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Abstract

Rapidly rotating spherical kinematic dynamos at very low Ekman and Prandtl numbers are computed using the combination of a
quasi-geostrophic (QG) model for the velocity field and a classical spectral 3D code for the magnetic field. The QG flow is
computed in the equatorial plane of the sphere; it corresponds to Rossby wave instabilities of a geostrophic internal shear layer
produced by differential rotation. The induction equation is computed in the whole sphere after the QG flow has been expanded
along the rotation axis. Differential rotation and Rossby wave propagation are the key ingredients of this dynamo which can be
interpreted in terms of Parker-Ω dynamo. Taking into account the quasi-geostrophy of the velocity field enables us to increase time
and space resolution to compute the dynamics. For the first time, we report on numerical dynamos with very low Ekman numbers
(10−8). Because the magnetic and velocity fields are computed on different grids, we compute dynamos for very low magnetic
Prandtl numbers exhibiting a scale separation between magnetic and velocity field. These dynamos are asymptotically close to
rapidly rotating, metallic planetary cores.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The magnetic field of the Earth is produced by
dynamo action in the metallic liquid core of our rotating
planet. Many efforts have been successfully made in the
last decade to describe the mechanisms of self induced
magnetic fields either with experimental models [1–3]
or numerical simulations [4–7]. Both approaches have
limitations. No experiment has been performed in ro-
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tation (except for one attempt with a precessional cyl-
inder [8]) while rotation is seen as a key ingredient by
geophysicists to explain the geometry and amplitude of
the geomagnetic field [9]. All numerical models [10,11]
have introduced Coriolis forces in the Navier–Stokes
equation and the quasi-geostrophy (two dimensionality
imposed by the Proudman–Taylor theorem [12]) of the
flow plays a role in the generation of the magnetic field.
Thermal convective vortices aligned with the rotation
axis are associated to surface patches of magnetic field
[7] and spatio-temporal behaviors of magnetic and vor-
ticity fields are similar. This effect is a direct con-
sequence of the prescribed magnetic Prandtl number
(Pm=ν /η, where ν is the kinematic viscosity and η the
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magnetic diffusivity) in the simulations. The current
computer capabilities limit the computations to mag-
netic Prandtl number of the order of unity [10] while
liquid metals exhibit magnetic Prandtl numbers lower
than 10−5, even in planetary core conditions [13].

In this paper, we propose an approach aiming at
computing very low magnetic Prandtl number dynamos
taking advantage of the quasi-geostrophic behavior of
the velocity field. For very low Ekman numbers (E=ν /
ΩR2, where Ω is the rotation rate of the spherical con-
tainer, and R its radius), a quasi-geostrophic (QG) ap-
proach describes the flow correctly in a rapidly rotating
sphere [14,15]. The flow equations are integrated along
the direction of the rotation axis. Although the nu-
merical variable is a stream function in the equatorial
plane, the top and bottom boundary conditions are taken
into account through the slope (β) and Ekman pumping
effects. In the context of the study of thermal convection
in rapidly rotating spherical shells, Aubert et al. [16]
have successfully compared their QG results with 3D
calculations [17] and experimental measurements [18].

Low values of Pm may imply a separation in terms of
length-scales and frequencies, between the velocity and
magnetic fields in a metallic dynamo. This idea has
already been applied to kinematic dynamo computations
at low Pm [19]. In this work, we compute the QG flow in
the equatorial plane with a fine spatio-temporal res-
olution and the velocity is extrapolated to a coarse 3D
spherical grid where the induction equation is solved.

In order to demonstrate the validity of this approach,
we have decided to apply it to a simple case. Instead of a
thermal convective flow for which heat transport has to
be modeled, we consider the instabilities of an internal
geostrophic shear layer. This layer, known as the Ste-
wartson layer, is produced by a differentially rotating
Fig. 1. Sketch of the split sphere geometry. The differential rotation
produces an axisymmetric Stewartson E1/4 shear layer which is
cylindrical and aligned with the rotation axis z.
inner core in a rotating sphere and consists of two nested
viscous shear layers [20,21]. Above a critical Ro number
(Ro=ΔΩ /Ω, where ΔΩ is the differential rate of
rotation of the inner core), the Stewartson layer becomes
unstable [22] and generates Rossby waves [23].

