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Abstract

Water erosion creates negative impacts on agricultural production, infrastructure, and water quality across the world. Regional-scale water

erosion assessment is important, but limited by data availability and quality. Satellite remote sensing can contribute through providing spatial

data to such assessments. During the past 30 years many studies have been published that did this to a greater or lesser extent. The objective

of this paper is to review methodologies applied for water erosion assessment using satellite remote sensing. First, studies on erosion

detection are treated. This comprises the detection of erosion features and eroded areas, as well as the assessment of off-site impacts such as

sediment deposition and water quality of inland lakes. Second, the assessment of erosion controlling factors is evaluated. Four types of

factors are discussed: topography, soil properties, vegetation cover, and management practices. Then, erosion mapping techniques are

described that integrate products derived from satellite remote sensing with additional data sources. These techniques include erosion models

and qualitative methods. Finally, validation methods used to assess the accuracy of maps produced with satellite data are discussed. It is

concluded that a general lack of validation data is a main concern. Validation is of utmost importance to achieve regional operational

monitoring systems, and close collaboration between the remote sensing community and field-based erosion scientists is therefore required.

D 2005 Elsevier B.V. All rights reserved.
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Table 1

Overview of optical satellite sensors applied in erosion research

Satellite Sensor Operation

time

Spatial

resolution

# Spectral

bands

Spectral

domain

Landsat-1,2,3 MSS 1972–1983 80 m 4 VNIR

Landsat-4,5 TM 1982–1999 30 m 6 VNIR,

SWIR

120 m 1 TIR

Landsat-7 ETM 1999–present 15 m 1 VNIR

30 m 6 VNIR,

SWIR

60 m 1 TIR

SPOT-1,2,3 HRV 1986–present 10 m 1 VNIR

20 m 3 VNIR

SPOT-4 HRVIR 1998–present 10 m 1 VIS

20 m 4 VNIR,

SWIR

IRS-1A,1B LISS-1 1988–1999 72.5 m 4 VNIR

LISS-2 36.25 m 4 VNIR

IRS-1C,1D PAN 1995–present 5.8 m 1 VNIR

LISS-3 23.5 m 3 VNIR

70 m 1 SWIR

Terra ASTER 1999–present 15 m 3 VNIR

30 m 6 SWIR

90 m 5 TIR

NOAA/

TIROS

AVHRR 1978–present 1.1 km 5 VNIR,

SWIR,

TIR

IKONOS Panchromatic 1999–present 1.0 m 1 VNIR

Multispectral 4.0 m 4 VNIR

QuickBird Panchromatic 2001–present 0.61 m 1 VNIR

Multispectral 2.44 m 4 VNIR
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1. Introduction

Soil erosion by water is the most important land

degradation problem worldwide (Eswaran et al., 2001).

Although some authors question its impact on global food

security (Crosson, 1997; Lomborg, 2001) soil erosion

creates strong environmental impacts and high economic

costs by its effect on agricultural production, infrastructure

and water quality (Lal, 1998; Pimentel et al., 1995).

Furthermore, erosion results in emission of soil organic

carbon to the atmosphere in the form of CO2 and CH4,

causing impact on global warming (Lal, 2004). Global

warming in turn is expected to increase erosion rates

(Nearing et al., 2004). A proper assessment of erosion

problems is greatly dependent on their spatial, economic,

environmental, and cultural context (Warren, 2002).

Water erosion is controlled by climatic characteristics,

topography, soil properties, vegetation, and land manage-

ment. Detachment of soil material is caused by raindrop

impact and drag force of running water. Detached particles

are transported by overland flow (sheet- or interrill erosion)

and concentrated flow (rill erosion) and deposited when

flow velocity decreases (Lal, 2001). Gullies can develop as

enlarged rills, but their genesis is generally more complex,

involving sub-surface flows and sidewall processes (Bocco,

1991).

To control water erosion, biophysical measures need to

be implemented at the field, hillslope or watershed scale.

However, allocation of scarce conservation resources and

development of policies and regulations require erosion

assessment at the regional scale. An important limitation for

this task is data availability and quality (Van Rompaey and

Govers, 2002). Remote sensing provides homogeneous data

over large regions with a regular revisit capability, and can

therefore greatly contribute to regional erosion assessment

(King and Delpont, 1993; Siakeu and Oguchi, 2000).

Traditionally, remote sensing has been used for soil

erosion research through aerial photo interpretation both for

detecting erosion features (e.g. Bergsma, 1974; Jones and

Keech, 1966) and obtaining model input data (e.g. Morgan

and Napela, 1982; Stephens et al., 1985). Starting in 1972

with the launch of Landsat-1, satellite imagery has become

increasingly available to the scientific community.

During the past 30 years many studies have been

published that fully or partially applied satellite imagery

for soil erosion assessment in many different ways. The

objective of this paper is to provide an overview of

methodologies applied for water erosion assessment using

satellite remote sensing. It focuses on erosion processes

related to surface run-off and gullying. Although important

sensor development has taken place during the past years

using airborne systems, which are of interest to erosion

research (e.g. laser altimetry, hyperspectral remote sensing),

this paper focuses only on satellite-based applications.

Mainly peer-reviewed journal articles are treated, with a

few exceptions. The review addresses (1) erosion detection,
(2) the assessment of erosion controlling factors, and (3)

data integration for erosion mapping.
2. Satellites and sensors applied in erosion research

A large number of earth observation satellites has

orbited, and is orbiting our planet to provide frequent

imagery of its surface. From these satellites, many can

potentially provide useful information for assessing erosion,

although less have actually been used for this purpose. This

section provides a brief overview of the spaceborne sensors

applied in erosion studies. More recent satellites (e.g. SPOT-

5, CBERS) and future satellites (e.g. ALOS, SMOS) that are

of potential interest are not discussed here. The sensors can

be divided in those measuring reflection of sunlight in the

visible and infrared part of the electromagnetic spectrum

and thermal infrared radiance (optical systems), and those

actively transmitting microwave pulses and recording the

received signal (imaging radars).

