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Abstract Determining optimal locations and operation
parameters for wells in oil and gas reservoirs has a
potentially high economic impact. Finding these op-
tima depends on a complex combination of geological,
petrophysical, flow regimen, and economical parame-
ters that are hard to grasp intuitively. On the other
hand, automatic approaches have in the past been
hampered by the overwhelming computational cost of
running thousands of potential cases using reservoir
simulators, given that each of these runs can take on
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the order of hours. Therefore, the key issue to such au-
tomatic optimization is the development of algorithms
that find good solutions with a minimum number of
function evaluations. In this work, we compare and
analyze the efficiency, effectiveness, and reliability of
several optimization algorithms for the well placement
problem. In particular, we consider the simultaneous
perturbation stochastic approximation (SPSA), finite
difference gradient (FDG), and very fast simulated an-
nealing (VFSA) algorithms. None of these algorithms
guarantees to find the optimal solution, but we show
that both SPSA and VFSA are very efficient in finding
nearly optimal solutions with a high probability. We
illustrate this with a set of numerical experiments based
on real data for single and multiple well placement
problems.
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stochastic optimization · VFSA · well placement

1. Introduction

The placement, operation scheduling, and optimization
of one or many wells during a given period of the
reservoir production life has been a focus of atten-
tion of oil production companies and environmental
agencies in the last years. In the petroleum engineer-
ing scenario, the basic premise of this problem is to
achieve the maximum revenue from oil and gas while
minimizing operating costs, subject to different geolog-
ical and economical constraints. This is a challenging
problem because it requires many large-scale reservoir
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simulations and needs to take into account uncertainty
in the reservoir description. Even if a large number of
scenarios is considered and analyzed by experienced
engineers, the procedure is in most cases inefficient
and delivers solutions far from the optimal one. Con-
sequently, important economical losses may result.

Optimization algorithms provide a systematic way to
explore a broader set of scenarios and aim at finding
very good or optimal ones for some given conditions. In
conjunction with specialists, these algorithms provide a
powerful mean to reduce the risk in decision-making.
Nevertheless, the major drawback in using optimization
algorithms is the cost of repeatedly evaluating different
exploitation scenarios by numerical simulation based
on a complex set of coupled nonlinear partial differen-
tial equations on hundreds of thousands to millions of
gridblocks. Therefore, the major challenge in relying on
automatic optimization algorithms is finding methods
that are efficient and robust in delivering a set of nearly
optimal solutions.

In the past, a number of algorithms have been de-
vised and analyzed for optimization and inverse prob-
lems in reservoir simulation (see, e.g., [26, 34, 49]).
These problems basically fall within four categories:
(1) history matching; (2) well location; (3) production
scheduling; (4) surface facility design. In the particular
case of the well placement problem, the use of op-
timization algorithms began to be reported about 10
years ago (see, e.g., [4, 37]). Since then, increasingly
complicated cases have been reported in the literature,
mainly in the directions of complex well models (type,
number, orientation), characteristics of the reservoir
under study, and the numerical approaches employed
for its simulation [5, 13, 14, 30, 46, 47]. From an opti-
mization standpoint, most algorithms employed so far
are either stochastic or heuristic approaches; in par-
ticular, this includes simulated annealing (SA) [4] and
genetic algorithms (GA) [14, 47]. Some of them have
also been combined with deterministic approaches to
provide a fast convergence close to the solution; for
instance, GA with polytope and tabu search [5] and GA
with neural networks [7, 14]. In all cases, the authors
point out that all these algorithms are still computation-
ally demanding for large-scale applications.

In this work, we introduce the simultaneous pertur-
bation stochastic approximation (SPSA) method to the
well placement problem, and compare its properties
with other, better-known algorithms. The SPSA algo-
rithm can be viewed as a stochastic version of the steep-
est descent method, where a stochastic vector replaces
the gradient vector computed using point-wise finite
difference approximations in each of the directions
associated with the decision variables. This generates a

highly efficient method because the number of function
evaluations per step does not depend on the dimension
of the search space. Despite the fact that the algorithm
has a local search character in its simplest form, the
stochastic components of the algorithm are capable
of delivering nearly optimal solutions in relatively few
steps. Hence, we show that this approach is more ef-
ficient than other traditional algorithms employed for
the well placement problem. Moreover, the capability
of the SPSA algorithm to adapt easily from local search
to global search makes it attractive for future hybrid
implementations.

This paper is organized as follows: section 2 reviews
the components that are used for the solution of the
well placement problem: (1) the reservoir model and
the parallel reservoir simulator used for forward mod-
eling; (2) the economic revenue function to optimize;
and, (3) the optimization algorithms considered under
this comparative study. Section 3 shows an exhaustive
and comparative treatment of these algorithms based
on the placement of one well. Section 4 extends the
previous numerical analysis to the placement of mul-
tiple wells. Section 5 summarizes the results of the
present work and discusses possible directions of fur-
ther research.

2. Problem description and approaches

In this study, we pose the following optimization
question: At which position should a (set of) new
injection/production wells be placed to maximize the
economic revenue of production in the future? We first
detail the description of the reservoir simulator that al-
lows the evaluation of this economic revenue objective
function. We then proceed to describe the objective
function and its dependence on coefficients such as
costs for injection and production. We end the section
by describing the algorithms that were considered for
solving this optimization problem.

