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Abstract This paper presents an object-oriented pro-
gramming approach for the design of numerical homog-
enization programs, called JHomogenizer. It currently
includes five functional modules to compute effective
permeability and simple codes for computing solutions
for flow in porous media. Examples with graphical out-
put are shown to illustrate some functionalities of the
program. A series of numerical examples demonstrates
the effectiveness of the methodology for two-phase
flow in heterogeneous reservoirs. The software is freely
available, and the open architecture of the program
facilitates further development and can adapt to suit
specific needs easily and quickly.
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1 Introduction

Homogenization is a fundamental tool for the modeling
of various phenomena taking place in a heterogeneous

B. Amaziane (B)
Université de Pau, LMA, CNRS-UMR 5142,
Av. de l’Université, 64000 Pau, France
e-mail: brahim.amaziane@univ-pau.fr

J. Koebbe
Department of Mathematics and Statistics,
Utah State University, Logan, UT 84322-3900, USA
e-mail: koebbe@math.usu.edu

medium, in particular for flow and transport in porous
media, in oil reservoir simulation or hydrogeology.
There is an extensive literature on this subject. We
will not attempt a literature review here, but merely
mention a few references. In this paper, we restrict
ourselves to the mathematical homogenization method
as described in [21] and [29] for flow in porous media.
For recent reviews on other upscaling methods, see, for
instance, [20] and references therein.

The objective of homogenization is to replace the
governing equations by a simpler set of equations for
which the solution can be resolved on a reasonable
coarse-scale mesh and approximates the average be-
havior of the solution of the governing equations. In
its simplest form, one replaces the coefficients of the
governing equations with effective or macroscopic co-
efficients. For a more advanced presentation of ho-
mogenization, the reader is referred to the classical
books [8, 11, 19, 22, 32]. An extensive collection of
applications to porous media can be found in [21].

In the present paper, we will focus on the compu-
tation of effective permeability for moderately hetero-
geneous media obtained via homogenization within a
user-friendly computational tool JHomogenizer [26].
Each homogenization method leads to the definition of
a global or effective model of a homogeneous reservoir
defined by the computed effective coefficients. Homog-
enization methods allow the determination of these
effective coefficients from knowledge of the geometri-
cal structure of a basic cell and its heterogeneities by
solving appropriate local problems. The technique is
based on numerics. We assume that data given on a fine
grid fully represent the important physical scales and
that a practical computational grid must be somewhat
coarser.
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In the homogenization methods described and im-
plemented in this work, we use conforming and mixed
finite elements to compute approximate solutions of the
local problems used in the calculation of the effective
permeability. One of the significant requirements in the
design of a finite element structural analysis program
is the ability to store, retrieve, and process data that
may be complex and varied. To users of such programs,
it is important not only to have powerful numerical
homogenization solvers, but also to work with a ‘user-
friendly’ graphical interface. On the other hand, re-
alistic problems have grown in size and complexity.
Consequently, the size and complexity of computer
codes have also grown. The development of reusable,
modular, platform-independent computer code is pru-
dent in any programming strategy.

The primary goal of this paper is to illustrate the
practical application of an Object-Oriented Program-
ming (OOP) approach in the development and im-
plementation of upscaling techniques. Development
of user-friendly and flexible scientific programs is a
key to their usage, extension, and maintenance. This
paper presents an OOP-based computational environ-
ment for upscaling programs. General organization
of the developed software system, called JHomog-
enizer, is given, which includes the solver and the
pre/postprocessors with a user-friendly graphical user
interface (GUI). Examples with graphical visualization
of results are used to illustrate functionality of the
program. The software is freely available for research
and educational purposes. The open architecture of the
program facilitates further developments and adapts to
suit specific needs easily and quickly. Moreover, the
proposed user interface has proved to be satisfactory
and flexible. This paper presents a brief description of
the JHomogenizer application. It includes five func-
tional modules to compute effective permeability and
a simple set of objects for simulation of flow in porous
media.

