study is extremely wide, covering 10-75 wt% SiO,, 0.5—
20 wt% FeO", and 0.2-40 wt% P,Os (Table 3). Before
interpreting these values, it is of interest to consider
the internal variability of liquid composition within indi-
vidual experimental charges (in particular for experi-
ments using SC4-8 where the proportion of liquid was
low, as mentioned above). First of all we note that
the spread in composition between different experiments
is much greater than within a single charge, as illustrat-
ed in Fig. 2 for the case of P,Os in experiments using
compositions SC4-8(5) and SC4-§(10). Even so, in
experiments with two liquids the range in P,Os concen-
tration in the P-rich glass can reach up to 10 wt%
(Fig. 2b), although in terms of relative variability this
remains on the order of +15% and in this respect is
no worse than the P,Os-poor glass. We also find that
average P,Os concentration shows no continuous trend
as a function of fO, (Fig. 2a) and that the difference
in composition of coexisting liquids is greater at higher
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Fig. 2. P,Os5 content of glass (liquid) as a function of fO, in experiments
performed at 1055 °C. (a) Composition SC4-8-5; (b) composition SC4-8-
10.

oxygen fugacity (Fig. 2b), an observation consistent with
the results of Naslund (1983).

Detailed analysis of the spread of liquid composition
within a given experimental charge shows that the vari-
ability of P,Os concentration is systematically correlated
with several other compositional parameters. For exam-
ple, in experiments with a single glass (e.g., bulk com-
position SC4-8(5)) the P,Os content is inversely
correlated with concentration of SiO, and positively cor-
related with that of FeO" and CaO (Figs. 3a—c). Exactly
the same trends are observed in experiments with coex-
isting liquids (Figs. 3d—f), both within each individual li-
quid (most prominent for the P-rich endmember) but
also when comparing the P-rich and P-poor glasses.
The systematic nature of these correlations, in particular
the fact that the variability within one of the endmem-
bers is identical to that observed between coexisting
glasses, leads us to conclude that all liquids had reached
local equilibrium with whitlockite in our experiments.
For this reason, for the data treatment described below
we have chosen to consider each individual analysis of
liquid composition rather than averages for each exper-
imental charge.
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Fig. 3. SiO,, and FeO* and CaO concentrations as a function of P,Os in liquids of experiments 2-SC4-8-5 (a—c) and 2-SC4-8-10 (d-f) (experiments

performed at 1055 °C and AFMQ —0.5).

4. Discussion

4.1. The influence of individual melt components on
whitlockite saturation

4.1.1. The effect of iron

To test the hypothesis that Fe content may affect phos-
phate saturation, the P,Os and FeO™ concentrations of our
liquids at 1055 °C have been compared (Fig. 4). Even
though there is a reasonable positive correlation between
these two parameters at fixed oxygen fugacity (e.g., Figs.

3b and e), when all the data are considered they do not de-
fine a single trend (Fig. 4), the scatter being particularly
large for the bulk compositions with additions of 10 wt%
P,Os (Fig. 4b). However, such dispersion may be expected
if it is ferric iron, rather than FeO®, which can stabilise P in
the liquid. The Fe,O5; concentrations of each liquid have
therefore been estimated using the calculation scheme of
Kilinc et al. (1983), with an additional term for the effect
of P,Os5 taken from Toplis et al. (1994b). However, even
when P,0s5 and Fe,O;3 concentrations in the liquids are
compared no single trend is apparent (Fig. 5) and there is
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Fig. 4. Covariation of weight percent (wt%) P,Os and wt% FeO* of
phosphate saturated liquids at 1055 °C. (a) Bulk compositions with 5 wt%
P,0s. (b) bulk compositions with 10 wt% P,Os. Experiments at different
oxygen fugacities are distinguished as shown in the key.

a similar level of scatter to that observed for FeO*. It would
therefore appear that ferric iron is not the dominant factor
controlling phosphate stability and we conclude that some
other characteristic(s) of melt composition must be consid-
ered to explain the observed variation of the P,O5 content
of whitlockite saturated liquids.