2.1. Description and solution of the oil reservoir model

For the purpose of this paper, we restrict our analysis
to reservoirs that can be described by a two-phase,
oil–water model. This model can be formulated as the
following set of partial differential equations for the
conservation of mass of each phase m = o, w (oil and
water):

∂(φNm)

∂t
+ ∇ · Um = qm. (1)
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Here, φ is the porosity of the porous medium, Nm

is the concentration of the phase m, and qm represents
the source/sink term (production/injection wells). The
fluxes Um are defined by using Darcy’s law [15], which
with gravity ignored – reads as Um = −ρm Kλm∇ Pm,
where ρm denotes the density of the phase, K the per-
meability tensor, λm the mobility of the phase, and Pm

the pressure of phase m. Additional equations specify-
ing volume, capillary, and state constraints are added,
and boundary and initial conditions complement the
system (see [2, 15]). Finally, Nm = Smρm with Sm de-
noting saturation of a phase. The resulting system for
this formulation is

∂(φρmSm)

∂t
− ∇ · (ρm Kλm∇ Pm) = qm. (2)

In this paper we consider wells that either produce (a
mixture of) oil and water, or at which water is injected.
At an injection well, the source term qw is nonnegative
(we use the notation q+

w := qw to make this explicit). At
a production well, both qo and qw may be nonpositive,
and we denote this by q−

m := −qm. In practice, both
injection and production rates are subject to control,
and thus to optimization; however, in this paper we
assume that rates are indirectly defined through the
specification of the bottom hole pressure (BHP). These
rates are used for evaluating the objective function
and are not decision parameters in our optimization
problem.

This model is discretized in space by using the ex-
panded mixed finite element method, which, in the case
considered in this paper, is numerically equivalent to
the cell-centered finite difference approach [1, 38]. In
time, we use a fully implicit formulation solved at every
time step with a Newton–Krylov method precondi-
tioned with algebraic multigrid.

The discrete model is solved with the IPARS (Inte-
grated Parallel Accurate Reservoir Simulator) software
developed at the Center for Subsurface Modeling at
The University of Texas at Austin (see, e.g., [25, 32,
35, 43, 45]). IPARS is a parallel reservoir simulation
framework that allows for different algorithms or for-
mulations (IMPES, fully implicit), different physics
(compositional, gas–oil–water, air–water, and one-
phase flow) and different discretizations in different
parts of the domain via the multiblock approach [23,
24, 33, 44, 48]. It offers sophisticated simulation com-
ponents that encapsulate complex mathematical mod-
els of the physical interaction in the subsurface such
as geomechanics and chemical processes, and which
execute on parallel and distributed systems. Solvers
employ state-of-the-art techniques for nonlinear and

linear problems including Newton–Krylov methods en-
hanced with multigrid, two-stage, and physics-based
preconditioners [20, 21]. It can also handle an arbitrary
number of wells each with one or more completion
intervals.

2.2. Economic model

In general, the economic value of production is a func-
tion of the time of production and of injection and
production rates in the reservoir. It takes into account
costs such as well drilling, oil prices, costs of injection,
extraction, and disposal of water and of the hydrocar-
bons, as well as associated operating costs. We assume
here that operation and drilling costs are independent
of the well locations and therefore a constant part
of our objective function that can be omitted for the
purpose of optimization.

We then define our objective function by summing
up, over the time horizon [0, T], the revenues from
produced oil over all production wells, and subtracting
the costs of disposing produced water and the cost
of injecting water. The result is the net present value
(NPV) function

fT(p)=−

∫ T

0

 ∑
prod. wells

[(
coq−

o (t)−cw,dispq−

w(t)
)]

−

∑
inj. wells

cw,injq+

w(t)

 (1+r)−t dt, (3)

where q−
o and q−

w are production rates for oil and water,
respectively, and q+

w are water injection rates, each in
barrel/day. The coefficients co, cw,disp and cw,inj are the
prices of oil and the costs of disposing and injecting
water, in units of dollars per barrel each. The term r
represents the interest rate per day, and the exponential
factor takes into account that the drilling costs have to
be paid up front and have to be paid off with interest.
The function fT(p) is the negative total NPV, as our
algorithms will be searching for a minimum; this then
amounts to maximizing the (positive) revenue.

If no confusion is possible, we drop the subscript
from fT when we compare function evaluations for the
same time horizon T but different well locations p.
Note that f (p) depends on the locations p of the wells
in two ways. First, the injection rates of wells, and thus
their associated costs, depend on their location if the
BHP is prescribed. Second, the production rates of the
wells as well as their water/oil ratio depend on where
water is injected and where producers are located.



306 Comput Geosci (2006) 10: 303–319

We remark that in practice, realistic objective func-
tions would also include other factors that would render
it more complex (see, e.g., [6, 9]). However, the general
form would be the same.

2.3. The optimization problem

With the model and objective function described above,
the optimization problem is stated as follows: find opti-
mal well locations p∗ such that

p∗
= arg min

p∈P
f (p), (4)

subject to the flow variables used in f (p) satisfying
model (1), (2). The parameter space for optimization
P is the set of possible well locations. We fix the BHP
operating conditions at all wells. However, in general
the BHP and possibly other parameters could vary and
become an element of P as well.

If the model we consider are the continuous flow
equations (1), (2), then P is the continuous set of
well locations p = (px, py) ∈ R2. However, in practice,
all we can consider is a discretized version of these
equations, in particular the discrete solution provided
by the IPARS flow solver mentioned above. Within
this solver, a well model is used to describe fluid flow
close to well locations, and the way this model is im-
plemented implies that only the cell a well is in is
relevant, whereas the location within a cell is ignored.
Consequently, the search space P reduces to the set of
cells, which we parameterize by the integer lattice of
cell midpoints.

The optimization problem is therefore converted
from a continuous one to a discrete one, and the op-
timization algorithms described below have to take
this into account. While this transformation makes the
problem more complicated to solve in general, it should
be noted that it should not impact the solution process
too much if the distance between adjacent points in P
is less than the typical length scale of variation of the
objective function f (p), since in that case derivatives of
the continuous function f (p) can be well approximated
by finite differences on the integer lattice. As will be-
come obvious from figures 3 and 4 below, this assump-
tion is satisfied in at least parts of the search space.

In the rest of the section, we briefly describe all
the optimization algorithms that we compare for their
performance on the problem outlined above. The im-
plementation of these algorithms uses a Grid-enabled
software framework previously described in [3, 19, 31].