The outline of the rest of the paper is as follows. In
the next section, we present a short description of the
methods used for computing the effective permeability
of a heterogeneous region. The methods require the
numerical solution of partial differential equations. The
first three upscaling techniques are based on solving
a linear second-order elliptic equation in divergence
form (Darcy’s equation) and subject to some specific
boundary conditions. The first of these involves peri-
odic boundary conditions, the second linear boundary
conditions, and the third confined boundary conditions.
The effective permeability tensor is itself symmetric
and positive definite, just as in the fine scale. Even if
the original permeability tensor is diagonal, the effec-

tive permeability is, in general, a full tensor. The off-
diagonal terms of the effective permeability tensor are
significant in many cases. The fourth upscaling tech-
nique deals with the so-called double porosity model
for describing single-phase flows in fractured porous
media (see, e.g., [4]). The approximation of the homog-
enized tensor require the numerical resolution of local
problems in the fracture domain with periodic bound-
ary conditions on the exterior boundary and a no-
flow Neumann condition on the interface between the
matrix and the fracture blocks. A standard conforming
finite element method [18] is used for the solutions of
the first and the fourth methods. We use conforming
and mixed finite elements (see, e.g., [17, 18, 31]) for the
calculation of the effective coefficients obtained in the
second and third methods. The fifth approach imple-
mented in the software involves the use of a wavelet
characterization for the computation of effective pa-
rameters as described in [24, 27, 28]. The fast wavelet
transforms developed make the computation more
efficient. Section 3 contains a brief description of the
JHomogenizer tool. We explain the basic structure of
the software and how new solvers/models can be added
to the interface. Although large parts of JHomogenizer
are documented here, this paper is not a manual or
tutorial but rather a description of the choices we made
to build the software. We would like to point out that
one of our purposes is to explore the use of Java for pro-
viding an efficient open source library for education and
research. A selection of numerical examples are pre-
sented in Section 4. We give the results of computation
of the effective permeability by various methods and
numerical simulations for miscible and immiscible two-
phase flow comparing fine-grid simulations in hetero-
geneous media with simulations in their homogeneous
(effective) counterparts. Finally, conclusions and future
developments are discussed in Section 5.

2 Numerical homogenization techniques for flow
in porous media

In this section, we will present five numerical homoge-
nization techniques that are implemented in JHomog-
enizer. In Sections 2.1, 2.2, and 2.3, we consider first
incompressible two-phase flow, and in Sections 2.4 and
2.5, one-phase flow in a fractured medium.

We consider first the model problem of incompress-
ible two-phase flow in moderately heterogeneous me-
dia. For instance, in [12], using homogenization theory,
the case where the phase permeabilities and the capil-
lary pressures are identical in all parts of the medium,
i.e., a single rock-type model, was investigated. It was
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then shown that the homogenized model has the same
form as the initial model and then defining effective
parameters makes sense. These methods are based on
computing the average of either the energy or the flux
on a representative elementary volume (REV) with
some boundary conditions, e.g., periodic, Dirichlet, or
Neumann boundary conditions. These approximation
procedures are widely used in the engineering literature
(see for instance [30]). We refer to [16] for a rigorous
mathematical justification for the convergence of these
methods used to approximate the effective tensor of
random stationary media. The estimate of the rates of
these approximations is also given. The methods differ
mostly by the choice of the conditions given on the
boundary of the domain to be homogenized.

2.1 Periodic boundary conditions

Let � ⊂ IRd, d = 1, 2, or 3, be a bounded domain with
a periodic structure. More precisely, we shall scale this
periodic structure by a parameter ε that represents the
ratio of the cell size to the size of the whole region �,
and we assume that 0 < ε � 1 in a decreasing sequence

tending to zero. Let Y =
d∏

i=1

]
0, yi

[
represent the micro-

scopic domain of the basic cell. Assume that, in such
a configuration, the absolute permeability tensor de-
pends only on the microscopic variable y = x/ε where
x is the variable in the macroscopic scale. Namely,
Kε(x) = K(x/ε) with K a Y-periodic function in y.
Assume that K is a symmetric, strictly positive definite,
tensor. Then K∗

p, the effective permeability, is given by

(K∗
p)ij = 1

|Y|
∫

Y
K (y)

[∇wi + −→ei
] · [∇wj + −→ej

]
dy

1 ≤ i, j ≤ d (2.1)

with w j, j = 1, ..., d, the solution of the so-called local
or cell problem defined by:
{

wj ∈ H1
p(Y) /IR

−∇ · [
K(y)(∇wj + −→e j )

] = 0 in Y
(2.2)

Here −→e j is the j th standard basis vector of IRd. We
denote by C∞

p (Y) the space of infinitely differentiable
functions in IRd that are periodic of period Y. Then
H1

p(Y) is the completion of C∞
p (Y) for the norm of

H1(Y). A variational formulation of problem (2.2) is

⎧
⎪⎨

⎪⎩

w j ∈ H1
p(Y) /IR

∫
Y K(y)∇wj · ∇v dy = − ∫

Y K(y)
−→ej · ∇v dy

∀v ∈ H1
p(Y) /IR.