Optical satellite systems have most frequently been

applied in erosion research. The parts of the electromagnetic

spectrum covered by these sensors include the visible and

near-infrared (VNIR) ranging from 0.4 to 1.3 Am, the

shortwave infrared (SWIR) between 1.3 and 3.0 Am, and the

thermal infrared (TIR) from 3.0 to 15.0 Am. Table 1

summarises sensor characteristics of the systems used.
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Landsat is still among the widest used satellites, partly

because it has the longest time series of data of currently

available satellites. The first satellites of the Landsat family

were equipped with the Multispectral Scanner (MSS),

having four bands at 80-m resolution. Later Landsat

satellites had the Thematic Mapper (TM) and the Enhanced

TM (ETM) sensors onboard with improved resolution and

more spectral bands. The SPOT (Système Pour l’Observa-

tion de la Terre) series of satellites started acquiring data in

1986 with the HRV-sensor (High Resolution Visible). The

HRV-sensor has a 10-m panchromatic mode and a three-

band 20-m resolution multispectral mode. SPOT-4 flew the

HRVIR-sensor (High Resolution Visible Infrared) on which

a SWIR band was added. The Indian Remote Sensing

Satellites (IRS) 1A and 1B both have two sensors called

LISS-1 and LISS-2 (Linear Imaging and Self-Scanning

Sensor), which are identical except for a two times higher

spatial resolution on LISS-2. IRS 1C and 1D also have an

identical payload being a 5.8-m resolution panchromatic

camera (PAN) and a 23.5-m resolution multispectral sensor

called LISS-3. ASTER (Advanced Spaceborne Thermal

Emission and Reflection Radiometer) is one of the sensors

onboard the Terra satellite. It has 14 spectral bands of which

several are situated in the SWIR and TIR regions. One near-

infrared (NIR) band looks both nadir and backward creating

stereo-view from a single pass. IKONOS and QuickBird are

both high-resolution satellites, with a spatial resolution in

panchromatic mode of 0.61 and 1.00 m respectively, and

2.44 and 4.00 m in multispectral mode. AVHRR (Advanced

Very High Resolution Radiometer) has five bands in 1.1-km

resolution and has been flown on many platforms, including

TIROS-N (Television Infrared Observation System) and

several NOAA-satellites (National Oceanic and Atmospher-

ic Administration).

The start of spaceborne imaging radar instruments was

in 1978 with the SAR (synthetic aperture radar) onboard

SEASAT, operating in L-band (23.5-cm wavelength) during

105 days only. For erosion studies, only five SAR sensors

have been applied, which were flown on ERS-1 and 2,

JERS-1, RADARSAT-1, and ENVISAT respectively. In

1991 ERS-1 was launched with the Active Microwave

Instrument (AMI) onboard operating in C-band (5.7-cm

wavelength). The SAR image mode of AMI acquired data

at 30-m resolution. ERS-2 flies the same instrument and

has been operational from 1995 till present. JERS-1

(Japanese Earth Resources Satellite) flew an 18-m resolu-

tion L-band SAR (23.5-cm wavelength), recording data

from 1992 to 1998. RADARSAT-1 has acquired C-band

SAR data since 1995 and has the possibility of using a

variety of incidence angles (between 20- and 49-) and

different resolutions (between 10 and 100 m). The

Advanced SAR (ASAR) onboard ENVISAT, launched in

2002, also has the possibility of using several incidence

angles (between 15- and 45-). Besides, its C-band SAR can

transmit and receive radar pulses both in horizontal and

vertical polarization, which refers to the plane in which the
electromagnetic wave is propagating. Spatial resolutions of

ASAR are approximately 30 m, 150 m, or 1 km, depending

on the mode used.

Furthermore, a number of short-duration Space Shuttle

flights have flown earth-observation instruments. Only two

of them have been used for erosion studies, being MOMS-2,

and SIR-C/X-SAR. MOMS-2 (Modular Optoelectronic

Multispectral Scanner) is an optical sensor that was flown

in 1993. It has four multispectral bands in the VNIR range at

13.5-m resolution, a panchromatic band having 4.5-m

resolution, and two panchromatic stereo bands (backward

and forward looking) at 13.5-m resolution. SIR-C/X-SAR is

a joint instrument consisting of SIR-C (Shuttle Imaging

Radar-C) and X-SAR, which was flown two times in 1994.

SIR-C provided multi-polarization L- and C-band SAR

imagery and X-SAR simultaneously X-band (3.1-cm

wavelength) mono-polarized SAR imagery with approxi-

mately 30-m resolution.
3. Erosion detection

Satellite data can be applied to directly detect erosion or

to detect erosion consequences. Direct detection has been

achieved through identification of individual large erosion

features, discrimination of eroded areas, and assessment of

erosion intensity based on empirical relations. Detectable

effects include the damage occurred due to major erosion

events, and the sedimentation of reservoirs.

3.1. Detection of erosion features and eroded areas

Although the mapping of erosion features is an important

application of aerial photography, the limited spatial extent

of the features often inhibits its detection using satellite

imagery. Spatial resolutions such as offered by Landsat and

SPOT imagery can at best be applied for identification of

individual large and medium sized gullies (Langran, 1983;

Millington and Townshend, 1984) and do not allow gully

growth analysis with sequential imagery (Bocco and

Valenzuela, 1993). For large gullies in Central Brazil,

Vrieling and Rodrigues (2004) found that optical ASTER

imagery provided better description of gully shape than

ENVISAT ASAR data, when compared to a QuickBird

image. With the current availability of high-resolution

satellites such as IKONOS and QuickBird, options for

detecting and monitoring individual small-scale features

have increased, although not yet reported in literature.

Instead of detecting individual erosion features, satellite

data have been effectively applied for assessing eroded

areas. Extensive areas suffering gully erosion (i.e. badlands)

have been mapped with visual interpretation techniques on

optical image composites of different sensors (e.g. Bocco et

al., 1991; Dwivedi et al., 1997b; Kumar et al., 1996). In

some cases erosion classes could be separated based on

vegetation cover derived as well from visual interpretation
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(Dwivedi and Ramana, 2003; Sujatha et al., 2000) or

vegetation and topographic characteristics derived from

additional data sources (Yuliang and Yun, 2002). The

delineation of eroded areas on multi-temporal images

allowed an assessment of its increase (Fadul et al., 1999;

Sujatha et al., 2000). Karale et al. (1988) performed a bi-

temporal comparison using aerial photos and Landsat TM

imagery. Although a clear increase of eroded lands was

found, aerial pictures allowed for a better differentiation of

ravine types than satellite imagery.

An alternative for visual interpretation techniques is the

automatic extraction of eroded lands from satellite imagery.

Servenay and Prat (2003) applied an unsupervised classifi-

cation algorithm to multispectral SPOT HRV data to

distinguish four stages of erosion. Floras and Sgouras

(1999) used the maximum likelihood classifier after

principal component analysis of Landsat TM imagery to

separate one erosion class. Bocco and Valenzuela (1988)

applied the same classifier for multispectral Landsat TM and

SPOT HRV images to discern several erosion and vegeta-

tion classes. They found that the higher resolution SPOT

data performed better in classifying eroded areas, but that

the larger number of spectral bands of Landsat TM resulted

in a better classification of land cover and land use. Dwivedi

et al. (1997a) also found that SPOT HRV was better in

classifying eroded lands than Landsat TM and MSS, but

they did not use all TM bands for classification. Metternicht

and Zinck (1998) performed a maximum likelihood

classification on Landsat TM, and on the combination of

Landsat TM with JERS-1 SAR data. They achieved highest

classification accuracy using the combination of both

images.