2.3.1. An integer SPSA algorithm

The first optimization algorithm we consider is an in-
teger version of the SPSA method. SPSA was first
introduced by Spall [40, 42] and uses the following idea:
in any given iteration, choose a random direction in
search space. By using two evaluation points in this
and the opposite direction, determine if the function
values increase or decrease in this direction, and get an
estimate of the value of the derivative of the objective
function in this direction. Then take a step in the de-
scent direction with a step length that is the product of
the approximate value of the derivative, and a factor
that decreases with successive iterations.

Appealing properties of this algorithm are that it
uses only two function evaluations per iteration, and
that each update is in a descent direction. In particular,
the first of these properties makes it attractive com-
pared to a standard finite difference approximation of
the gradient of the objective function, which takes at
least N + 1 function evaluations for a function of N
variables. Numerous improvements of this algorithm
are possible, including computing approximations to
the Hessian, and averaging over several random direc-
tions (see [42]).

In its basic form as outlined above, SPSA can only
operate on unbounded continuous sets, and is thus un-
suited for optimization on our bounded integer lattice
P. A modified SPSA algorithm for such problems was
first proposed and analyzed by Gerencsér et al. [10,
11]. While their method involved fixed gain step lengths
and did not incorporate bounds, both points are easily
integrated. In order to describe our algorithm, let us
define d·e to be the operator that rounds a real number
to the next integer of larger magnitude. Furthermore,
let 5 be the operator that maps every point outside
the bounds of our optimization domain onto the closest
point in P and does not modify points inside these
bounds. Then the integer SPSA algorithm that we use
for the computations in this paper is stated as follows
(for simplicity of notation, we assume that we optimize
over the lattice of all integers within the bounds de-
scribed by 5, rather than an arbitrarily spaced lattice).

Algorithm 2.1 (Integer SPSA).

1 Set k = 1, γ = 0.101, α = 0.602.
2 While k < Kmax or convergence has not been

reached do

2.1 Choose a random search direction 1k, with
(1k)l ∈ {−1, +1}, 1 ≤ l ≤ N.

2.2 Compute ck = d
c

kγ e, ak =
a

kα .
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2.3 Evaluate f +
= f (5(pk + ck1k)) and f −

=

f (5(pk − ck1k)).
2.4 Compute an approximation to the magnitude

of the gradient by gk = ( f +
− f −)/|5(pk +

ck1k) − 5(pk − ck1k)|.
2.5 Set pk+1 = 5(pk − dakgke1k).
2.6 Set k = k + 1.

end While

A few comments are in order. The exponents γ

and α control the speed with which the monotonically
decreasing gain sequences defined in step 2.2 converge
to zero, and consequently control the step lengths the
algorithm takes. The sequence {ak} is required to decay
at a faster rate than {ck} to prevent instabilities due to
the numerical cancellation of significant digits. There-
fore, α > γ to ensure

∑
∞

k=0 ak/ck < ∞. The values for
γ and α listed in step 1 are taken from [41, 42], where a
more in-depth discussion of these values can be found.
The parameters c and a are chosen to scale step lengths
against the size of the search space P.

As can be seen in step 2.1, the entries of the vector
1k are generated following a Bernoulli (±1) distri-
bution. This vector represents the simultaneous per-
turbation applied to all search space components in
approximating the gradient at step 2.4. It can be shown
that the expected value of this approximate gradient
converges indeed to the true gradient for continuous
problems.

Compared to the standard SPSA algorithm [42], our
algorithm differs in the following steps: First, rounding
the step length ck in step 2.2 ensures that the function
evaluations in step 2.3 only happen on lattice points
(note that 1k is already a lattice vector). Likewise, the
rounding operation in the update step 2.5 ensures that
the new iterate is a lattice point. In both cases, we round
up to the next integer to avoid zero step lengths that
would stall the algorithm. Second, using the projector
in steps 2.3–2.5 ensures that all iterates are within the
bounds of our parameter space.

2.3.2. An integer finite difference gradient algorithm

The second algorithm is a finite difference gradient
(FDG) algorithm that shares most of the properties of
the SPSA algorithm discussed above. In particular, we
use the same methods to determine the step lengths
for function evaluation and iterate update (including
the same constants for γ , α) and the same convergence
criterion. However, instead of a random direction, we
compute the search direction by a two-sided finite dif-

ference approximation of the gradient in a component-
wise fashion.

Algorithm 2.2 (Integer Finite Difference Algorithm).

1 Set k = 1, γ = 0.101, α = 0.602.
2 While k < Kmax or convergence has not been

reached do

2.1 Compute ck = d
c

kγ e, ak =
a

kα .
2.2 Set evaluation points s±

i = 5(pk ± ckei) with ei

the unit vector in direction i = 1, . . . , N.
2.3 Evaluate f ±

i = f (s±

i ).
2.4 Compute the gradient approximation g by gi =

( f +

i − f −

i )/|s+

i − s−

i |.
2.5 Set pk+1 = 5(pk − dakge).
2.6 Set k = k + 1.

end while

In step 2.5, the rounding operation dakge is under-
stood to act on each component of the vector akg
separately. This algorithm requires 2N function eval-
uations per iteration, in contrast to the two evaluations
in the SPSA method, but we can expect better search
directions from it.

Note that this algorithm is closely related to the finite
difference stochastic approximation (FDSA) algorithm
proposed in [42]. In fact, in the absence of noise in the
objective function, the two algorithms are the same.

2.3.3. Very fast simulated annealing (VFSA)

The third algorithm is the very fast simulated annealing
(VFSA). This algorithm shares the property of other
stochastic approximation algorithms in relying only on
function evaluations. Simulated annealing attempts to
mathematically capture the cooling process of a ma-
terial by allowing random changes to the optimiza-
tion parameters if this reduces the energy (objective
function) of the system. Although the temperature is
high, changes that increase the energy are also likely
to be accepted, but as the system cools (anneals), such
changes are less and less likely to be accepted.