(2.3)

This problem has a unique solution (cf. [11]). In
JHomogenizer, the computation of wj is performed
by a conforming finite element method. A classical
Q1 interpolation yields an approximation to the space
H1

p(Y) /IR (cf. [18]); for more details, see [1]. The prob-
lem reduces to d = 2, 3 computational linear algebra
problems with the same matrix; only the right-hand
sides differ in the linear systems.

2.2 Linear boundary conditions

In this section, we outline the homogenization method
used for the determination of the effective permeability
of heterogeneous reservoir regions without any peri-
odic assumption on the microstructure. In the engineer-
ing literature, this method is known as the REV method
[10] and could be seen as the stochastic homogenization
of a stationary and ergodic random field (see [14] and
the references therein). The limit as the “volume of
homogenization” (coarse grid block) tends to infinity
is exactly the homogenized limit in a stationary and er-
godic random field (see [6, 7]). In the multi-dimensional
case, to compute the effective permeability tensor, K∗

l ,
we have to solve the local problems for j = 1, ..., d

{−∇ · [
K(y)∇ pj

] = 0 in Y
pj = yj on ∂Y

(2.4)

where yj is the j th coordinate.
Solving these local problems gives the following ex-

pression for the coefficients of the tensor K∗
l :

(K∗
l )ij = 1

|Y|
∫

Y
K(y)∇ pi · ∇ pj dy 1 ≤ i, j ≤ d. (2.5)

In JHomogenizer, we use both conforming and mixed
finite elements to solve the local problems (2.4) and
compute approximations from above and below of
the effective permeability, respectively (cf. [3]). Lin-
ear boundary conditions are convenient, particularly
in complicated geometries with nonrectangular coarse
grid cells.

Remark 2.1 Note that the equation governing the lo-
cal problems is the same in the periodic and linear
boundary homogenization method, but the boundary
conditions are different. The local problem (2.4) could
be written in the form:

{−∇ · [
K(y)

(∇wj + −→ej
)] = 0 in Y
wj = 0 on ∂Y

(2.6)
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where wj = pj − yj. Then

(K∗
l )ij = 1

|Y|
∫

Y
K (y)

[∇wi + −→ei
] · [∇wj + −→ej

]
dy

1 ≤ i, j ≤ d. (2.7)

The approach used here has the advantage of being ap-
plicable to realistic complex heterogeneous reservoirs
with unstructured grids.

2.3 Confined boundary conditions

This technique considers each coarse grid cell sepa-
rately and performs three independent flow problems
with no-flow boundary conditions on four sides of the
cell and constant pressure conditions on two opposing
faces. Consider a domain containing fine-scale micro-
scopic grid blocks, as shown in figure 1. The effective
permeability tensor, K∗

c , is given for i = 1, ..., d by:

(K∗
c )ii = 1

|Y|
∫

Y
K(y)∇wi · −→ei dy, 1 ≤ i ≤ d, (2.8)

with wi, i = 1, ..., d, the solution of the local problem
defined by:
⎧
⎨

⎩

−∇ · [
K(y)∇wi

] = 0 in Y
K(y)∇wi · �ν = 0 on S i

wi = yi on ∂Y\Si.

(2.9)

where Si is a union of faces of the block Y parallel
to yi axis and �ν is the outward normal to ∂Si. Again,
both conforming and mixed finite elements methods
may be used to solve the local problems (2.9) with JHo-
mogenizer. Note that this technique leads to a diagonal
effective permeability tensor.

y
3

y
2

y
1

Figure 1 A representative volume element Y.