Besides classification techniques, direct correlation be-

tween erosion and spectral reflectance values sometimes

permits the detection of erosion and the mapping of its

intensity. Price (1993) found high correlation between

reflectance values of single Landsat TM bands, especially

band 4 (NIR), and erosion rates for pinyon-juniper wood-

lands. Erosion rates were determined from the distance

between the ground level and a string that was stretched

between the base of two adjacent tree trunks, assuming a

stable surface level at the trunks. For arid rangelands in

Australia, Pickup and Nelson (1984) successfully distin-

guished eroding, stable, and depositional areas using the

data space defined by the 4/6 and 5/6 band ratios of Landsat

MSS imagery (corresponding to green/NIR and red/NIR

respectively). They stressed that the method is dependent on

the relation between erosion status and vegetation cover,

and is not suitable for humid climates. Pickup and Chewings

(1988) used the same approach in combination with

autocorrelation functions to predict changes in patterns of

erosion and deposition. Beaulieu and Gaonac’h (2002)

describe a more complex method involving Fourier scaling

and multifractal analysis of Landsat TM and ERS-1 SAR

imagery, which allowed for separating eroding surfaces in

Ethiopia.
Changes of surface states can supply direct information

on erosion occurrence. A great variety of methods for

change detection from satellite imagery exists (Coppin et al.,

2004). Studies that relate changes merely to soil properties

will be described in Section 4.2. Albedo differences

between different Landsat MSS passes allowed identifica-

tion of soil degradation and erosion areas in arid and semi-

arid environments of the USA (Frank, 1984a,b; Robinove et

al., 1981). Dhakal et al. (2002) showed that the methods of

spectral image differencing, principal component analysis,

and spectral change vector analysis on bi-temporal Landsat

TM imagery all resulted in a proper detection of erosion and

flooded areas resulting from an extreme rainfall event, when

compared to a field survey of affected and non-affected

areas.

Repeat-pass SAR interferometry is a special change

detection technique (Massonnet and Feigl, 1998; Rosen et

al., 2000). It uses the amplitude and phase information of

two SAR scenes having a very similar viewing geometry

and a certain time lag. Although digital elevation model

(DEM) extraction and slight deformation measurements are

among the application areas, derived interferometric coher-

ence imagery has most potential for erosion detection.

Coherence between two radar signals is high when the land

surface characteristics are very similar on both recording

dates. Random surface changes as caused by erosion result

in temporal decorrelation. Spatial decorrelation effects due

to differences in satellite paths can be partly accounted for

using the ratio between two coherence images (Lee and Liu,

2001). However, vegetation and soil moisture changes are

also a major cause of decorrelation (e.g. Vrieling and

Rodrigues, 2004; Wegmüller et al., 2000), which confines

erosion detection with coherence imagery to (semi-)arid

environments. In Mediterranean sites, ratio coherence

imagery derived from ERS SAR data has been effectively

applied to detect erosion (Lee and Liu, 2001; Liu et al.,

2001, 2004). For an extreme glacier flooding event in

Iceland, Smith et al. (2000) applied interferometric decorre-

lation to assess unstable areas that were related to erosion

and deposition. Wegmüller et al. (2000) separated erosion

classes in the Death Valley (USA) using coherence imagery

in combination with backscatter values. A relation was

found between erosion activity and degree of coherence. In

spite of erosion detection possibilities, most authors stressed

the need to integrate coherence imagery with additional

spatial data, like optical imagery, because of the multiple

causes of temporal decorrelation.

For extreme events, the extraction of multi-temporal

DEMs using SAR interferometry offers possibilities to

assess erosion and deposition volumes, as demonstrated

by Smith et al. (2000). They created DEMs from pre-flood

and post-flood interferometric ERS tandem pairs, and by

subtraction they were able to assess volumes of erosion and

deposition. Because of height accuracy DEM subtraction is

limited to areas that experience at least 4-m net erosion or

deposition.
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3.2. Detection of erosion consequences

Erosion is a process that transports soil particles. At

downstream locations, both the transport and the deposition

of soil material often cause undesired effects. Izenberg et al.

(1996) determined the loss of agricultural land due to the

extreme flooding of the Missouri River in 1993 with

Landsat TM and SPOT HRV imagery. Thickness of

deposited sand could be assessed with SIR-C L-band, as

field data revealed a correlation between the sediment

thickness and vegetation on deposition areas. Khan and

Islam (2003) used multi-temporal Landsat data to investi-

gate the dynamics of the Brahmaputra-Jamuna River, which

is greatly influenced by the heavy sediment load originating

from erosion in the Himalayas. However, most studies that

have applied satellite imagery to assess erosion consequen-

ces focus on reservoirs and lakes, where sediments create

important economic and ecological impacts.

Sedimentation volumes have been estimated for Indian

reservoirs using multi-temporal IRS LISS-2 and LISS-3

imagery (Goel and Jain, 1996; Goel et al., 2002; Jain et al.,

2002). Images were selected of a year with maximum

variation in the reservoir water level. For different image

dates, water-spread areas at varying depths were extracted

using simple classification algorithms. Reservoir capacity

was then calculated with geometric equations and compared

with the original capacity to determine sedimentation

volumes. A drawback of the approach is that capacities

can only be determined in the water fluctuation zone.

Comparison with a hydrographic survey showed a slight

overestimation of sedimentation rates, which was attributed

to confusion between water and land pixels at the reservoir

periphery (Jain et al., 2002).

Erosion influences the water quality of downstream lakes

and reservoirs. The suspended sediment concentration is the

most important water quality parameter for erosion studies

(Ritchie and Schiebe, 2000). Reflectance from surface water

in the visible and infrared domain is positively influenced

by suspended sediments (Ritchie et al., 1976). Many studies

found significant relationships between in situ determined

suspended sediment concentration of inland water bodies

and atmospherically corrected spectral reflectance derived

from satellite remote sensing data, such as Landsat (e.g.

Carpenter and Carpenter, 1983; Harrington et al., 1992;

Nellis et al., 1998), IRS LISS-1 (e.g. Choubey, 1998), and

multispectral SPOT HRV (e.g. Chacontorres et al., 1992).

The optimal wavelength to determine these relations

depends on the sediment concentration (Curran and Novo,

1988; Ritchie and Cooper, 1991), but often used spectral

bands are between 500 and 800 nm (within VNIR range).

Because sediment characteristics, like texture and colour,

influence the water reflection (Han and Rundquist, 1996;

Ritchie et al., 1989), developed empirical relationships are

not easily transferable to other regions where erosion

entrains different sediment types. To increase transferability,

Schiebe et al. (1992) developed a theoretically derived
exponential equation for a wide range of sediment concen-

trations, which also attempted to account for chlorophyll

and algal influences. However, until present a universal

equation does not exist, and most models of suspended

sediment are site-specific (Liu et al., 2003). Detailed

reviews of remote sensing for water quality assessment,

including suspended sediments, are provided by Dekker et

al. (1995), Ritchie and Schiebe (2000) and Liu et al. (2003).

A combination of suspended sediment equations and a

remote sensing based identification of water bodies across

the landscape was proposed by Ritchie et al. (1987) to

assess areas with high soil erosion rates, and concentrate soil

conservation efforts. However, practical applications of this

approach have not been found in literature.
4. Erosion controlling factors

Most remote sensing studies of soil erosion concentrated

on the assessment of erosion controlling factors. Especially

soil and vegetation attributes have often been determined

with satellite data, and to a lesser extent topography and

management. Here, only studies that determined these

attributes in relation to erosion processes are treated. The

climate factor is not discussed, as no satellite applications

were found in literature for assessing rainfall characteristics

in erosion studies. Rainfall gauges are generally used for

this purpose, although Mannaerts and Saavedra (2003)

propose the use of large-scale precipitation data derived

from the Tropical Rainfall Measuring Mission (TRMM),

which is the first satellite system with a precipitation radar.