The Geodynamo group in Grenoble is developing a
spherical Couette liquid sodium experiment [24] in
order to study magnetostrophic regime. Quasi-geostro-
phic numerical dynamos at low magnetic Prandtl num-
bers will help to better understand the experimental
findings [25].

As we will show in this paper, such unstable flows
can generate and sustain a magnetic field. The QG-
model allows us to compute dynamos at very low
Ekman (down to 10−8) and magnetic Prandtl numbers
(as low as 3×10−3).

2. The equations

2.1. Hydrodynamics

Let us consider a sphere of radius R filled with an
incompressible liquid metal of viscosity ν and magnetic
diffusivity η. The sphere is rotating at along the z-axis
of a cylindrical reference frame (es, eϕ, ez). The sphere
is split at the co-latitude ±sin−1(Rs /R) (Rs /R is set to
0.35). The two polar caps are rotating differentially at
Ω+ΔΩ as shown in Fig. 1. Time, length and magnetic
field will be scaled using Ω−1, R, (μ0ρ)

1/2RΩ, respec-
tively. For low Ekman and Rossby numbers, the main-
stream flow is quasi-geostrophic [12]. Taking the curl of
the Navier–Stokes equation and averaging along the
direction of the rotation axis z (denoted by an overbar),
we get the QG equation for the z-component of the
vorticity ω=ez ·∇×u, provided that us and uϕ are in-
dependent of z [23].
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The Coriolis term needs the evaluation of duz
dz . We

deduce that uz is a linear function of z from the averaged
mass conservation equation. Consequently, its vertical
derivative may be deduced from the non penetration
boundary condition (β effect) and the viscous boundary
condition (the Ekman pumping effect) [23]:

duz
dz

¼ E1=2Pðus;uu;sÞ þ b sð Þus ð2Þ
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is the Ekman pumping boundary condition in a rigid
sphere deduced from Greenspan's formula [23]. We
would like to stress that this formula is applicable as
long as all relevant time scales are much longer than the
rotation period, which is a reasonable assumption for the
small Rosby numbers considered in this study.

The axisymmetric flow is computed directly from the
Navier–Stokes equation [26].
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where 〈 〉 stands for the ϕ-average operator. Rigid
boundary conditions are assumed for the velocity at s=1.
For sbRs /R, the top and bottom azimuthal velocity are
imposed as uϕ= sRo. The velocity field is computed
using a generalized stream function in the equatorial
plane as in [23] which guarantees 3D mass conservation.
The stream function is expanded in Fourier components
along the ϕ component. It may be interesting to intro-
duce the Reynolds number Re=RoE−1 directly related to
the two controlling dimensionless numbers E and Ro.

In this paper, as a first step, we will only consider
kinematic dynamos and the magnetic terms in (1) and
(4) will be neglected.
2.2. Induction equation

The velocity field computed with Eqs. (1) and (4) in
the equatorial plane is extrapolated to a spherical grid (on
Gauss collocation points) in the physical space. This is a
straightforward process because us and uϕ are in-
dependent of z and uz is a linear function of z. Then,
the velocity field is expressed in spherical coordinates
(er, eθ, eϕ) to compute the non linear induction term. The
dimensionless equation of evolution of the magnetic
field is:

AB
At

¼ j� u� Bð Þ þ P−1
m EDB ð5Þ

Changing the magnetic Prandtl number Pm changes
directly the magnetic Reynolds number Rm=RePm=
RoE−1Pm which is more commonly used in dynamo
modeling. The induction equation is solved using
spherical harmonics where the magnetic boundary
conditions are easy to implement [9]. The induction
part of the code has been checked using kinematic
dynamo results [27] and the dynamo benchmark [28].