4.1.2. The effect of silica

Previous experimental studies have concluded that the
SiO, content of the liquid is one of the dominant factors
affecting saturation of crystalline phosphates (Watson,
1979; Harrison and Watson, 1984; Sha, 2000). Our liquids
cover a range of SiO, content even wider than those of pre-
vious studies and we too find that there is a good first order
anticorrelation of P,Os and SiO,, independent of oxygen
fugacity and temperature (Fig. 6a). In SiO,-poor liquids,
P,Os contents are highest, but the overall variation of
P,O5 and SiO, is non-linear, with P,O5 concentration flat-
tening off at high SiO, (Fig. 6a). However, when one con-
siders the data in detail it is apparent that at constant SiO,
content there is considerable variation of P,Os concentra-
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Fig. 5. Covariation of wt% P,Os and calculated wt% Fe,O3 of phosphate
saturated liquids at 1055 °C. (a) Bulk compositions with 5 wt% P,0s. (b)
Bulk compositions with 10 wt% P,Os. Experiments at different oxygen
fugacities are distinguished as shown in the key.

tion. For example, at 50 wt% SiO,, P,Os ranges from 3
to 7 wt%, while at 70 wt% SiO,, P,Os ranges from 0.5 to
3 wt%. Furthermore, the data from experiments without
immiscibility appear to define a different trend from data
in experiments showing immiscibility. The experimental
products without immiscibility are systematically lower in
P-content at a given SiO, content (Fig. 6b). The data of
Watson (1979) generally overlap the trend defined by
experiments containing only one liquid (Fig. 6b). This is
consistent with the fact that no immiscibility was described
in those experiments, but is in spite of the facts that liquids
of that study were saturated in apatite (rather than whit-
lockite) and that experiments were performed over a range
of temperatures. In conclusion, even though SiO, content
of the liquid would appear to influence phosphate satura-
tion, the dispersion in the data leads us to infer that it is
not the only factor.

4.1.3. The effect of calcium
Calcium is an essential constituent of both whitlockite
and apatite and from a thermodynamic perspective the con-
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centration of CaO may be expected to affect the saturation of
these minerals. Our data show that concentrations of P,Os
and CaO in whitlockite saturated liquids are indeed very well
correlated, increasing CaO content resulting in a highly non-
linear increase of the quantity of P,Os necessary to crystallise
whitlockite (Fig. 7). For example, for the samples without
immiscibility, approximately 1 wt% P,Os is necessary to sat-
urate in whitlockite at 5 wt% CaO, while ~4.5 wt% is neces-

sary at 10 wt% CaO (Fig. 7). However, as for the case of Si0,
previously described, the data from experiments without
immiscibility define a distinct trend from data in experiments
showing immiscibility, the experiments without immiscibili-
ty containing less P,Os at saturation at a given CaO content
(Fig. 7).

4.2. Development of an equation to predict phosphate
saturation

4.2.1. Whitlockite saturation at fixed temperature

An alternative approach to understanding the saturation
of a crystalline phosphate from silicate liquids is to employ
the principles of equilibrium thermodynamics, in particular
the notion of an equilibrium constant (or solubility product),
as detailed below. In passing we note that although the use of
solubility products is widespread when describing crystalli-
sation from aqueous solutions, it is uncommon for equilibria
involving silicate melts. However, this approach has been
shown to be successful in rationalising solubility data for
various minerals such as columbite, hafnon and zircon in
granitic liquids (Linnen and Keppler, 1997, 2002).

If we consider the simplified case of saturation of trical-
cium phosphate (Mg-, Fe-free whitlockite), one may write
the equation:

3Ca0" + P,04™ = Ca;(PO,),"" (1)

The equilibrium constant (K) of this reaction, which
should be constant at fixed temperature, may be defined in
terms of thermodynamic activities () in the following way:

’;
li : li
Kewton, = (ao)  (aklo,) / (#Tro,,)- @

For liquids saturated in pure tricalcium phosphate at fixed
temperature, the activity of Cas3(PQOy4), may be defined as
unity, thus, expanding the activities in Eq. (2) in terms of
mole fraction (X) and activity coefficient (y) one obtains:

. 3 . . 3 .
1 1 1 1
Kewro, = (X&o) x (Xio,) x (#0) * (). )

Quantitative application of this equation to our data is
potentially compromised by two factors. The first is that
the activity coefficients of CaO and P,Os in silicate liquids
show complex variations as a function of liquid composition
(e.g., Toplis and Schaller, 1998; Libourel, 1999) which will be
difficult to model and predict with current thermodynamic
models of silicate liquids (Ghiorso et al., 1983). The second
is that the phosphates in our experiments are Mg, Fe-bearing
whitlockites rather than pure tricalcium phosphate, thus it
cannot be assumed that the activity of Caz(POy), is unity.