4.1. Topography

To study the effect of topography on erosion, landforms

have been discriminated on the basis of visual interpretation

of e.g. Landsat image composites (Khan et al., 2001;

Mitchell, 1981). However, current spatial erosion models

nearly always require DEM input for the assessment of

slope characteristics. Traditionally such DEMs have been

obtained from contour lines on topographic maps, or less

frequently from stereo aerial photography. Nowadays,

various options exist to extract good quality DEMs (vertical

accuracy <20 m) from satellite data, such as stereo optical

imagery provided by SPOT and ASTER (Toutin and Cheng,

2003) or SAR imagery (Toutin and Gray, 2000). SAR

interferometric processing of the Shuttle Radar Topography

Mission (SRTM) data provided readily available DEMs for

land areas between 60- northern and 57- southern latitude

(Rabus et al., 2003).

Few researchers have applied DEMs derived from

satellite data for erosion studies. Khawlie et al. (2002)

calculated slope gradient from an ERS SAR interferometric

DEM. Also ERS SAR interferograms, an interferometric

product obtained before the DEM construction step, have

been used directly for slope extraction (Liu et al., 2000).
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SPOT HRV derived DEMs were used to aid visual

interpretation of erosion features (Bishop and Shroder,

2001) and to extract slope and topographic curvatures

(Haboudane et al., 2002). Stereo-data of MOMS-2 allowed

DEM extraction and subsequent calculation of slope length

and gradient (Reusing et al., 2000). Applications of ASTER

and SRTM derived DEMs for erosion studies have not been

found yet in peer-reviewed literature, although it is probable

that this already happens at the institution level.

4.2. Soil

Soils differ in their resistance to erosion, which is a

function of a range of soil properties such as texture,

structure, soil moisture, roughness, and organic matter

content. The susceptibility of soil to erosion agents is

generally referred to as soil erodibility (Lal, 2001). Soil

classifications are often used to account for spatial differ-

ences in erodibility. Important factors on the basis of which

soils can be classified include soil properties, climate,

vegetation, topography, and lithology. These factors can be

potentially mapped with satellite remote sensing (McBrat-

ney et al., 2003). Especially optical satellite imagery has

been used for soil mapping, mainly through visual

delineation of soil patterns (Dwivedi, 2001). To use visual

interpretation techniques, detailed knowledge on the rela-

tionship between observable terrain characteristics and the

occurrence of soil units is required. Such knowledge can be

formalized in clear criteria, like those used for the creation

of the Soils and Terrain digital databases SOTER (Van

Engelen and Wen, 1995; Van Lynden and Mantel, 2001).

Soil classification by visual interpretation of optical satellite

imagery has been used to assess differences in soil

erodibility (Reusing et al., 2000; Sharma and Singh,

1995). The relation between soil classes and erodibility

was determined using equations of Wischmeier and Smith

(1978).

Wang et al. (2003) used the same equations to determine

erodibility in the field. The obtained erodibility values were

extrapolated to the whole sampling region using two

geostatistical methods, collocated co-kriging and joint

sequential co-simulation. Within these methods, Landsat

TM band 7 allowed for reproducing the spatial variability of

the erodibility. The success of this mapping must be

contributed to the existence of a clear link between natural

vegetation and soil types in the studied area. When this link

is clearly present, spatial variability of erodibility will

probably be better represented than when assigning erod-

ibility values to a soil classification.

Topsoil characteristics influence the soil surface colour,

and thus spectral reflectance curves. Significant relation-

ships were found between soil colours defined by the

Munsell system and optical satellite imagery (Escadafal,

1993; Singh et al., 2004). Various soil properties affect the

soil’s spectral reflectance, such as soil texture, organic

matter content, moisture content, iron oxides and soil
minerals (Barnes and Baker, 2000; Dwivedi, 2001; Escada-

fal, 1994). This can be a limitation for the study of one

particular property, but surface states may be classified

when one or more topsoil properties affect its spectral

reflectance. These surface states can then be related to run-

off and erosion potential using field measurements (Gardner

and Duffy, 1985). Surface state conditions that are important

for erosion are surface crusting and the uncovering of

subsoil. Crusted soil can sometimes have distinct spectral

properties as compared to uncrusted soil, due to an increase

in clay particles at the soil surface, and a decrease of surface

roughness (Ben-Dor et al., 2003; Escel et al., 2004), but this

is largely dependent on the crust type and soil type. Satellite

applications using this relation for erosion assessment are

limited to analysis of crust dynamics of bare soil surfaces for

Northern France with multi-temporal SPOT HRV imagery

(King et al., 1989; Mathieu et al., 1997). Apart from

crusting, the gradual uncovering of subsoil by erosion also

results in detectable spectral changes. When these changes

are well known, optical satellite data allows spatial and

temporal assessment of erosion status (Latz et al., 1984;

Pelletier and Griffin, 1985, see also Section 3.1).

A difficulty in measuring topsoil reflectance with satellite

data is the disturbing influence of vegetation, which greatly

limits satellite-based soil studies for temperate and humid

areas, unless agricultural practices leave the soil bare

periodically. To separate the soil from the vegetation signal,

a common used technique in (semi-)arid environments is

linear spectral unmixing (Adams et al., 1986; Smith et al.,

1990). In this technique, spectral reflectance signatures are

modelled as a linear combination of a few prototype spectra,

called endmembers. It is assumed that the spectral variation

in remote sensing images is caused by mixtures of a limited

number of surface materials, which have sufficient spectral

contrast, allowing their separability. As long as the number

of endmembers does not exceed the number of spectral

bands minus one, a unique solution is obtained for the

relative endmember abundance per pixel. Disturbing influ-

ences for soil assessment as caused by vegetation and shade

can thus be accounted for (Adams et al., 1989; Hill, 1993).

Knowing the regional soil types and their respective climax

and degradation forms in combination with their spectral

characteristics, spectral unmixing allows erosion assessment

(Hill et al., 1995a). When the top layer of the soil is

removed by erosion, the volume of organic matter and iron

oxides decreases, and gradually rock becomes visible at the

surface (De Jong et al., 1999). Hence, spectral unmixing has

been used for erosion status mapping with Landsat TM

imagery (e.g. De Jong et al., 1999; Haboudane et al., 2002;

Hill and Schütt, 2000; Metternicht and Fermont, 1998).

Changes in erosion status were analyzed with multi-

temporal imagery for a site in Greece and showed an

increase of erosion between 1985 and 1990 (Hill et al.,

1995a,b).