2.3. Numerical implementation

A finite difference scheme is used on an irregular
radial grid (denser near the Stewartson layer) as well as
on a regular radial grid (for the most turbulent cases). A
semi implicit Crank–Nicholson scheme is used for li-
near terms in time whereas an Adams–Bashforth pro-
cedure is implemented for non linear terms. For low Pm,
cylindrical and spherical radial grid steps may differ by a
factor of 20, and time steps for the induction equation
may be much longer than the velocity time steps (as
much as 20 times).

For a run at E=10−8, the stream function is computed
on a cylindrical mesh made of 600 radial points and
expanded in Fourier series up to degree m=170 in the
azimuthal direction while the magnetic field is expanded
in spherical harmonics (Lmax=79, Mmax=32) with an
irregular radial grid of 150 points for Pm=10

−2.5.
To compute the induction Eq. (5), the velocity field

(us;u/;
duz
dz ) is truncated in the Fourier space and com-

puted back in physical space on a fine 2D equatorial
grid. Knowing duz

dz , z-extrapolation is straightforward,
and the velocity field is computed at each magnetic grid
point using linear interpolation in the s-direction.

Convergence tests have been performed and are
reported in Section 4.3.

3. Hydrodynamics

For low Rossby numbers, the split at the spherical
boundary produces an internal shear layer in the fluid on a
cylinder of radius Rs aligned with the rotation axis. This
geostrophic viscous layer consists of two nested layers of
different width as revealed by the asymptotic study of
Stewartson [20] and illustrated later by a numerical study
ofDormy et al. [21]; anE1/4 thick layer accommodates the
jump in the geostrophic azimuthal velocity and a narrower
layer of size E1/3, non-geostrophic, corresponds to an
axial jet ensuring mass conservation.

In a previous study [23], we have presented the QG
model, which can only reproduce only the E1/4 layer,
and we have studied the linear perturbations of this
geostrophic internal viscous layer. It becomes unstable
when the Rossby number exceeds a critical value Roc

which varies as βE1/2 [23]. At the onset, the instability is



Fig. 2. z-vorticity maps in the equatorial plane. (a and b) E=10−6, Ro=0.0096 and Ro=−0.0111, respectively. It shows the flow at the onset of
hydrodynamic instabilities for both signs of the Rossby number. (c and d) E=10−8, Ro=0.02 and Ro=−0.02, respectively. It shows a typical view of
the ”turbulent” regime for Rossby numbers about 30 times critical. The color bar gives the local vorticity scale for (c) and (d) only.

598 N. Schaeffer, P. Cardin / Earth and Planetary Science Letters 245 (2006) 595–604
a Rossby wave, an azimuthal necklace of cyclones and
anticyclones of size E1/4 which propagates in the
prograde direction as shown in Fig. 2a,b. Super rotation
(RoN0) generates a spiraling flow outside the shear
layer while the flow is mainly located inside the shear
layer for Rob0. For supercritical Ro, the flow exhibits
larger vortices (Fig. 2c,d) which are time-dependent but
still drifting as Rossby waves. The flow stays mainly
concentrated in the shear layer. Fig. 3 shows the kinetic
energy spectra E(k) of this QG turbulent flow. It is very
steep: E(k)∼k−5, which is the slope predicted by
Rhines [29] for turbulence in presence of Rossby waves
[30]. This steep spectrum suggests that the small scales
of the flow may be neglected in the induction equation.