Standard simulated annealing randomly samples the
entire search space and moves to a new point if either
the function value (i.e., the temperature or energy) is
lower there; or, if it is higher, the new point is accepted
with a certain probability that decreases over time (con-
trolled by the temperature decreasing with time) and
by the amount by which the new function value would
be worse than the old one. On the other hand, VFSA
also restricts the search space over time, by increasing
the probability for sampling points closer rather than
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farther away from the present point as the temperature
decreases. The first of these two parts of VFSA ensures
that as iterations proceed we are more likely to accept
only steps that reduce the objective function, whereas
the second part effectively limits the search to the local
neighborhood of our present iterate as we approach
convergence. The rates by which these two probabil-
ities change are controlled by the “schedule” for the
temperature parameter; this schedule is used for tuning
the algorithm.

VFSA has been successfully used in several geophys-
ical inversion applications [8, 39]. Alternative descrip-
tion of the algorithm can be found in [18].

2.3.4. Other optimization methods

In addition to the previous optimization algorithms, we
have included two popular algorithms in some of the
comparisons below: the Nelder–Mead (N–M) simplex
algorithm and genetic algorithms (GA). Both of these
approaches are gradient-free and are important algo-
rithms for nonconvex or nondifferentiable objective
functions. We will only provide a brief overview over
their construction, and refer to the references listed
below.

The Nelder–Mead algorithm (also called simplex or
polytope algorithm) keeps its present state in the form
of N + 1 points for an N-dimensional search space. In
each step, it tries to replace one of the points by a new
one, by using the values of the objective function at the
existing vertices to define a direction of likely decent.
It then evaluates points along this direction and if it
finds such a point subject to certain conditions, will
use it to replace one of the vertices of the simplex.
If no such point can be found, the entire simplex is
shrunk. This procedure was employed in [5, 14] as part
of a hybrid optimization strategy for the solution of
the well placement problem. More information on the
N–M algorithm can be found in [22] and in the original
paper [28].

The general family of evolutionary algorithms is
based on the idea of modeling the selection process of
natural evolution. Starting from a number of “individ-
uals” (points in search space), the next generation of
individuals is obtained by eliminating the least fit (as
measured by the objective function) and allowing the
fittest to reproduce. Reproduction involves generating
the “genome” of a child (a representation of its point
in search space) by randomly picking elements of both
parents’ genome. In addition, random mutations are
introduced to sample a larger part of search space.

The literature on GA is vast; here we only mention
[12, 27]. In the context of the well placement problem,

it has been one of the most popular optimization algo-
rithms of choice; (see, e.g., [14, 47]) and the references
therein.

In addition to the algorithms used in this study, there
is a great number of other methods that may be ap-
plicable to the problem at hand, most notably Newton-
type methods [29] or hybrid methods that are able to
switch between stochastic and deterministic algorithms
[8]. For brevity, we only consider the algorithms listed
above, but will discuss the possible suitability of other
algorithms in the Conclusions below.

3. Results for placement of a single well

3.1. The reservoir model

We consider a relatively simple 2D reservoir � =

[0, 4880] × [0, 5120] of roughly 25 million ft2, which
is discretized by 61 × 64 spatial grid blocks of 80 ft
length along each horizontal direction, and a depth of
30 ft. Within this reservoir, we fix the location of five
wells (two injectors and three producers; see figure 1)
and want to optimize the location of a third injector
well. Since the model consists of 3904 grid blocks, the
set of possible well locations over which we optimize
is the integer lattice P = {40, 120, 200, . . . , 4840} ×

{40, 120, 200, . . . , 5080} of cell midpoints. The reservoir
under study is located at a depth of 1 km (3869 ft)
and corresponds to a 2D section extracted from the
Gulf of Mexico. The porosity has been fixed at φ =

0.2 but the reservoir has a heterogeneous permeability
field as shown in figure 1 The relative permeability and
capillary pressure curves correspond to a single type

Figure 1 Permeability field showing the positions of current
wells. The symbols “∗” and “+” indicate injection and producer
wells, respectively.
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of rock. The reservoir is assumed to be surrounded
by impermeable rock; that is, fluxes are zero at the
boundary. The fluids are initially in equilibrium with
water pressures set to 2600 psi and oil saturation to 0.7.
For this initial case, an opposite-corner well distribution
was defined as shown in figure 1.

For the objective function (3), cost coefficients were
chosen as follows: co = 24, cw,disp = 1.5 and cw,inj = 2.
We chose an interest rate r of 10% = 0.1 per year.

We undertook to generate a realistic data set for
evaluation of optimization algorithms by computing
economic revenues for all 3904 (i.e., 64× 61) possible
well locations, and for 200 different time horizons T
between 200 and 2000 days. (The data for different
time horizons can be obtained from the simulation
by simply restricting the upper bound of the integral
in (3).) Figure 2 shows the saturation and pressure
field distribution after 2000 days of simulation. Plots of
fT(p) for given values of T are shown in figures 3 and 4.
As can be expected, the maxima move away from the
producer wells as the time horizon grows, since close
by injection wells may flood producer wells if the time
horizon is chosen large enough, thus diminishing the
economic return.

Each simulation for a particular p took approximate-
ly 20 min on a Linux PC with a 2-GHz AMD Athlon
processor, for a total of 2000 CPU hours. Computations
were performed in parallel on the Lonestar cluster at
the Texas Advanced Computing Center (TACC). It is
clear that, for more realistic computations, optimization
algorithms have to rely only on single function eval-
uations, rather than evaluating the complete solution
space. Hence, the number of function evaluations will
be an important criterion in comparing the different
optimization algorithms below.

Figure 3 Search space response surface: expected (positive) rev-
enue − f2000(p) for all possible well locations p ∈ P, as well as a
few nearly optimal points found by SPSA.