Concerning the first of these points, activity coefficients
of liquid components are variable, as demonstrated by
coexisting immiscible liquids for which the thermodynamic
activity of a given oxide component is the same in each li-
quid, but molar percents may be very different (Table 1).
Indeed, if we consider only the terms in concentration in
Eq. (3) and calculate K, .yni for each of our whitlockite
saturated liquids:
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Fig. 8. Variation of In(Kj.whi) for whitlockite saturated liquids at
1055 °C (see text for details) as a function of mol% SiO, assuming no effect
of substitutions of Mg and Fe for Ca (see text for details). Error bars are
typically smaller than the size of the symbols.

BN _
Ky-whie = (Mlézo) X (Miiﬁ‘os)v (4)
where M is the mole percent of the relevant oxide in the
liquid (scale from 0 to 100), we find a variation in K,/ ywhi
of almost five orders of magnitude, in turn implying the
same variability in the product of activity coefficients
(cf. Eq. (3)). However, despite this wide range, Kjrwhit
is found to be a systematic function of the SiO, mole per-
cent of the liquid (Fig. 8). Of particular note is the fact
that data from systems showing immiscibility and those
not showing immiscibility define the same trend. The scat-
ter is somewhat greater at high SiO, content, but remains
of the same order of magnitude as uncertainties propagat-
ed from the electron-microprobe analyses of CaO and
P205.

Concerning the second issue, a complete and rigorous
assessment of the activity of Caz(POy), in our experimen-
tal phosphates should take into account mixing of Ca, Mg
and Fe in the whitlockite structure. These cations will be
concentrated on one or two of the five possible sites
(Cas 4+ Ca4; Calvo and Gopal, 1975; Nord, 1983; Belik
et al., 2002 and references therein). Furthermore, a quan-
titative understanding of the energetics of mixing at each
of the sites occupied by Fe and Mg is required. Calcula-
tions based on detailed consideration of site occupancy
would therefore be relatively complex and necessarily
qualitative given the available structural and thermody-
namic data. On the other hand, we note that all the whit-
lockites in our experiments have approximately the same
concentration of calcium, and that the correlation ob-
served in Fig. 8 is well defined. In light of these latter
observations we conclude that even though the activity
of Caz(POy), is clearly not unity for the phosphates in
our experiments, to a first approximation a constant value
may be assumed.

In any case, from a practical point of view the trend
shown in Fig. 8 provides a simple and powerful way to de-
scribe the compositional characteristics of our whitlockite
saturated silicate liquids at 1055 °C. This trend may be de-
scribed by the equation:

In [(Mlggof x (MiijOS)}
- —0.0015(}\4{;?02)2 - o.oosz(Mgﬁoz) +12.147. (5)

Mole percentages rather than mole fractions have been
used here to underline the fact that although this equation
is based upon the thermodynamic formalism presented
above, it is not a rigorous thermodynamic expression.
The simplicity of Eq. (5), which requires no knowledge of
how liquid composition, liquid structure and activity coef-
ficients of CaO and P,Oj5 are related, is somewhat surpris-
ing. Indeed, it may be argued that a trend is observed in
Fig. 8 because all our experiments are multiply saturated
in other mineral phases (e.g., systematic presence of plagio-
clase and a calcium-bearing pyroxene) which thus controls
or at least limits the thermodynamic activities of silica and/
or lime in our liquids. Below we will therefore apply the
formalism developed above to experimental data from
the literature which are not necessarily multiply saturated,
including extension to apatite saturated liquids.

4.2.2. Extension to apatite

Apatite rather than whitlockite is the most abundant
phosphate in terrestrial rocks, thus it is of interest to assess
to what extent the compositional controls on apatite satu-
ration are the same as those observed for whitlockite (cf.
Fig. 8). Although our experiments did not contain apatite,
sufficient experimental data are available in the literature to
extend our formalism, at least to the case of fluorapatite
saturated liquids. In the case of apatite, the solubility prod-
uct may be written:

. 5 . 1.5 . .