Recently, in rotating turbulence experiments [31], it
has been shown that for Rossby numbers up to 0.1
(regardless of how far above criticality) the velocity fluc-
tuations recorded by hot-film probes are strongly cor-
related along the rotation axis direction, suggesting that a
QG-model may describe such flows quite well.
Fig. 3. Spectra of the kinetic energy, and both toroidal and poloidal
magnetic energy for E=10−8, Ro=0.02 (30 times critical) and
Pm=5×10

−3 (equivalent to Re=2×106). The amplitude of the energy
is arbitrary (linear calculation).
4. Dynamo action

For a given Ekman number (E=10−6 to 10−8) and a
given Rossby number, Ro, from critical to a few times
critical, we find the critical magnetic Prandtl number Pm

of the onset of dynamo action by trial and error tests. As
the flow is time-dependent, we detect dynamo criticality
on long term time variations of the magnetic energy.

4.1. Overview of results

Unlike most kinematic dynamo models [32], a crit-
ical magnetic Prandtl number was found for every pair
of dimensionless numbers (E, Ro) we have computed.
In Fig. 4, the calculated critical magnetic Prandtl
number Pm

c is plotted as a function of the Reynolds
number Re=Ro /E. As expected, we found that an
increase of the forcing (Ro) for a given E reduces the
critical magnetic Prandtl number. A decrease of the
critical magnetic Prandtl number is also observed as we
lower the Ekman number. These two effects may be
summarised by the use of the magnetic Reynolds
number Rm. The data points in Fig. 4 are roughly
compatible with the line Rm=10

4. However, the flow
generates large deviations from this simple law of about
a factor 3, which is quite small if you compare it to the
variations of a few orders of magnitude of the
dimensionless parameters E and Ro. We thus want to
emphasize that the critical Rm remains roughly constant
and seems to be independent of E and Pm.

The lowest critical magnetic Prandtl number (0.003)
has been found for E=10−8 and Ro=0.02. The critical
magnetic Prandtl number is not independent of the sign
of the differential rotation (sign of Ro). This is expected
because the flow is quite different in the two cases as
shown in Fig. 2. A negative differential rotation seems
to lead to slightly lower dynamo thresholds.



Fig. 4. Dynamo onset for different parameters: Critical magnetic Prandtl number Pm
c vs. the absolute Reynolds number Re= |Ro|E−1. Dipole and

quadrupole thresholds are respectively denoted by circles and squares while solid and open symbols represent positive and negative differential
rotation. All the points lie around the Rm=10

4 line.
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Antisymmetric axial velocities (uz(z)=−uz(−z)) and
symmetric orthoaxial velocities (us,ϕ(z)=us,ϕ(−z)) gener-
ate two independent families of growing magnetic field in
kinematic dynamos known as the dipole and quadrupole
families [33]. The geometry of the two families are shown
in Fig. 5a and b: the dipole family is dominated by an axial
dipole, whereas the quadrupole family exhibits a strong
axial quadrupole. Each family has a different critical
magnetic Prandtl number. As shown in Fig. 4, we found
that the dipole family has always a larger critical magnetic
Reynolds number than the quadrupole family. This result
is quite different from the conclusion of the work of
Sarson and Busse [34]. Using Kumar and Roberts
kinematic dynamos, they found that prograde spiraling
of columns and prograde zonal flows favor dipole mag-
netic fields.
Fig. 5. Growing magnetic field in kinematic dynamos for E=10−8. (a and b
magnetic field. The solid lines are the poloidal field lines and the color map rep
at Ro=0.02 and Pm=0.005. Panel (b) shows a dipole field obtained at Ro=
compute the dipole family). Panel (c) is a spherical map of the radial magnet
line being the rotation axis. The corresponding vorticity fields are shown in
In both families, the strongest magnetic fields are
produced in the Stewartson shear layer deep inside the
sphere. The typical spectra given in Fig. 3 show that the
computed magnetic fields are dominated by the toroidal
axisymmetric component, which is about 100 times
stronger than the non-axisymmetric features. At the sur-
face of the sphere (Fig. 5c), the radial magnetic field is
also mostly axisymmetrical, and the non-axisymmetric
part is clearly associated to the geostrophic vortices pro-
duced in the Stewartson shear layer. An important fact is
that decreasing E and Pm leaves the geometry of the
growing magnetic field almost unchanged. This suggests
that the details of dynamo action stay unaltered, because
the flow itself remains also quite similar.