Note that while it would in general be desirable to
compute the global optimum, we will usually be content
if the algorithm finds a solution that is almost as good.
This is important in the present context, where the
revenue surface plotted in figure 3 has 72 local optima,
with the global optimum being f (p = {2920, 920}) =

−1.09804 · 108. However, there are five more local
extrema within only half a percent of this optimal
value, which makes finding the global optimum rather
complicated.

Another reason to be content with good local optima
is that, in general, our knowledge of a reservoir is
incomplete. The actual function values and locations
of optima are therefore subject to uncertainty, and it
is more meaningful to ask for statistical properties of
solutions found by optimization algorithms. Since the

Figure 2 Left: Oil saturation at the end of the simulation for the original distribution of five wells. Right: Oil pressure.
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Figure 4 Surface plots of the
(positive) revenue − fT (p)

for T = 500 (top left), 1000
(top right), 1500 (bottom
left), and 2000 (bottom right)
days.
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particular data set created for this paper is complete, we
will therefore mostly be concerned with considering the
results of running large numbers of optimization runs
to infer how a single run with only a limited number
of function evaluations would perform. In particular,
we will compare the average quality of optima found
by optimization algorithms with the global optimum,
as well as the number of function evaluations the al-
gorithms take.

3.2. Performance indicators

To compare the convergence properties of each of
the optimization algorithms, three main performance
indicators were considered: (1) effectiveness (how close
the algorithm gets to the global minimum on average);
(2) efficiency (running time) of an algorithm measured
by the number of function evaluations required; (3)
reliability of the algorithms, measured by the number
of successes in finding the global minimum, or at least
approaching it sufficiently close.

To compute these indicators, we started each algo-
rithm from every possible location pi in the set P,
and for each of these N optimization runs record the
point p̂i where it terminated, the function value f ( p̂i)

at this point, and the number Ki of function evaluations
until the algorithm terminated. Since the algorithms
may require multiple function evaluations at the same
point, we also record the number Li of unique function
evaluations (function evaluations can be cached and re-
peated function evaluations are therefore inexpensive
steps). Note that in this setting, we would have p̂i = p∗

for an algorithm that always finds the global optimum.

The effectiveness is then measured in terms of the
average value of the best function evaluation

f̄ =

N∑
i=1

f ( p̂i)

N
. (5)

and how close is this value to f (p∗). The efficiency is
given by the following two measures

K̄ =

N∑
i=1

Ki

N
, L̄ =

N∑
i=1

Li

N
. (6)

Finally, reliability or robustness can be expressed in
terms of percentile values. A χ percentile is defined as
the value that is exceeded by a fraction χ of results
f ( p̂i); in particular, ϕ50 is the value such that f ( p̂i) ≥

ϕ50 in 50% of runs (and similar for the 95 percentile
ϕ95).

3.3. Results for the integer SPSA algorithm

In all our examples, we choose c = 5, a = 2 · 10−5, and
terminate the iteration if there is no progress over a
number of iterations, measured by the criterion |pk −

pk−κ | < ξ , where we set κ = 6, ξ = 2. All these quan-
tities are stated for the unit integer lattice, and are
appropriately scaled to the actual lattice P in our
problem. Note that the values for a stated above lead
to initial step lengths on the order of 20 on the unit
lattice since a = 20/ḡ, where ḡ = 108/100 is an order-
of-magnitude estimate of the size of gradients, with 108

being typical function values and 100 being roughly the
diameter of the unit lattice domain.

The white marks in figure 3 indicate the best well po-
sitions found by the SPSA algorithm when started from
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Figure 5 Probability surface
for the SPSA algorithm
stopping at a given point p for
the corresponding objective
functions shown in figure 4.
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seven different points on the top-left to bottom-right
diagonal of the domain. As can be seen, SPSA is able
to find very good well locations from arbitrary starting
points, even though there is no guarantee that it finds
the global optimum every time. Note, however, that the
SPSA algorithm can be modified to perform a global
search by injected noise, although we did not pursue
this idea here for the sake of algorithmic simplicity.

As stated above, the answers to both the effective-
ness and reliability questions are closely related to the
probability with which the algorithm terminates at any
given point p ∈ P. For the three functions f1000(p),
f1500(p), f2000(p) shown in figure 4, this probability of
stopping at p is shown in figure 5. It is obvious that
the locations where the algorithm stops are close to the
(local) optima of the solution surface.

The statistical qualities of termination points of the
integer SPSA algorithm are summarized in table 1 for
the four data sets at T = 500, 1000, 1500, 2000 days.
The table shows that on average the stopping position is
only a few percent worse than the global optimum. The
ϕ50 and ϕ95 values are important in the decision on how
often to restart the optimization algorithm from dif-
ferent starting positions. Such restarts may be deemed
necessary because the algorithm does not always stop
at the global optimum, and we may want to improve

on the result of a single run by starting from a different
position and taking the better guess. Although the ϕ95

value reveals what value of f ( p̂i) we can expect from
a single run in 95% of cases (“almost certainly”), the
ϕ50 value indicates what value we can expect from the
better of two runs started independently.

Despite the fact that both ϕ95 and ϕ50 are still rela-
tively close to f (p∗), the conclusion from these values
is that to be within a few percent of the optimal value
one run is not enough, while two are. Finally, the last
two columns indicate that the algorithm, on average,
only needs 37–52 function evaluations to converge; fur-
thermore, if we cache previously computed values, only
30–42 function evaluations will be required. The worst
of these numbers are for T = 500 days, where maxima
are located in only a few places; the best results are for
T = 2000 days, in which case maxima are distributed
along a long arc across the reservoir domain.

3.4. Results for the integer FDG algorithm

Table 2 show the results obtained for the FDG al-
gorithm described in section 2.3.2. From the table, it
is obvious that for earlier times, the algorithm needs
less function evaluations than SPSA. However, it also

Table 1 Statistical properties of termination points of the integer SPSA algorithm.