1 1 1 atit
Kewwonran = (a8o) * (dio, ) (ai) / (abfifho, e )-
(6)

Comparison of Egs. (2) and (6) shows that apatite satura-
tion differs from that of whitlockite because of the presence
of volatiles in the former, and because the Ca/P ratio of the
crystal is different. Concerning the presence of volatiles, for
the present purposes we will consider only experimental
data in which liquids were saturated in fluorapatite by dis-
solution (Watson, 1979; Sha, 2000). In this case the activity
of halogens in the liquid can be considered approximately
constant, and thus should not affect the variation of the
equilibrium constant as a function of melt composition.
In an analogous way to K, wni we define the parameter
Ks-apatites €xpressed as:

li > li =
KM-apatite = (M Cc'cllo) X (M P(;Os) ! (7)

The different stoichiometry of apatite and whitlockite
(i.e., the different Ca/P) has the consequence that the abso-
lute values of K/ apatite and Kpz.whit cannot be directly com-
pared. One solution to this problem is to use a common
basis for all liquid compositions irrespective of the crystal-
line phosphate in which they are saturated (i.c., consistent
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use of either Ky/apatite OF Karwhit for all liquids). In this
way, it may be assessed whether liquid compositions satu-
rated in these two different phosphates are comparable or
not. For this comparison we require data for whitlockite
and apatite saturated liquids at the same temperature.
The literature data for fluorapatite saturated liquids which
cover a wide range of SiO, content (Watson, 1979) are gen-
erally at higher temperature than our experiments. On the
other hand, the data of Watson (1979) for fluorapatite sat-
urated liquids at 1200 °C may be compared with those of
Sha (2000) for whitlockite saturated liquids at the same
temperature (Fig. 9). This comparison of values of Kjy/apa-
tite Shows that a single trend is apparent as a function of
SiO, content which, furthermore, shares many features of
the trend defined by our data at lower temperature, as dis-
cussed further below.

4.2.3. The effect of temperature

In addition to the importance of liquid composition, the
model of Harrison and Watson (1984) implies that tempera-
ture also plays a role on apatite saturation, increasing tem-
perature leading to higher levels of P,Os in the liquid at P
saturation. Although the temperature range of our experi-
ments is not sufficient to observe this effect (Fig. 6a), our data
combined with those of Watson (1979), Pichavant et al.
(1992) and Sha (2000) cover temperatures from 777 to
1400 °C. When In (K ps-apatite) 18 plotted as a function of molar
percent of SiO,, liquids from experiments at different tem-
peratures (e.g., isothermal sections at 1055, 1200, 1300 and
1400 °C) clearly define a series of parallel trends (Fig. 10). In-
deed, we find that when K/ ,patite is divided by temperature,
all experimental liquids considered define a single trend
(Fig. 11). Although this way of incorporating temperature
is purely empirical, it provides a simple way to express the
compositional and temperature effects that characterise lig-
uids saturated in fluorapatite and/or whitlockite and which
may thus be used as the basis for a comprehensive predictive
model, detailed below.
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Fig. 9. Variation of In(Kjrapaite) as a function of mol% SiO, for
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4.3. The case of peraluminous liquids

One notable feature of Figs. 10 and 11 is that the pera-
luminous liquids of Pichavant et al. (1992) follow exactly
the same trend as the subaluminous and peralkaline liquids
studied by other authors. This result therefore implies that
the discrepancy between the P,O5 content at apatite satura-
tion measured by Pichavant et al. (1992) and that predicted
by the model of Harrison and Watson (1984) is an indirect
effect of CaO content (which is not accounted for in the
model of Harrison and Watson, 1984) rather than a direct
effect of the peraluminous nature of the liquids. A similar
conclusion regarding the importance of CaO was proposed
by Bea et al. (1992) based upon consideration of data from
natural peraluminous granitic magmas.