Soil properties that can be assessed with SAR systems

are surface roughness, soil moisture, and texture (Ulaby et
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al., 1978, 1979). Although many studies addressed the soil

moisture assessment by SAR, satellite-based assessment is

still very complicated (Walker et al., 2004). Even at

locations with bare soil, there is a confusing influence of

surface roughness conditions and soil moisture on radar

backscatter (Davidson et al., 2000) and the two effects

cannot be separated without additional information (Col-

pitts, 1998). Nevertheless, several authors claimed success

in representing spatial and temporal soil moisture variability

when good land use information is available (e.g. Löw et al.,

2004; Quesney et al., 2000). For erosion studies, few

authors have used SAR to assess roughness and moisture

properties. To identify run-off risks in vineyards in southern

France, Remond et al. (1999) identified the periodic and

stable surface roughness of agricultural areas with multi-

temporal ERS-1 imagery. Baghdadi et al. (2002) classified

surface roughness to determine run-off potential of bare

soils in northern France. They found that RADARSAT-1

imagery with a high incidence angle (47-) performed better

for roughness classification than images with incidence

angles of 39- (RADARSAT-1) and 23- (ERS-1).

4.3. Vegetation

Vegetation cover provides protection of the soil against

erosion processes. To account for vegetation in erosion

assessments, a cover and management factor (C-factor) has

often been used. The C-factor is defined as the ratio of soil

loss from land cropped under specified conditions to the

corresponding clean-tilled continuous fallow (Wischmeier

and Smith, 1978). In many regions of the world, vegetation

cover shows a high temporal dynamics. Long-term dynam-

ics relate to e.g. land use conversions or gradual depletion of

resources. Short-term dynamics are caused by rainfall

characteristics, and by human activities such as crop

harvesting or burning practices. Many satellite remote

sensing studies of soil erosion focus on the assessment of

vegetation cover. These studies need to account somehow

for the temporal variation, and consequently image timing is

highly important, although not always sufficiently high-

lighted. Depending on the purpose of the study, sometimes a

mono-temporal assessment can be sufficient. However,

especially for physically based models (see Section 5.1)

careful matching of satellite imagery with rainy periods and

crop development is required, which demands a time series

of remote sensing images to account for seasonal variability

(e.g. Cyr et al., 1995).

Land use classification is often used to map vegetation

types that differ in their effectiveness to protect the soil.

After classification, a qualitative ranking of vegetation types

is made, or C-factors are assigned from reported values in

literature (e.g. Morgan, 1995; Wischmeier and Smith, 1978).

In most cases seasonal crop dynamics are accounted for

within the classification, because an average annual C-factor

is assigned. For erosion studies, land use classification has

been performed with optical satellite systems through visual
interpretation of image composites (e.g. Khan et al., 2001;

Mati et al., 2000; Sharma and Singh, 1995) or automated

classification approaches. The most common ones are

unsupervised classification, in which pixels are grouped

according to their relative spectral similarity (e.g. Feoli et

al., 2002; Jakubauskas et al., 1992) and supervised

classification, where pixels are allocated to predefined

classes that are generally established based on ground-truth

data (e.g. Jürgens and Fander, 1993; Millward and Mersey,

1999; Pelletier, 1985). The mentioned classification techni-

ques can also be combined. Folly et al. (1996) performed a

visual interpretation of a Landsat TM composite to classify

main cover types. Subsequently a fine-tuning within each

class was achieved with a supervised classification. Several

authors applied hybrid unsupervised – supervised

approaches (e.g. Bhuyan et al., 2002; Fraser et al., 1995;

Vaidyanathan et al., 2002). Due to seasonal changes of some

vegetation classes, classification of multi-temporal imagery

can improve the classification accuracy (Müschen et al.,

2001). Details on the accuracy assessment of land use

classifications are given by Foody (2002). Although SAR

systems allow land use classification (e.g. Brisco and

Brown, 1998) and other classification approaches exist such

as neural networks (e.g. Miller et al., 1995), no studies were

found in literature that relate this to erosion assessment.

To decrease the influence of classification errors and

account for within-class variability, direct linear regression

has been performed between image bands or ratios and C-

values were determined in the field. For agricultural lands in

New Brunswick, Canada, good relationships were obtained

between C-values and band ratios of NIR to red reflection

(Cihlar, 1987; Stephens and Cihlar, 1982). In a mixed

savannah–woodland landscape in Texas, Gertner et al.

(2002) found a high correlation between Landsat TM band

ratio 3/4 (red over NIR) and vegetation attributes. They

mapped C-factors with the technique of joint sequential co-

simulation, in which the band ratio accounted for the spatial

variability of vegetation attributes (secondary variable),

while field data provided the attribute values (primary

variable). In the same study area, Wang et al. (2002) used

Landsat image ratio (TM3+TM7/TM4), which gave higher

correlation with directly calculated C-values from the field.

Wang et al. (2003) applied Landsat TM band 7 as a

secondary variable, because they jointly mapped erodibility

and C-values, for which band 7 gave optimal correlation.

While comparing different C-factor mapping techniques for

this area, joint sequential co-simulation with a Landsat TM

image outperformed classification, regression of C-values

against image ratios, collocated co-kriging, and co-simula-

tion without a Landsat TM image (Wang et al., 2003, 2002).

Vegetation indices are a specific class of spectral band

ratios. A wide range of such indices exists. Often they

exploit the fact that green vegetation has high reflectance in

the NIR and low reflectance in the red part of the spectrum.

A common index is the normalized difference vegetation

index (NDVI), which is defined as the NIR reflection minus
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red reflection divided by the sum of the two (Tucker, 1979).

NDVI has been used directly as an indication of the

protective cover of vegetation (Gay et al., 2002; Jain and

Goel, 2002; Liu et al., 2000; Thiam, 2003) or was related to

vegetation cover with regression analysis (Bhuyan et al.,

2002; Symeonakis and Drake, 2004; Zhang, 1999). De Jong

(1994b) concluded that the relationship between Landsat

derived spectral indices and vegetation attributes was quite

poor for Mediterranean France, but he still applied the

NDVI for C-factor estimation in later works (De Jong et al.,

1999; De Jong and Riezebos, 1997). Such poor relationships

can also partly be explained by the methodological

difficulties in precisely assessing the proportional vegetation

cover in the field (Hill et al., 1995a; Zhou et al., 1998). Due

to seasonal variability it is often highly important for which

date a vegetation index is calculated, and for most environ-

ments a carefully chosen time series of satellite images is

required to reliably estimate the vegetative soil protection

(e.g. De Jong et al., 1999).