T fT (p∗) f̄T ϕ50
T ϕ95

T K̄T L̄T

500 −2.960 · 107
−2.853 · 107

−2.920 · 107
−2.507 · 107 52.2 42.6

1000 −6.696 · 107
−6.412 · 107

−6.490 · 107
−5.834 · 107 41.0 33.1

1500 −9.225 · 107
−9.011 · 107

−9.139 · 107
−8.286 · 107 40.8 33.1

2000 −1.098 · 108
−1.075 · 108

−1.086 · 108
−1.046 · 108 37.8 30.2
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Table 2 Statistical properties of termination points of the integer finite difference gradient algorithm.

T fT (p∗) f̄T ϕ50
T ϕ95

T K̄T L̄T

500 −2.960 · 107
−2.708 · 107

−2.794 · 107
−2.232 · 107 52.6 24.4

1000 −6.696 · 107
−6.222 · 107

−6.480 · 107
−5.572 · 107 53.0 28.1

1500 −9.225 · 107
−8.837 · 107

−9.133 · 107
−8.211 · 107 55.5 32.4

2000 −1.098 · 108
−1.062 · 108

−1.083 · 108
−1.044 · 108 57.0 31.5

produces worse results, being significantly farther away
from the global optimum on average. The reason for
this is seen in figure 6, where we show the termination
points of the algorithm: it is apparent that the algo-
rithm quite frequently gets caught in local optima, at
least much more frequently than the SPSA algorithm
for which results are shown in figure 5. This leads
to early termination of the algorithm and results in
suboptimal overall results. Hence, as it is expected from
a nonconvex or nondifferentiable objective function,
accurate or noise-free gradient computations does not
necessarily lead to a high level of effectiveness, effi-
ciency, and reliability in the search for a (nearly) global
optimal solution.

3.5. Results for VFSA

Table 3 and figure 7 show the results for the VFSA
algorithm of section 2.3.3. As can be seen from the
table, the results obtained with this algorithm are more
reliable and effective than for the other methods, albeit
at the cost of a higher number of function evaluations
(i.e., poor efficiency). Nevertheless, these results can be
further improved: by using a stretched cooling sched-
ule (resulting in a further increase in the number of
function evaluations), the algorithm found the global
optimum in 95% of our runs even though only 10–15%

of the elements of the search space are actually sam-
pled. VFSA thus offers tuning possibilities for finding
global optima that other, local algorithms do not have.
The differences are particularly pronounced in the ϕ95

column, suggesting the more global character of the
VFSA algorithms compared to the SPSA and FDG
algorithms.

3.6. Other optimization algorithms and comparison
of algorithms

For completeness, we include comparisons with the
Nelder–Mead (N–M) and genetic algorithm (GA) ap-
proaches. Using the revenue surface information de-
fined on each of the 3904 points, we were able to
test these algorithms without relying on further IPARS
runs. Since the efficiency is measured in terms of func-
tion evaluations, CPU time was not a major concern
and additional experiments turn out to be affordable
in other computational settings such as Matlab.

The Nelder–Mead (N–M) algorithm runs were based
on the Matlab intrinsic function fminsearch. For the
optional argument list, we set the nonlinear tolerance
to 0.4 and defined the maximum number of iterations to
100. For the GA tests, we relied on the GAOT toolbox
developed by Houck et al. [16]. The ga function of
this toolbox allows the definition of different starting

Figure 6 Probability surface
for the FDG algorithm
stopping at a given point p for
the corresponding objective
functions shown in figure 4.
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Table 3 Statistical properties of termination points of the VFSA algorithm.

T fT (p∗) f̄T ϕ50
T ϕ95

T K̄T L̄T

500 −2.960 · 107
−2.842 · 107

−2.854 · 107
−2.731 · 107 79.3 66.7

1000 −6.696 · 107
−6.556 · 107

−6.601 · 107
−6.423 · 107 68.9 60.0

1500 −9.225 · 107
−9.907 · 107

−9.142 · 107
−8.863 · 107 78.0 66.0

2000 −1.098 · 108
−1.083 · 108

−1.083 · 108
−1.051 · 108 75.5 63.9

populations, crossover, and mutation functions among
other amenities. In our runs, we specified an initial pop-
ulation of eight individuals, a maximum number of 40
generations, and the same nonlinear tolerance as spec-
ified for the N–M algorithm. Since, we always started
with eight individuals, the algorithm was rerun 488
times to reproduce the coverage of the 3904 different
points. The rest of the ga arguments were set to the
default values. In both cases, the implementations only
provided the number of function evaluations Ki, but
not the number of unique evaluations Li; therefore, the
comparison will only be made with the former.

Table 4 summarizes the comparison for all optimiza-
tion algorithms for T = 2000 days. Clearly, the N–M
turns out to be the worst one since it frequently hit the
maximum number of function evaluations without re-
trieving competitive solutions to the other approaches.
This is mainly due to the fact that the simplex tended
to shrink very fast and the algorithm got prematurely
stuck without approaching any local or global mini-
mum. The GA shows a more effective and reliable
solution but still falls short of the numbers displayed
by both the SPSA and VFSA algorithms. It is the
least efficient one and shows difficulties in finding an
improved solution after a few trials, as the ϕ50 col-
umn indicates. Slight improvements were found by in-
creasing the initial population and tuning the rate of

mutations; however, the authors found that the tuning
of this algorithm was not particularly obvious for this
particular problem.

As conclusion of this section, we state that the SPSA
algorithm is the most efficient one in finding good solu-
tions. VFSA can be made to find even better solutions,
but it requires significantly more function evaluations
to do so.