Remark 2.2 It is well known that the effective perme-
ability is between the harmonic and the arithmetic av-
erages. Furthermore, using the minimization problems
associated to the variational formulation of the local
problems (2.2), (2.4), and (2.9), it is easy to show, see for
instance [3], that we have, for i = 1, ..., d: (K∗

c )ii ≤ (K∗
l )ii

and (K∗
p)ii ≤ (K∗

l )ii.

2.4 A fractured porous medium

This section is devoted to computing effective perme-
ability for a double-porosity model describing single-
phase flows in a fractured porous medium. We consider
a periodic porous medium where the rescaled unit cell
Y is made of two complementary parts, the matrix
block Ym and the fracture set Yf. The matrix block is as-
sumed to be completely surrounded by the fracture set,
i.e., Ym is strictly included in Y (see figure 4). One of the
main features of such a model is to have a high contrast
ratio between the permeability tensor in the matrix
region and in the fissures system through/around the
matrix, leading to a high contrast for the corresponding
characteristic times. The homogenized global model is
also of parabolic type with a nonlocal term which could
be seen as a source term or as a time delay (see for
instance [4, 5]) with effective permeability defined by:

(K∗
f )ij = 1

|Y|
∫

Yf

K (y)
[∇wi + −→ei

] · [∇wj + −→ej
]

dy

1 ≤ i, j ≤ d (2.10)

where wj, j = 1, ..., d, is the unique solution of the
following cell problem:

⎧
⎨

⎩

wj ∈ H1
p(Y) /IR

−∇ · [
K(y)(∇wj + −→ej )

] = 0 in Yf[
K(y)(∇wj + −→ej )

] · �ν = 0 in ∂Yf .

(2.11)

As in the previous section, the effective permeability
tensor is determined by solving the local problems
(2.11) via a conforming finite elements method.

2.5 Wavelets and homogenization

In this section, a brief description of an analogy be-
tween homogenization and wavelet representation will
be given. More details of the analogy are given in
[24, 27, 28]. These papers show how to characterize
standard homogenization via wavelet representation.
The wavelet-based methods currently included with the
JHomogenizer tool are based on the wavelet analogy
described here and in the references.
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The analogy will be illustrated in one dimension for
ease of presentation. Assume that the coefficient k(x)

for the elliptic problem

d
dx

k(x)
dh
dx

= f, x ∈]0, 1[
with appropriate boundary conditions is a piecewise
constant function. Also assume that the coefficient
function is defined on 2m equally sized subintervals
of the entire domain. One might imagine that some
function k(x) is sampled at 2m equally spaced points.
The idea is to develop a transform method that can
be used to compute the correct homogenized value for
k(x).

The next step is to compute the solution of a local
problem using two neighboring samples of k(x); for
example, we may choose to solve for j = 1, 2, . . . , 2m−1

the local problems

d
dy

kj (y)
dwj

dy
= − d

dy
kj(y)

with

kj(y) =
⎧
⎨

⎩

k2 j , 0 ≤ y ≤ 1/2
k2 j+1 , 1/2 ≤ y ≤ 1

0 , otherwise

and periodic boundary conditions, w j(0) = w j(1) = 0.
This definition gives a total of 2m−1 local problems to
solve. Once the problems have been solved, the homog-
enized value for a pair can be computed using

k#
j =

∫ 1

0
kj(y)

(

1 + dwj

dy

)

dy.

It pays to define level estimates

kl, j(y) =
⎧
⎨

⎩

kl,2 j , 0 ≤ y ≤ 1/2
kl,2 j+1 , 1/2 ≤ y ≤ 1

0 , otherwise

and

kl−1, j =
∫ 1

0
kl, j(y)

(

1 + dwl, j

dy

)

dy.

With these definitions, it is not a difficult task to de-
velop a fast wavelet-based transform for computing a
homogenized value for the entire region as defined in
[24, 27, 28].

To do this in a computationally effective way, we
would need to know the solutions of the local prob-
lems. Fortunately, in one dimension, the local problem
defined above admits a solution of the form

wl, j(y) = kl,2 j+1 − kl,2 j

kl,2 j + kl,2 j+1

⎧
⎨

⎩

y , 0 ≤ y ≤ 1/2
1 − y , 1/2 ≤ y ≤ 1

0 , otherwise

with piecewise derivative given by

d
dy

wl, j(y) = kl,2 j+1 − kl,2 j

kl,2 j + kl,2 j+1

⎧
⎨

⎩

1 , 0 ≤ y ≤ 1/2
−1 , 1/2 ≤ y ≤ 1

0 , otherwise.