4.4. A predictive model for phosphate saturation

The data shown in Fig. 11 represent liquids saturated in
either fluorapatite, a-whitlockite (data of Sha (2000) at
1400 °C) or B-whitlockite. These liquids are highly variable
in composition and are not systematically saturated in
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other phases which may buffer the activities of certain melt
components. For example, the liquids of Sha (2000) are sat-
urated in phosphate alone, while in the study of Pichavant
et al. (1992) corundum and andalusite are reported as
accompanying phases. We therefore conclude that the cor-
relation observed in Fig. 11 may be used as the basis for a
comprehensive model for calculation of the saturation of
fluorapatite or whitlockite from silicate magmas. Indeed,
the fact that data for different phosphate minerals are not
distinguished in Fig. 11 implies that a given silicate liquid
will either contain no phosphate, or will be saturated in
one of apatite or whitlockite, crystallisation of apatite pre-
sumably occurring in the presence of sufficient Cl or F, and
whitlockite in volatile-free systems. Whether or not this
correlation is also valid for hydroxyapatite saturated lig-
uids remains to be established.

Quantitatively, the data of Fig. 11 may be described as a
function of silica content by the equation:

7| () (11,) "]

~12
LYY 8)
139.00 — M3

The quadratic form used in Eq. (5) has been avoided here
in order to eliminate high-order terms in silica concentra-
tion of the liquid. Eq. (8) may then be rearranged to define
the mol% P,Os of a liquid saturated in apatite/whitlockite
(M lllcz"osft), as a function of temperature and the mol% SiO,
and CaO of the liquid:

o ) —1.2868
st _ o |2 () 12868 0 oag
P20s p l3 ( {139.00 — Mg,

~5In (Mggo)ﬂ . 9)

4.5. Application to natural systems

Despite the relative simplicity of Eq. (9), one shortcom-
ing of the model presented above is that concentrations are
expressed in mol% rather than wt%. Not only does this ren-
der interpretation of values less intuitive than if they were
in wt%, but this also has the drawback that unless the
whole liquid composition is known the model cannot be
used. This could be problematic in geological environments
(i.e., layered intrusions) where the liquid is no longer pres-
ent. One way around this problem is to define factors which
allow conversion from wt% to mol% and vice versa. This is
not as trivial as may seem at first glance, because the mol%
of a given oxide will depend on the fractions and molar
weights of the other components. However, when the
mol% and wt% of a given oxide are compared for our lig-
uids with SiO, content in the range 30-75 wt% (i.e., those
most representative of natural compositions), the data de-
fine excellent linear correlations which pass through the
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Fig. 12. Relations between weight percent and mole percent for compo-
nents CaO, SiO, and P,Os in typical magmatic compositions. Equations
are given in the text.

origin (Fig. 12). Based upon these correlations we deter-
mine that for geologically relevant liquids: mol%
SiO, = 1.11 * wt% SiO,; mol% CaO = 1.18 * wt% CaO;
and mol% P,Os5 = 0.47 * wt% P,Os. Using these correction
factors, Eq. (9) can be used even when only wt% analyses
are known or can be assumed, although we stress that mo-
lar values should be used wherever possible.

This equation may be used in several ways, either to
assess whether a given liquid is saturated in phosphate or
not, or rearranged to constrain the composition and/or
temperature of a system which is known to be saturated
in either apatite or whitlockite. From a more general
perspective, it may also be used to illustrate the importance
of each parameter (T, CaO, and SiO;) on wt% P,Os
required for phosphate saturation. For example, at fixed
CaO content of the liquid Eq. (9) may be used to show that
the effect of changing SiO, content dominates the effect of
changing temperature (Fig. 13a). Furthermore, the effect
of temperature is particularly small for SiO, content greater
than 55 mol% (Fig. 13a). At fixed temperature (of 1050 °C),
it is predicted that the effect of CaO is negligible at high SiO,
content, but may become extremely important at lower
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Fig. 13. Calculated values of wt% P,05 required for phosphate saturation
as a function of wt% SiO,, CaO and temperature.

SiO, content (Fig. 13b). In other words, in granitic systems
the influence of CaO concentration of the liquid on wt%
P,Os5 required for phosphate saturation will be minor, but
this will not be true in low-SiO, basaltic systems. Finally,
at fixed SiO, content, it may be appreciated that the effect
of CaO dominates that of temperature, although the effect
of temperature is more marked at low CaO content
(Fig. 13c). Despite the fact that the effects of changing
Si0, and CaO concentrations in the liquid dominate those
of changing temperature, it is clear that there is a complex
interdependence of temperature, SiO, and CaO concentra-
tion on wt% P,Os required for phosphate saturation and
that Eq. (9) should be used for any quantitative application.