4. Results for placing multiple wells

In the previous section, we have considered optimiz-
ing the placement of a single well. The case was simple
enough that we could exhaustively evaluate all ele-
ments of the search space in order to find the global
maximum and to evaluate how different optimization
algorithms perform. In this section, we consider the
more complicated case that we want to optimize the
placement of several wells at once. Based on the pre-
vious results and on computing time limitations, we
restrict our attention to the SPSA, FDG, and VFSA
algorithms. The parameters defined for each of them
remained unchanged.

Figure 7 Probability surface
for the VFSA algorithm
stopping at a given point p
for the corresponding four
objective functions shown in
figure 4.
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Table 4 Comparison of different optimization algorithms for the
objective function at T = 2000 days.

Method f̄T ϕ50
T ϕ95

T K̄T

N − M −1.018 · 108
−1.078 · 108

−8.977 · 107 99.9
GA −1.073 · 108

−1.072 · 108
−1.047 · 108 104.0

V FSA −1.083 · 108
−1.083 · 108

−1.051 · 108 75.5
FDG −1.062 · 108

−1.083 · 108
−1.044 · 108 57.0

SPSA −1.075 · 108
−1.086 · 108

−1.046 · 108 37.8

4.1. Placing two wells at once

In an initial test, we tried to place not only one but
two new injector wells into the reservoir, for a total of
four injectors and three producers. We compared our
optimization algorithms for this, now four-dimensional,
problem with the following simple strategy: take the
locations of the five fixed wells used in the last section,
and place a third injector at the optimal location de-
termined {x1, y1} = {2920, 920} in the previous section;
then find the optimal location for a fourth injector
using the same techniques. Thus, we solved a sequence
of two two-dimensional problems instead of the four-
dimensional one.

The search space response surface for placing the
fourth well is shown in figure 8. In addition to the dips
in all the same places as before, the surface has an
additional depression in the vicinity of where the third
injector was placed, indicating that the fourth injector
should not be too close to the third one. The optimal
location for this fourth injector is {x2, y2} = {200, 2680},
with an integrated revenue of f (p) = −1.24175 · 108

Figure 8 Search space response surface for placing a fourth
injector when keeping the positions of the other six wells fixed.

at p = {2920, 920, 200, 2680}, i.e., roughly 13% better
than the result with only three injectors.

It is obvious that the optimum of the full, four-
dimensional problem must be at least as good as that of
the simpler, sequential one. However, despite extensive
computations and finding the above locations multiple
times, we were unable to find positions for the two
wells that would yield a better result than that given
above. We believe that by mere chance, the simplified
problem may have the same optimum as the full one.
We therefore turn to a more challenging problem of
optimizing the locations of all seven wells at once,
which we describe in the next section. However, it is
worth noting that a sequential well placement approach
as above may be useful to obtain a good initial guess for
the simultaneous well placement.

4.2. Placing seven wells at once

As a final example, we consider the simultaneous place-
ment of all four injectors and three producers at once,
i.e., without fixing the positions of any of them. The
search space for this problem has, taking into account
symmetries due to identical results when exchanging
wells of the same type, approximately 8.55 · 1022 ele-
ments, clearly far too many for an exhaustive search.

The results for this show a clear improvement over
the well locations derived above: the best set of well
locations found generates integrated revenues up to
f (p) = −1.65044 · 108, i.e., more than 30% better than
the best result presented in the last section. We started
20 SPSA runs from different random arrangements of
wells; out of these, 11 runs reached function values of
−1.5 · 108 or better within the first 150 function evalua-
tions. The respective best well location arrangements
together with their function values for the best four
runs are shown in figure 9. All these well arrangements
clearly make sense, with producers and injectors sepa-
rated, and injectors aligned into patterns that form lines
driving oil into the producers. In fact, the arrangements
resemble standard patterns for producer and injector
lineups used in practice (see, e.g., [17]). It should be
noted that each of these arrangements likely corre-
sponds to a local extremum of the objective function
and that further iterations will not be able to morph
one of the patterns into another without significantly
pessimizing the objective function in-between.

Figure 10 documents the SPSA run that led to the
discovery of the best well location shown at the left part
of figure 9. To see how the algorithm proceeds for large
numbers of iterations, we have switched off the conver-
gence criterion that would otherwise have stopped the
algorithm after approximately 80 iterations. From the
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Figure 9 The best well
arrangements found by the
best four runs of SPSA from
random locations, along with
their revenue values.
Producer well locations are
marked with “×,” injectors
with “◦.”
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left part of the figure, it is apparent that the algorithm
would have basically converged at that time (the best
point found up to then, in function evaluation 72, is
only half a percent worse than the best point found later
in evaluation 191), and that good arrangements were
already found after as little as 50 function evaluations.
This has to be contrasted to the FDG algorithm that
already takes at least 15 (for the one-sided derivative
approximation) or even 28 (for the two-sided deriva-
tive approximation) function evaluations in each single
iteration for this 14-dimensional problem.

The right part of figure 10 shows the locations of the
seven wells at various iterations. Figure 11 also shows
the corresponding water saturations at the end of the
simulation period of 2000 days for four of these config-
urations. Obviously, the main reason that SPSA does
not find any well configurations that are better than
the one shown can be qualitatively visualized from the
amount of waterflooding covering the reservoir, so that
no additional revenue is possible: the well configuration

found effectively drains the reservoir completely within
the given time horizon.