Main problems with indices like the NDVI are the effect

of soil reflectance (Escadafal, 1994, Section 4.2) and the

sensitivity to the vitality of the vegetation (De Jong, 1994b;

Frederiksen, 1993). To account for soil reflectance, several

soil adjusted vegetation indices have been developed, like

the transformed soil adjusted vegetation index TSAVI (Baret

and Guyot, 1991). Cyr et al. (1995) showed that TSAVI

performed better for the assessment of low vegetation

covers than NDVI. Negative TSAVI values have been

related to potentially degraded areas (Flügel et al., 2003;

Hochschild et al., 2003). However, soil adjusted indices

have difficulty in accounting for spatially variable soil types

(Hill et al., 1994a). The main vegetation vitality effects are

during early growth stages, when thin vegetation covers are

often overestimated by vegetation indices due to intense

chlorophyll activity, and during vegetation senescence when

vegetation indices usually decrease even when the cover

remains the same (Cyr et al., 1995). For erosion processes,

vegetation condition is of minor importance however, as

senescent vegetation offers the same protection to the soil as

vigorous vegetation. To improve the detection of dry

vegetation, Bonn et al. (1997) proposed to combine SWIR

and NIR reflection in a soil adjusted crop residue index

(SACRI). Spectroradiometer studies support the use of

SWIR reflection for separating crop residue from soils (e.g.

Daughtry et al., 2004; Nagler et al., 2000). French et al.

(2000) showed that senescent vegetation can be distin-

guished from bare soil using TIR emissivity in combination

with NDVI, which is currently possible with the ASTER

sensor on the Terra satellite. Bhuyan et al. (2002) avoided

vegetation indices for separating wheat-stubble areas, but

related ground data on crop residue to classes obtained by

unsupervised clustering instead.

Linear spectral unmixing is an alternative technique for

assessing the vegetation cover (see Section 4.2). This

technique is mainly used in (semi-)arid environments,

where it has the advantage that different soil characteristics
within a scene can be accounted for. Using the green

vegetation spectrum as an endmember, spectral unmixing

permits an estimation of percentage green cover (e.g. De

Jong et al., 1999; Haboudane et al., 2002; Hill, 1993). In

this way, Zhang et al. (2002) determined green vegetation

cover at different spatial scales using aerial photographs,

Landsat TM and AVHRR imagery. Ma et al. (2003) related

the derived vegetation cover from unmixing Landsat data to

the C-factor using a log-linear relation. To account for

distinct spectral properties of vegetation types, Paringit and

Nadaoka (2003) automatically retrieved the vegetation

endmember from a field-survey based land use map before

applying the unmixing procedure, assuming no mixing of

vegetation types per pixel. Hill et al. (1995a,b) proposed

that possible endmembers can include non-photosynthetic

vegetation, like senescent vegetation or leaf litter. Bonn et

al. (1997) stated that for such vegetation, SWIR spectral

bands are required, and thus Landsat TM is more

appropriate than SPOT (HRV) satellites. Asner and Heide-

brecht (2002) effectively assessed non-photosynthetic veg-

etation cover with spectral unmixing. To assess the

protection effect to erosion of crop residues, Biard and

Baret (1997) proposed the algorithm CRIM (crop residue

index multiband) which is based on spectral unmixing of

soil and residue spectra. Using field radiometric measure-

ments, they achieved better estimates for residue cover with

CRIM than with the vegetation index SACRI. As the crop

residue spectrum tends towards the soil spectrum with

progressive aging, the residue fraction can best be deter-

mined soon after harvest. Using Landsat data, CRIM also

performed better than indices like SACRI in assessing maize

and wheat residue fractions on clayey and silty soils in

Quebec (Arsenault and Bonn, 2005).

4.4. Conservation practices and tillage

Especially in agricultural areas, conservation practices

such as contouring, strip cropping, or terracing, reduce soil

losses. The effectiveness of such practices is often analyzed

with a support practice factor (P-factor), defined as the ratio

of soil loss with the practice applied and up- and downslope

cultivation (Wischmeier and Smith, 1978). P-values have

been assigned to land use classes that were derived from a

classification of remote sensing imagery, using literature

values (Lee, 2004) or expert opinion (Bhuyan et al., 2002)

for practices that commonly occur for the land use class in

the studied area. Interpretation of aerial photographs allows

the detection of many conservation measures, but with

coarse resolution Landsat MSS data this becomes problem-

atic (Langran, 1983). Nevertheless, Pelletier and Griffin

(1985) managed to successfully detect several conservation

measures with Landsat MSS and TM imagery. Still, there

have been few studies on the detection of conservation

practices with satellite remote sensing.

An exception to this is the detection of tillage practices

with satellite imagery. Tillage practices differ in their effect
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on surface roughness and amount of crop residues, which

forms the basis of their detection (see also Sections 4.2 and

4.3). Image timing is very important, because tillage

operations are performed during a specific time of the year.

DeGloria et al. (1986) performed visual interpretation of 5-

year Landsat MSS data to monitor land under conventional

and conservation tillage practices in California. Various

authors used logistic regression techniques to separate

tillage practices in Landsat imagery (Bricklemyer et al.,

2002; Gowda et al., 2001; Van Deventer et al., 1997).

Although several band combinations were used in the

different studies, all authors included TM band 5 (SWIR),

which has been related to crop residue (Section 4.3).

In temperate regions, cloud cover restricts acquisitions of

optical imagery at the time of tillage. Therefore, SAR data

has been used for assessing tillage, mainly because the radar

return is dependent on surface roughness. To assess the

effect of autumn tillage on erosion in Norway, ERS-1 SAR

imagery allowed a good separation of grain stubble and

ploughed fields, whereas SPOT HRV imagery performed

worse (Leek and Solberg, 1995; Solberg, 1992). Using

RADARSAT imagery, McNairn et al. (1998) separated

classes with different erosion potential based on the effect of

residue cover and tillage operations on radar return. They

stress that multi-temporal or multi-polarization SAR imag-

ery is required for effective class separation. As radar return

depends on other factors than those affected by tillage, such

as soil moisture and vegetation density, assessment of tillage

practices is not always straightforward. For example, effects

of tillage row direction on radar backscatter have found to

be as significant as the differences between tillage imple-

ments for grain stubble fields (Brisco et al., 1991). Moran et

al. (2002) demonstrated that integration of optical and SAR

imagery provides more information on tillage and other

surface characteristics than the separate analysis of both data

sources.
5. Data integration for erosion mapping

Many rationales exist for the mapping of soil erosion. A

first step in erosion mapping is the definition of clear

objectives on the type of assessment, the extent of the

region, the spatial integration level, and temporal aspects. A

general used level of spatial integration is a pixel, but also

hydrological catchments may be used. Temporal aspects

refer to the assessment of either past, actual, or predicted

erosion, to events versus long-term averages, and to the

mono- versus multi-temporal assessment.

Remote sensing data assist erosion mapping through

direct erosion detection (Section 3) or through the use of

erosion controlling factors (Section 4). With detection,

multiple explanations may exist for certain image character-

istics, which could be accounted for with additional data

sources. Using erosion controlling factors, a framework for

integrating the different factors is required to map erosion.
In many cases, only one factor (e.g. vegetation) is assessed

with satellite imagery, and other factors are derived from

additional data. The choice for a specific integration

method depends highly on the mapping objectives. A

common way of integrating erosion controlling factors is

through the use of erosion models, although other more

qualitative approaches exist. Such qualitative approaches

may include erosion detection results within the framework.

To assess the accuracy of the produced maps, validation

with independent data is required, which can be obtained

from field measurements, surveys, and high-resolution

imagery.