4.5.1. Hlustrating saturation as a function of magmatic
differentiation

Although Eq. (9) may be used to calculate how temper-
ature and melt composition affect wt% P,Os5 required for

phosphate saturation, as illustrated in Fig. 13, it is not
immediately obvious how this parameter will vary along
the liquid line of descent of a real magmatic system. In-
deed, how wt% P,Os required for phosphate saturation
varies in response to the changes in major element compo-
sition of the liquid caused by fractional crystallisation will
obviously be a key factor which will determine at which
point along the liquid line of descent a phosphate will ap-
pear. The other key factor is the evolution of the phospho-
rus content of the liquid as differentiation progresses,
saturation occurring when the P,Os content of the liquid
becomes greater than the wt% P,Os required for phosphate
saturation. This is illustrated below for the case of differen-
tiation of a ferrobasaltic magma along the FMQ buffer
using the experimentally determined liquids described by
Toplis and Carroll (1995). The initial liquid used in that
study has the composition of a dyke found close to the
Skaergaard intrusion and which has been proposed as a
possible parental magma of that intrusion (Brooks and
Nielsen, 1978). A detailed account of the phase relations
and liquid compositions can be found in Toplis and Carroll
(1995) although the salient features are summarised below.

For each individual liquid of Toplis and Carroll (1995)
the value of wt% P,O5 required for phosphate saturation
has been calculated and is reported as a function of temper-
ature in Fig. 14. For the different liquid compositions pro-
duced during cooling, the calculated variation of wt% P,Os5
required for phosphate saturation defines three distinct seg-
ments. The one at highest temperature is characterised by
decreasing wt% P,Os required for phosphate saturation
with falling temperature. In this range, olivine and plagio-
clase are the only liquidus phases and the liquid has
approximately constant CaO and SiO, content (Toplis
and Carroll, 1995). The calculated variation in wt% P,Os
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Fig. 14. Values of wt% P,Os required to saturate experimental liquids of
Toplis and Carroll (1995) in a crystalline phosphate calculated using Eq.
(9) (diamonds). Solid and dashed curves represent wt% P,0Os of the liquid
as a function of temperature assuming that the initial liquids contained
0.1, 0.2 and 0.3 wt% P,Os (as labelled). Intersection of the curves and
diamonds may be used to predict phosphate saturation as detailed in the
text. Phases: Cpx, clinopyroxene; Mt, magnetite—ulvospinel solid solution;
Ilm, ilmenite-haematite solid solution.
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required for phosphate saturation can thus be attributed to
the change in temperature. A marked change in the behav-
iour of wt% P,Os5 required for phosphate saturation occurs
at ~1130 °C (Fig. 14), corresponding to the appearance of
clinopyroxene on the liquidus (Toplis and Carroll, 1995).
In the temperature range 1130-1100 °C, the SiO, content
of the liquid is approximately constant, but the CaO con-
tent of the liquid is decreasing. Therefore, the marked in-
crease in wt% P,Os required for phosphate saturation
can be attributed to the falling CaO content of the liquid,
which dominates the effect of falling temperature. The sec-
ond major change in the behaviour of wt% P,Os required
for phosphate saturation occurs at ~1100 °C (Fig. 14)
when magnetite appears on the liquidus. For temperatures
below 1100 °C, the CaO content of the liquid continues to
decrease, but the SiO, content of the liquid increases with
falling temperature. The drop in wt% P,Os required for
phosphate saturation with decreasing temperature can
therefore be attributed to the increase in SiO, content, an
effect which dominates those of CaO content and tempera-
ture which are both acting to increase wt% P,0Os5 required
for phosphate saturation.

These values of wt% P,O5 required for phosphate satura-
tion may then be compared with the theoretical evolution of
P,Os in the liquid to assess at what point phosphate satura-
tion would occur. For example, assuming that phosphorous
is perfectly incompatible and using the variation of percent-
age crystallisation as a function of temperature determined
by Toplis and Carroll (1995), one predicts that if the liquid
at 1170 °C contained 0.2 wt% P,0s, then phosphate satura-
tion should occur at 1055 °C when the liquid contains
1.5 wt% P,Os (Fig. 14). A concentration of P,Os in the initial
liquid of 0.1 wt% P,Os leads to slightly lower saturation tem-
peratures and a concentration of P,Os in the liquid at satura-
tion of approximately 1 wt% (Fig. 14). These ranges of
temperature and P,Os content are perfectly consistent with
independent estimates proposed for the Skaergaard intru-
sion (Wager, 1960; McBirney and Naslund, 1990), providing
evidence for the validity of the model.