(2.12)

For those familiar with wavelets, it is easy to see that
the derivative of the solution (a piecewise constant
function) is a scaled Haar wavelet. The scaling is a
nonlinear combination of the two neighboring sample
values or homogenized values from the previous level.

One should note that the wavelet characterization
is based on the solution of the local problem that
results from performing the perturbation analysis in the
homogenization procedure. Thus, the wavelet charac-
terization will change as the homogenization method
changes.

The extension to multiple dimensions is conceptu-
ally very easy. Instead of solving the local problem
defined on two cells in one dimension, the local prob-
lem must be defined on multidimensional analogs of
the one-dimensional work shown above. For the two-
dimensional case, an analytic solution for a local prob-
lem defined on a 2 × 2 set of cells must be computed.
Once the analytic solution of this problem is obtained,
a fast wavelet transform can be created using the analo-
gous averaging formula for multidimensional problems.
Details for the multidimensional cases are contained in
[24, 28].

3 A brief description of the JHomogenizer tool

The JHomogenizer tool provides a computational envi-
ronment for the comparison of homogenization meth-
ods. The GUI is shown in figure 2. The GUI is written
in Java to provide some level of platform independence
and interacts with Java objects that implement different
methods of homogenization. Some averaging methods
are implemented directly into Java objects, whereas
other methods are implemented in native codes (e.g,
f77, f90, and C) and connected to Java objects through
objects that spawn external processes that run the na-
tive code. The averaging objects are passed a data
set and then turned loose on the data to compute an
average value based on the homogenization method
employed by the object. Using multithreading within
Java, the averaging object spawns a thread to compute
the effective value in parallel to other computations
being done within the GUI.
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Figure 2 The main
JHomogenizer graphical user
interface as it appears on
the screen.

For the most part, the package is self-contained. The
software can be downloaded (see below), compiled,
and run with a minor amount of work. There are
some parts of the package (codes for some averaging
methods) of the distribution that are written in vari-
ous native language (e.g., Fortran 77, Fortran 90) that
need to be compiled if the user wants to use the ho-
mogenization method implemented in the native code.
This means that to use these methods, the user must
have appropriate compilers on their local machines to
compile the code to create executables that can be
accessed by the interface. A suite of executables is
being assembled for various platforms, such as Linux
and Windows platforms. These can be downloaded and
tried, but there is no guarantee that these will function
on every computer. Native codes should be compiled
into a static image as discussed in [26].

3.1 Methods of homogenization implemented

The tool has a number of homogenization methods im-
plemented in either Java or some native programming
language (e.g., Fortran 77 and C/C++) that can be used
directly in the tool. When the interface is started, the
methods that are available will appear in a list in the
upper left-hand portion of the application as shown in
figure 2. The list of methods at the time of the writing
of this paper are contained in table 1.

Each of the methods has been tested to make sure
that the appropriate input and output works. Results
from these tests can be found at [25]. Over time, more
methods will be incorporated into the package for
comparison purposes. It is hoped that contributors will
submit their own methods for inclusion in the package
in future releases of the package.

Table 1 Methods currently
implemented in the
JHomogenizer package.

Method name Language Description

Arithmetic average Java
Harmonic average Java
Geometric average Java
Periodic homogenization (HomCode) Fortran 77 Section 2.1
Linear boundary conditions (LBC) Fortran 90 Section 2.2
Confined boundary conditions (CBC) Fortran 90 Section 2.3
Periodic fractured media homogenization Fortran 77 Section 2.4
Periodic homogenization via wavelets - 2d Java Section 2.5
Linear boundary condition via wavelets - 2d Java Section 2.5
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3.1.1 Adding averaging objects

Users of the JHomogenizer tool can add averaging ob-
jects to the JHomogenizer tool that are written in Java
or in other languages. The details of how to add aver-
aging objects are presented in the JHomogenizer User
Guide [26] that can be downloaded from the Web site
[25].