5.1. Erosion models

A large number of erosion models exists, which can be

divided in empirical models and physically based models

(Morgan, 1995). Empirical models have a statistical basis,

whereas physically based models intend to describe the

acting processes on a storm event basis. Nevertheless, many

models contain both empirical and physically based

components. A recent review of several current erosion

models is provided by Merritt et al. (2003). Satellite imagery

has the potential to provide regional spatial data for several

input parameters of erosion models (e.g. King and Delpont,

1993; Pelletier, 1985). However, most published studies

merely use optical satellite data to assess the vegetation

component (see Section 4.3). Additional spatial data is

generally extracted from rainfall gauges, readily available

soil maps and DEMs, topographic maps, aerial photographs,

and field measurements. Conservation practices are some-

times considered, but usually assumed not present.

The most widely used model is the Universal Soil Loss

Equation (USLE), which is an empirical model assessing

long-term averages of sheet and rill erosion, based on plot

data collected in eastern USA (Wischmeier and Smith,

1978). The USLE and adapted versions (RUSLE: Renard

et al., 1997; MUSLE: Smith et al., 1984) have been applied

to various spatial scales and region sizes in different

environments worldwide. USLE applications in which

satellite imagery accounted for the vegetation component

have been performed for a small hydrological catchment of

about 2.5 km2 in size (Jürgens and Fander, 1993), areas

between 10 and 100 km2 (Fenton, 1982; Fraser et al., 1995;

Lee, 2004; Millward and Mersey, 1999; Reusing et al.,

2000), between 100 and 500 km2 (Anys et al., 1994; Baban

and Yusof, 2001; Bonn et al., 1997; Cihlar, 1987), large

watersheds of more than 10,000 km2 (Cerri et al., 2001;

Ma et al., 2003; Mati et al., 2000), the country scale for

Morocco (Gay et al., 2002) and to the European scale

(CORINE, 1992; Van der Knijff et al., 2000). Most of these

studies have not sufficiently realized that in different

environments empirical relationships of the USLE may

not be valid. Besides, the model is developed for

evaluating sheet and rill erosion on short slopes. In larger

regions also other erosion processes and deposition occur,
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which are not included in the USLE. Furthermore the data

applied in these studies generally have a low spatial

resolution (30 m to 1 km), which greatly affects soil loss

estimates (e.g. Schoorl et al., 2000). Ideally, the spatial

scale of a model is in balance with the various erosion

processes that occur in a specific region (Favis-Mortlock et

al., 1996). These considerations also concern the applica-

tion of other models, as many studies fail to provide a clear

rationale why a specific model is selected.

The only model which was developed with the intention

to be used with satellite data is the Soil Erosion Model for

Mediterranean regions SEMMED (SEMMED: De Jong,

1994a). It is based on the Morgan et al. (1984) model, but

modifications were made to model the erosion process in a

spatially distributed approach and to enable the input from

satellite imagery and DEMs. SEMMED uses optical

imagery to assess the crop cover factor (same as USLE C-

factor) and the rainfall interception factor of vegetation at

different moments. Multi-temporal Landsat TM imagery

and additional data sources allowed the application of

SEMMED to the Ardèche Province in France (De Jong and

Riezebos, 1997), to a small watershed (12 km2) in the same

area, and to a 4200-km2 watershed in Sicily, Italy (De Jong

et al., 1999). Although the model yields quantitative values,

De Jong and Riezebos (1997) recommend to use model

outcomes in a qualitative sense, thus to assess the spatial

erosion pattern.

Other models that have been used in combination with

satellite data include the Thornes model (Thornes, 1985),

the Agricultural Nonpoint Source Pollution model (AGNPS:

Young et al., 1989), and the Areal Nonpoint Source

Watershed Environment Response Simulation model

(ANSWERS: Beasley et al., 1980). The Thornes model

was applied with satellite-derived vegetation cover infor-

mation at the continental scale for assessing annual erosion

rates, both in a multi-scale approach with remote sensing

data of different resolutions (Zhang et al., 2002), and in a

multi-temporal approach using AVHRR NDVI data

(Symeonakis and Drake, 2004). The AGNPS model was

used for predicting soil loss from several watersheds (33–

1223 km2) within Kansas State (USA) employing a land use

map derived from satellite data (Bhuyan et al., 2003, 2002).

ANSWERS allowed for the prediction of soil loss at the

outlet of three watersheds (320–1020 km2) in the arid zone

of northwest India (Sharma and Singh, 1995). Landsat TM

data was used here to assess landform, drainage, soil, land

use, and land cover. Paringit and Nadaoka (2003) compiled

their own physical model from existing equations using a

Landsat image to derive vegetation parameters. A combi-

nation of models was used by Flügel et al. (2003) for a

4400-km2 catchment in South Africa. They first delineated

terrain units having homogeneous process dynamics with

aerial photography and a Landsat TM image. Depending on

the relative importance of sheet and rill erosion versus gully

erosion, the RUSLE and a gully erosion model were applied

to estimate sediment yields.
5.2. Qualitative methods

Drawbacks of erosion models are the fixed data

requirement, and the fact that models are developed for a

certain region, scale, and specific processes. Often erosion

rates are not required, but merely an indication of the spatial

distribution of erosion, e.g. for conservation prioritization.

Therefore, qualitative erosion mapping approaches have

been developed, which are adapted to regional character-

istics and data availability. Resulting maps usually depict

classes ranging from very low to very high erosion or

erosion risk. There is no standard method for qualitative

data integration, and consequently many different methods

exist. However, common features are the classification of

considered erosion controlling factors in discrete classes and

the application of a decision rule to combine the classes.

Factor selection and decision rules are generally based on

expert judgment, or on the author’s personal knowledge of

the regional erosion processes.

The most basic qualitative approach is to assign weights

to spatial units expressing the erosion intensity. This way,

Khan et al. (2001) assigned a weighting to visually

delineated units from a Landsat TM image. Multiplication

with a sediment delivery ratio allowed the contribution of

each watershed to sedimentation at a reservoir downstream.

Instead of directly assigning weights to units, separate

weights can be assigned to different erosion controlling

factors according to their importance in the occurring

erosion processes. Erosion risk has subsequently been

determined from factor weights by summation (Jain and

Goel, 2002; Shrimali et al., 2001), averaging (Vrieling et al.,

2002), and using hierarchical decision rules to combine the

weights (Haboudane et al., 2002). Simple if– then decision

rules were applied by Hill et al. (1994b) to combine soil

status and vegetation cover information layers derived from

spectral unmixing of Landsat TM data. The resulting index

is related to erosion occurrence. Multi-temporal comparison

of this index derived from images acquired in the same

season but during different years would allow the assess-

ment of further erosion, stability, or recovery (Hill et al.,

1995b).