Fig. 6 compares the details of the magnetic field and
the velocity field.We can see that due to the very lowvalue
) Meridional cuts of the sphere showing the axisymmetric part of the
resents the azimuthal field. Panel (a) shows a quadrupole field obtained
−0.02 and Pm=0.003 (the quadrupole family has been filtered out to
ic field at the surface of the core, corresponding to case (b), the dashed
Fig. 2c,d.
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ofPm, the magnetic field does not follow the velocity field
perfectly, although the main features of the flow are still
present in the magnetic field. As a consequence of the
Rossby-wave propagation, there is a systematic shift in the
azimuthal direction between magnetic and velocity fields.
We should also mention here that the small-scale struc-
tures of the flow are found to be unimportant for the
dynamo action (see also Section 4.3).

The geometry of the magnetic field may be understood
in term of Parker-Ω effects [33,9]. A very large toroidal
magnetic field compatible with the azimuthal flow is
converted to a poloidalmagnetic field by the columnar flow
through a Parker effect (also known as giant alpha effect).
Any non-azimuthal component of the magnetic field is
transformed into an azimuthal component by the strong
differential rotation in the Stewartson layer by Ω effect.

The Ekman pumping may be important for the dynamo
process: although the β-effect produces axial velocities,
they are out of phase with the axial vorticity at the onset of
thermal convection in a rapidly rotating annulus and cannot
contribute to themean helicity, whereas axial velocities due
to Ekman pumping are in phase with the axial vorticity.
However, the Ekman pumping flow is of order E1/2, so that
a dynamo process based on the Ekman pumping becomes
very weak when lowering the Ekman number. In addition,
when the Ekman pumping flow is artificially removed in
our dynamo simulations, we still observe dynamo action
with nearly the same threshold. Similar results have been
obtained theoretically by Busse [35], who derived a
geodynamo model based on thermal convection in which
the dynamo process due to Ekman pumping vanishes at
small E, while a β-effect mechanism takes over. We may
Fig. 6. Close-up of the radial magnetic field (color map) and the radial
velocity field (contours) for E=10−8, Ro=−0.02, Pm=0.005, in the
equatorial plane. Red and blue are respectively outward and inward
magnetic field, whereas solid and dashed lines are respectively positive
(outward) and negative (inward) radial velocity field contours. The
dotted line circle is the split radius (r=0.35).
thus conclude that the β-effect alone may produce an effi-
cient Parker effect, without requiring an Ekman pumping
flow.

Furthermore, we have not been able to find a critical
magnetic Prandtl number with a steady flow (either a time
averaged flow or a flowwith its time evolution stopped at a
given time). This implies that the time evolution of the flow
is a key ingredient for dynamo action in these quasi-
geostrophic dynamos. The propagation of Rossby waves is
required so as to put in phase the non axisymmetric mag-
netic fields and velocities in order to produce an axi-
symmetric poloidal magnetic field. This type of Parker
effect was proposed in the model of Braginsky [36].

Currently, many dynamo experiments are designed
with the help of numerical simulations (kinematic dyna-
mos). Even when the flow is highly turbulent (ReN106),
mean flow approaches are used for simplicity to find the
dynamo onset [1,37–39]. This method would fail in the
case of Stewartson dynamos for which time dependence is
required.

4.2. Oscillating solution

As in many αΩ dynamos [33], we sometimes obtain a
time oscillating solution for the Stewartson dynamo.Dipole
solutions for E=10−6 do exhibit such a behavior. The
growth rate of one of these dynamos is plotted on Fig. 7,
showing three time scales: the smallest one is the time scale
of the velocity fluctuations. The intermediate time scale is
the time needed for the growth rate to go from its minimum
to its maximum value. The large time scale is the period of
oscillation, unrelated to any time scale of the flow, and
corresponds to a fraction of the magnetic diffusion time.
The oscillation period shortens as the forcing is increased
above the dynamo threshold.