4.2.1. Comparison with the integer FDG algorithm

Compared to the SPSA results above, the FDG algo-
rithm performs significantly worse: only 7 out of 20 runs
started at the same random locations reached a function
value of −1.5 · 108 or better within the first 150 function
evaluations. In addition, the best function evaluation
had a value of −1.6406 · 108, roughly 0.6% worse than
the best result obtained by SPSA. The resulting config-
uration is almost identical to the last one shown in the
rightmost panel of figure 9. The values of the objective
function encountered during this run are shown in the
left panel of figure 12, to be compared with figure 10. It
is obvious that the FDG algorithm requires significantly
more function evaluations before it gets close to its
convergence point. The steps in the graph are caused
by the fact that the algorithm samples 2N = 28 points
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Figure 10 Progress of the SPSA run that led to the well location shown at the left of figure 9. Left: Reduction of objective function as
iterations proceed. Right: Corresponding well arrangements at selected iterations.
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Figure 11 Oil saturations at the end of the simulation for the well configurations of figure 10 at function evaluations 0, 20, 40, and 100.
Asterisks: injector wells; circles: producers. Saturations are between 0.2 (blue) and 0.7 (brown).

in each iteration before it moves on to the next iterate;
these 28 points are all located close to each other and
have therefore similar function values.

4.3. Comparison with the VFSA algorithm

The VFSA algorithm performed very well. In addition
to 13 out of 20 runs that reached a best function value
of −1.5 · 108 or better within the first 150 function
evaluations, it also scored the best function value found
in all our runs with f (p) = −1.65356 · 108. This best
run is documented in the right panel of figure 12. The
raggedness of the plot comes from the fact that VFSA
does not only sample close-by points, but also ones
that are farther away and therefore have significantly
different function values than the presently best point.
The well pattern corresponding to the best solution is
again similar to the leftmost one shown in figure 9.

In comparison with the other algorithms discussed
above, VSFA finds solutions that are at least as good,
and finds them with a high frequency. However, it
needs more function evaluations than SPSA to get to

function values that are close to the very best found in
our experiments.

5. Conclusions and Outlook

In this work, we investigated the performance of dif-
ferent optimization algorithms for the problem of plac-
ing wells in an oil reservoir. The testcases we have
considered are (1) the two-dimensional problem of
placing one well into a reservoir in which six others
have already been placed at fixed positions, and (2)
the 14-dimensional problem of determining the best
positions of all seven of these wells at the same time.
For the first of these problems, all possible well lo-
cations have been exhaustively explored in order to
determine the statistical properties of optimization al-
gorithms when started from randomly chosen locations.
This allowed us to compare how algorithms perform
on average, when no prior knowledge is available to
determine good starting positions for the algorithms,
as well as near-best and near-worst case behaviors.
While the virtue of the second testcase obviously is its
complexity, the strength of the first is that we know
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Figure 12 Progress of the best FDG (left) and best VFSA (right) runs: reduction of objective function as iterations proceed.
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the exact optimum and all other function values, which
allows us to do in-depth comparisons of the different
algorithms.

On these testcases, we compared the simultane-
ous perturbation stochastic approximation (SPSA), fi-
nite difference gradient (FDG), very fast simulated
annealing (VFSA), and, for the first testcase, the
Nelder–Mead simplex and a genetic algorithm (GA)
optimization methods. For the rather simple first test-
case, both SPSA and VFSA reliably found very good
solutions, and are significantly better than all the other
algorithms; however, their different properties allow
them to be tailored to different situations: while SPSA
was very efficient in finding good solutions with a mini-
mum of function evaluations, VFSA can be tweaked to
find the global optimum almost always, at the expense
of more function evaluations.

These observations also hold for the second, sig-
nificantly more complex testcase. There, both SPSA
and VFSA performed markedly better than the FDG
algorithm. Both algorithms found good solutions in
most of the runs that were started from different initial
positions. Again, SPSA was more efficient in finding
good positions for the seven wells in very few (around
50) function evaluations, while VFSA obtained good
locations more reliably but with more function eval-
uations. FDG performed worse than the two other
algorithms mainly because the high dimensionality of
the problem requires too many function evaluations per
iteration to let FDG be competitive.

In this paper, we have only considered a limited
number of methods; in particular, we have omit-
ted Newton-type or other algorithms using second-
derivative information. These may be subject of further
studies. However, we consider it uncertain whether
they would be able provide superior performance: first,
the objective functions considered here have many
minima, maxima, and saddlepoints (in particular it is
not convex), and second-order algorithms will only be
able to perform well if curvature information is prop-
erly accounted for. Second, the objective surfaces are
very rough in some parts of the parameter space (see
figures 3 and 4), particularly in the vicinity of the
extrema, with roughness length scales on the same
order of magnitude as the spacing of the integer lattice
on which we optimize; it is therefore already hard
to extract gradient information, as witnessed by the
consistently worse performance of the finite difference
gradient method, and second derivative information
will hardly contain much global information. Finally, in
order to be superior, such algorithms need to be content
with very few iterations. For example, the NEWUOA
algorithm [36] for unconstrained optimization with-

out derivatives requires a recommended number of 5
function evaluations per iteration for the single well
problem, and 29 for the seven-well problem. On the
other hand, our best algorithms only require on average
30–50 and 200–250 function evaluations, respectively,
which would mean that the Newton-type algorithms
would have to converge in 6–10 iterations; although
possible, it seems unlikely that algorithms can achieve
or improve on this given the roughness of the solution
surface.

While the results presented in this work are a good
indication as to which algorithms will perform well on
more complex problems, more experiments are needed
in this direction. In particular, the fact that we have only
chosen the location of wells as decision variables is not
sufficient to model the reality of oil reservoir manage-
ment. For this, we would also have to allow for varying
pumping rates, different and more complex well types,
and different completion times of wells. In addition,
constraints need to be placed on the system, such as
maximal and minimal capacities of surface facilities,
and the reservoir description must be more complex
than the relatively simple 2D case we chose here in
order to keep computing time within a range where dif-
ferent algorithms can be easily compared. Also, it will
be interesting to investigate the effects of uncertainty
in the reservoir description on the performance of al-
gorithms; for example, we expect that averaging over
several possible realizations of a stochastic reservoir
model may smooth out the objective function, which
would probably aid the FDG algorithm more than the
other methods. Research in these directions is presently
underway, and we will continue to investigate which
algorithms are best suited for more complex and more
realistic descriptions of the oil well placement problem.
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