For semi-arid Spain, Liu et al. (2000, 2004) used multi-

temporal SAR interferometric decorrelation images to detect

candidate pixels for erosion. Areas vulnerable to rapid

erosion were determined by applying fuzzy logic and multi-

criteria evaluation to Landsat-derived lithology and vegeta-

tion information, and slope calculated from a SAR

interferogram. Where the candidate pixels and vulnerable

areas coincided, rapid erosion was expected. However,

erosion on agricultural land cannot be accounted for with

this approach. For a semi-arid part of Bolivia, Metternicht

(1996) applied fuzzy logic to determine the degree of

membership of a particular pixel to considered factors,

including slope, landscape position, vegetation cover, rock

fragments, reddish soil, and whitish soil, derived from a

DEM, a geopedologic map, and spectral unmixing of
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Landsat TM data. The membership functions were translat-

ed to five classes from very low to very high expressing the

erosion hazard. If– then decision rules subsequently com-

bined the ranges for the different factors.

5.3. Validation

To evaluate the performance of a specific erosion

mapping method and its predictive value, validation of

resulting maps with independent data is required. Validation

implies an assessment of the accuracy of the representation

of spatial erosion patterns, and of erosion rates in the case

of quantitative results. Obtaining spatial validation data for

assessing the accuracy of erosion maps is a complicated

task. Two major issues play a role: first, the considerable

investment of time and money required to understand,

assess and possibly quantify the local erosion processes;

and second the difficulty of extrapolating local observations

to larger areas (Stroosnijder, 2003). For example, a

common measurement technique for quantification purpo-

ses is the collection of runoff and sediments from bounded

plots. However, plot size has a considerable impact on

measured sediment concentrations (Chaplot and Le Bis-

sonnais, 2000) and results from plot replications can show

high variation, which stresses the need for long-term

measurements (Nearing et al., 1999). Several good sum-

maries of field techniques for erosion assessment and

measuring exist (e.g. Ciesiolka and Rose, 1998; Hudson,

1993; Loughran, 1989; Morgan, 1995). Here we will focus

on techniques applied for validation in remote sensing

studies of erosion.

From the reviewed literature, it is striking that many

studies have not or only slightly addressed the issue of

validation. Some merely related the acquired range of

quantitative erosion rates to measured or predicted values

from literature, and were satisfied when values correlated

(e.g. De Jong, 1994a; Reusing et al., 2000; Zhang et al.,

2002). However, reported values of erosion rates should be

treated carefully, as was pointed out by Boardman (1998).

De Jong and Riezebos (1997) performed an internal

validation of the SEMMED model, using a Monte Carlo

approach to compute the effect of various sources of

uncertainty on the model outcome. They found a large

uncertainty in soil loss predictions, although the error

contribution of remotely sensed vegetation parameters was

relatively small.

Erosion measurements were seldom used for validating

satellite-based erosion assessments, which is partly due to

the high time and labour requirement to perform these

measurements. Techniques that have been used include soil

loss measurements from bounded plots (Mati et al., 2000);

runoff measurement and sampling to determine sediment

concentrations at the outlet of a watershed (Sharma and

Singh, 1995); the assessment of sediment concentrations at

the outlet using optical turbidity sensors (Paringit and

Nadaoka, 2003); and the evaluation of sediment accumula-
tion in a reservoir through successive bathymetry campaigns

(Bonn et al., 1997).

The common output of satellite-based erosion assessment

is a spatial map, which ideally requires validation at several

locations. The above-mentioned measurements cannot be

easily repeated at many locations. Spatial validation may

however be done with Cesium-137 measurements that were

used by Bonn et al. (1997) to determine areas of erosion and

deposition. More common though are erosion surveys, in

which rill dimensions are measured (Cerri et al., 2001;

Mathieu et al., 1997), or which are limited to a visual field

estimation of erosion risk based on observed features and

erosion factors that depend on the study region (e.g.

Dwivedi et al., 1997b; Metternicht and Zinck, 1998;

Millward and Mersey, 1999).

Besides erosion measurements and surveys, interpretation

of high-resolution remote sensing imagery can also be used

for validating erosion maps. Aerial photographs have been

used to locate evidence of erosion or deposition, and

this information provided good correlation with a data

space defined by two Landsat MSS band ratios (Pickup and

Chewings, 1988; Pickup and Nelson, 1984). Current avail-

ability of high-resolution satellites provides similar possibil-

ities as aerial photography in detecting erosion features

and thus providing validation data. Panchromatic QuickBird

imagery was used to evaluate the potential of detecting and

delineating large gullies with optical and SAR satellite

imagery (Vrieling and Rodrigues, 2004).
6. Conclusions and recommendations

This review has shown that satellite remote sensing can

contribute to erosion assessment in many ways. The

effectivity of most methodologies presented largely depends

on site characteristics. For semi-arid areas, many interesting

techniques such as SAR interferometry and spectral unmix-

ing of optical data were applied to assess erosion status.

However, these techniques will only work under specific

conditions and cannot be transferred easily to more humid

environments. In these environments, satellite applications

were mostly limited to the assessment of vegetation class

and cover. Recent and future satellite missions will

continuously provide new possibilities for erosion research

and assist in filling current gaps. Some of the major

observation-related gaps are (1) the automatic detection of

individual erosion features like gullies or medium-sized

rills; (2) the accurate assessment of senescent vegetation

cover in different environments; (3) the spatial and temporal

evaluation of rainfall characteristics; (4) precise mapping of

soil properties and soil moisture in a wide range of

environments.

Due to the complexity of erosion processes, regional

differences, and scale dependency, it cannot be expected that

a standardized operational erosion assessment system using

satellite data will develop in the near future. Furthermore the
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required erosion assessment type depends largely on the

regional context and the intended use. Therefore no

recommendations can be made for one single technique or

a set of methods in erosion assessment. Instead, it is

recommended for any erosion study that intends to use

satellite data, to first thoroughly evaluate what are the

observables that may be derived from different types of

satellite imagery for the region and the scale required. For

most cases, empirical relations will have to be developed,

and thus field data on the variable to be observed is needed.

Promising methods that deserve special attention and

require additional testing include: (1) SAR interferometric

decorrelation for erosion detection; (2) evaluation of

differential suspended sediment across water bodies in a

landscape; (3) the use of geostatistics for soil erodibility or

C-factor mapping; and (4) spectral unmixing of optical data

to assess soil and vegetation status.

Satellite-derived vegetation information has been the

most important input for erosion mapping approaches. For

simple empirical models generally one well-timed image is

sufficient, but for process-based models multi-temporal

imagery is often needed to account for seasonal variability

of vegetation cover. Qualitative erosion mapping methods

are more flexible than models and can easily incorporate

other satellite-derived information. For erosion mapping and

monitoring, it is recommended to use qualitative approaches

in the case that no model is available that was developed or

tested in the region under study. Unless merely a quick

identification of erosion risk is envisaged, a proper

validation of presented results is always required, which

currently is not or poorly done in many studies. Validation is

essential for identifying methods that allow accurate

mapping and monitoring of erosion. Long-term erosion

field measurements and detailed field surveys are indis-

pensable for this purpose, although costly and time-

consuming. Close collaboration between the remote sensing

community and field-based erosion scientists is therefore

required, and accordingly forms the key towards achieving

regional operational erosion monitoring systems.
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