4.5.2. The petrogenesis of rocks dominated by association of
apatite and Fe-Ti oxide

Rocks dominated by the presence of apatite and Fe-Ti
oxide may be found in diverse magmatic environments,
including mafic intrusions, rocks associated with anortho-
sites, and ophiolites (e.g., Wager and Brown, 1967; Phil-
potts, 1967, Dymek and Owens, 2001; Mitsis and
Economou-Eliopoulos, 2001). The petrogenesis of these
rock types, in particular that of nelsonites, is the subject
of debate. The principal proposals are: (1) that nelsonites
represent the crystallisation products of an immiscible
Fe-Ti oxide liquid which separated from a silicate magma
(e.g., Philpotts, 1967; Ripley et al., 1998), an immiscibility
which may be linked to magma mixing (e.g., Clark and
Kontak, 2004); (2) that apatite and oxide represent cumu-
lates from an evolved silicate magma (e.g., Emslie, 1975;
Dymek and Owens, 2001; Barnes et al., 2004).

Even though the experimental results presented here show
immiscibility, the bulk P,Os contents of our starting compo-
sitions are unrealistically high for natural ferrobasaltic liq-
uids and any direct application of our results to the
question of nelsonite petrogenesis is probably unfounded.
On the other hand, the calculated variation of wt% P,Os re-
quired for phosphate saturation during ferrobasaltic differ-
entiation (Fig. 14) may be used to assess whether or not
extremely high levels of P and Fe may be reached in the li-
quid, without the need to postulate liquid immiscibility.
For example, Fig. 14 shows that during cotectic crystallisa-
tion of olivine, plagioclase and clinopyroxenes, wt% P,Os re-
quired for phosphate saturation increases sharply, a trend
which is only reversed by the appearance of magnetite. As
discussed above this is the consequence of decreasing CaO
content of the liquid during crystallisation of olivine gabbro
(Shi and Libourel, 1991; Toplis and Carroll, 1995). Thus, if
the appearance of magnetite on the liquidus is displaced to
lower temperature (i.e., the middle segment in Fig. 14 ex-
tends to lower temperature, and thus higher values of wt%
P,Os required for phosphate saturation), the saturation tem-
perature of phosphate will also be lowered and the concen-
trations of P,Os in the liquid will be significantly higher
when a phosphate does finally appear. We therefore con-
clude that retarding magnetite saturation will indeed tend
to retard phosphate saturation, but not because ferric iron
stabilises P in the liquid as originally postulated, but rather
as a consequence of the variations of CaO and SiO, content
of the liquid as a function of magmatic differentiation.

The fact that the presence of P in ferrobasaltic liquids re-
tards magnetite crystallisation (Topliset al., 1994a) therefore
provides a chemical mechanism to enrich magmatic liquids
to high concentrations of both Fe and P. However, the extent
to which this mechanism is relevant to the petrogenesis of
nelsonites remains to be demonstrated. For example, nelso-
nites typically contain less than 10% silicate minerals,
although more than 10% of such phases were present in all
of our experiments. We conclude that further experimental
work and petrographic study of natural nelsonites is re-
quired to understand the physical and chemical mechanisms
which lead to the formation of these enigmatic rocks.

5. Concluding remarks

In the light of our experimental results, and those in the
literature, we conclude that it is SiO, and CaO concentra-
tions of the liquid that dominate phosphate saturation in
magmatic systems, any effect of iron and/or oxidation state
being of secondary importance. Based upon these results
we propose an equation which may be used to predict the
P,Os concentration of silicate liquids saturated either in
whitlockite or apatite as a function of melt chemistry and
temperature. Of particular note is the fact that this equa-
tion is valid over extremely wide ranges of liquid composi-
tion (e.g., SiO, content from 10 to 75 mol%), not only for
peralkaline and subaluminous compositions, but also pera-
luminous liquids.
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