In the context of kinematic dynamos, this behavior
corresponds to a complex eigenvalue in the framework of
linear stability [33,9,27]. Since our flow is time-depen-
dent, the kinematic dynamo is not an eigenvalue-type
problem. However, if the flow changes are much faster
than any magnetic field variations, it is a good appro-
ximation. Hence, we consider here a toy model with two
coupledmagneticmodesB1 andB2. Let us assume that the
induction equation can be approximated by the following
system:

dB1

dt
¼ k1B1 þ K12B2 ð6Þ

dB2

dt
¼ k2B2−K21B1 ð7Þ
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with real coefficient λ1, λ2, K12, K21. For a low
coupling (K12K21b (λ1−λ2)2 /2) the eigenvalues of this
system are real, so that the growing solution will be
the combination of B1 and B2 corresponding to the
highest eigenvalue. This is the case for the quadrupole
family at Rob0. However, when the coupling K12K21
Fig. 7. Magnetic field reversal observed at E=10−6, Ro=−0.08 and Pm=0.1. T
as a function of time (in magnetic diffusion time units). Each snapshot shows
Fig. 5.
is sufficiently strong, the eigenvalues are complex
conjugate with a real part λr= (λ1+λ2) /2. As a result,
the growing magnetic field oscillates periodically
between B1 and B2 with a frequency increasing with
the strength of the coupling. The parameters λ1, λ2,
K12, K21 can be adjusted in order to recover the curve
he graph shows the evolution of the growth rate of the magnetic energy
the geometry of the magnetic field at different times in the same way as



Fig. 8. Growth rate of the magnetic energy at E=10−6, Ro=−0.08,
Pm=0.1 and two different resolutions (given in Table 1). The dashed
line is the less resolved calculation (in both space and time domains),
and the continuous line is the high resolution one.

602 N. Schaeffer, P. Cardin / Earth and Planetary Science Letters 245 (2006) 595–604
shown in Fig. 7 (without the small oscillations) when
plotting the growth rate of the energy of such a system
as a function of time. The intermediate time scale
(time for the growth rate to go from its minimum to
its maximum) is very close to the phase shift between
B1 and B2, and one of the two modes is dominant near
the minimum of the growth rate cycle, while the other
one is dominant near the maximum, with growth rates
close to λ1 and λ2.

The reversal process at work in our simulations is
a smooth periodic evolution of the magnetic field, but
at the surface it takes the form of a sudden sign
reversal. In fact, a reversed poloidal magnetic field is
slowly growing inside the Stewartson layer, pushing
away the initial poloidal magnetic field until it
reaches the outer boundary. Then, the reversed dipole
magnetic field suddenly appears at the surface and
ultimately the poloidal field reverses at the center.
During the oscillation, the axisymmetric toroidal
magnetic field patches in the Stewartson layer
migrate toward the equator as reversed polarity
toroidal fields are formed at high latitudes. This mi-
gration could be understood in terms of Parker
dynamo waves [40,33].

4.3. Impact of truncation

To check if such strong truncations that completely
neglect the small scales of the flow for the induction
processes are valid, we tested several of our truncated
calculations by increasing Mmax and reducing the time
step. We saw no significant differences. Some of
these runs, that demonstrate the convergence of our
results, are shown in Table 1. Furthermore, there is
no significant difference between the temporal
evolution of the growth rate in the time series
shown in Fig. 8.
Table 1
Effect of the truncation of the magnetic field model on the growth rate

E Ro Pm NR
U mmax

U NR
B mmax

B lmax
B dtU dtB gr

10−6 0.04 0.3 400 64 100 64 64 0.1 0.1 45.72
10−6 0.04 0.3 400 64 100 16 59 0.1 0.6 45.68
10−6 −0.08 0.1 400 64 200 42 79 0.05 0.2 30
10−6 −0.08 0.1 400 64 100 21 59 0.05 0.3 31

NR is the number of radial grid-points; mmax is the number of
azimuthal Fourier mode; lmax the highest order of the spherical
harmonics; dt is the time stepping (based on the rotation rate); gr is
the growth rate of the magnetic energy. Superscript ‘U’ or ‘B’
denotes a quantity relative to the velocity field or to the magnetic
field models.
These tests clearly show that the scale-separation
hypothesis in both space and time is, as expected, valid
for such small values of Pm.

5. Conclusion

In summary, we have computed a quasi-geostrophic
dynamo based on a Stewartson shear layer flow. The
scale separation approach works because the small
scales of the flow in our rotating sphere are negligible
(very steep kinetic energy spectrum E(k)∼k−5). Our
preliminary results may be interpreted in terms of a
Parker-Ω dynamo. The Ω effect is generated by the
shear of the Stewartson layer itself whereas the Parker
effect is produced by vortices associated with the
Rossby waves due to the instability of the shear layer.
These understandings are very encouraging for our on-
going experimental modeling of the geodynamo. As
described in Cardin et al. [24], we are building a
spherical Couette experiment using liquid sodium
which may validate and enlarge our present numerical
findings.

For the first time, we have computed a spherical
dynamo with a very low magnetic Prandtl number
(b10−2) and a very low Ekman number (10−8)
(corresponding to a very high Reynolds number
ReN106). The critical magnetic Reynolds number
seems to be quite independent of the Ekman and
magnetic Prandtl numbers. Even though our dimen-
sionless parameters stay far away from parameters of
planetary cores, our calculations use dimensionless
numbers which are in the correct asymptotic regime
for the modeling of the geodynamo. The key
ingredients of our approach is to take into account
a specific property of the rotating fluid, quasi-
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geostrophy, which allows us to use a 2D model to
compute the flow evolution, and the separation of
scales between the magnetic field and the velocity
field, allowing us to use a coarse 3D mesh for the
magnetic field.

Concerning the dependence on Pm, our results are
compatible with the results of Ponty et al. for turbulent
Taylor Green flow [41] while they contradict those of
Schekochihin et al. showing an inhibition of dynamo
action as Pm is decreased [42]. In the geophysical context,
the study of Christensen and coworkers suggested that by
decreasing the Ekman number, the magnetic Prandtl
number could be decreased as well without looszing
dynamo action. This suggestion was based on 3D simu-
lations, varying the Ekman number by a factor of 3 [7]. By
varying both parameters by a factor of 100 (see Fig. 4), the
present study clearly confirms this idea, which has very
important geophysical implications, showing a possible
link between the regime of existing numerical models and
the regime of interest for the Earth.

We also showed that in the case studied in this paper, the
mean flow or the static flow fails to produce a dynamo
while the fully resolved time-dependent flow is successful.
Indeed, time evolution of the flow and β effect are key
ingredients for dynamo action in our models, while Ekman
pumping can be neglected without losing the dynamo
effect.

The next step will be to add the Lorentz force in the QG
equation to compute saturated dynamos. One of the
difficulties is to compute the action of the large-scale mag-
netic field on the small-scale motions of the fluid.
Preliminary results are encouraging and exhibit saturated
dynamos very close to the kinematic dynamos described
here. A comparison with 3D calculations would also be
very interesting and 3D preliminary results of J. Wicht
(private communication) seem to confirm our results.

A quasi-geostrophic approach might also be used to
build thermal convective dynamos. A zonal geostrophic
flow is produced by the Reynolds stresses associated to
the thermal columns [18,43] but its amplitude is much
lower compared to the differential rotation imposed in the
Stewartson problem. Would it be enough to start a Ste-
wartson dynamo type? for what forcing? Would it work
for very low Ekman and magnetic Prandtl numbers?
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