If a user would like to implement a homogenization
method in a Java averaging object, the work is not too
difficult as long as the user is familiar with the C syn-
tax. An abstract object called AverageObject has been
created and is the abstract interface needed to create
an official JHomogenizer object. However, it is much
easier to make a copy of an existing averaging object
(e.g., ArithmeticAverageObject in the file Arithmeti-
cAverageObject.java) and make appropriate modifica-
tions of the copy. The name of the file must match the
name of the new averaging object. For example, if one
implemented a new method named BestFitMethod,
then the file name should be BestFitMethod.java. One
could copy ArithmeticAverageObject.java changed to
BestFitMethod.java using the appropriate command on
their computer. The main chore after this is to modify
the computeValue() method in the new file so that
the desired homogenization method is implemented.
Note that if this method is chosen, the object can be
compiled and executed on a test problem as a stand-
alone java application before the method is included in
the JHomogenizer tool.

To implement a native code object, the work is
slightly more complicated. The user will need to match
the input and output structure as described in [26].
The interface will produce a file in a specific format
and expects the output from the native code in the
same format. Once the input/output formats match, a
java object must be created to communicate between
the native code and the interface. The details of this
construction are given in [26].

3.2 MapEditor tool

There are two basic means for getting data sets into
the interface. The first is accomplished by importing
a map using the interface. The map must adhere to
the input specifications as described in [26]. The other
method is to create a map using the MapEditor tool.
This tool allows the user to specify parameters that
define a map such as number of blocks in the coordinate
directions, the background map value, and so on. A few
tools for creating “realistic” permeability maps have
been included in the JHomogenizer tool (e.g, a Kriging
option exists).

3.3 Map hierarchy

The interface implements a tree-like hierarchy in deal-
ing with the maps. When a new map is loaded into
the interface or created by the MapEditor tools, it is
treated as a level 0 map and will appear in the top-
most list of maps in the interface. Any maps created via
homogenization or using the elliptic solver embedded
in the interface are considered associated maps and
appear in lists below the level 0 maps. For example, if
an original heterogeneous map is imported into the in-
terface and a homogenization is performed, the output
of the homogenization will be a map that is associated
with the original. The new map will appear in the level
1 list of maps in the interface.

If the user saves the work performed on a map, the
original map and all associated maps are saved. The
next time the original map is loaded into the interface,
all associated maps are also loaded into the interface
and appear in the map lists in the interface. This allows
the user the ability to go back and continue working
on all maps in the data structure at a later time. In
particular, as more homogenization methods are added
to the interface, a user will be able to go back to pre-
vious work and compare new methods to prior results
without recomputing previous results.

3.4 Performing homogenization on a map

Once a map has been loaded into the interface, the
steps to compute a homogenized version of the data
are few. First, one clicks on the name of the map in the
lists that appear in the interface. Next, the user specifies
the number of homogenized blocks that are desired in
the output file. This refers to the number of blocks in
each coordinate direction the user wants in the output
(homogenized/coarse) map. For example, if the initial
map is 100 × 100 × 2 and the user wants a coarser scale
map with dimensions 10 × 10 × 1, then the user needs
to enter the last set of dimensions into the interface in
the given text fields. These are the text fields below the
“Homogeneous Map Dimensions” label. Finally, the
user clicks on a method of homogenization in the list
of available methods in the upper left-hand corner of
the GUI and then clicks on Homogenize! button.

As the calculations progress, output will be sent to
a text window on the screen. If the homogenization
is successful, the user will be prompted for a new
map name for the resulting homogenized map, and the
homogenized map will be added as a map associated
with the original finer scale map. This map is, in turn,
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available for analysis. In addition, the new map can be
exported to a file to be used as input to other programs.

3.5 Elliptic solution comparison and flow simulation

It is important to have some idea of how various ho-
mogenization methods produce different maps. A sim-
ple set of objects for computing solutions for flow in
porous media has been implemented. The first object,
EllipticRectMFEObject, computes the solution of the
flow equation (Darcy’s law) where the permeability is
defined by the values in any map file currently in the
GUI. To compute the approximation solution of this
equation for a given map, all one needs to do is to
select the map from the lists of available maps and click
on the Elliptic Solver button. The equation is solved
approximately via a lowest order mixed finite element
method as implemented in [23].

Once the elliptic problem has been solved, trans-
port through porous media can be simulated. A sec-
ond object, UpwindSaturationObject, that uses simple
upwinding to approximate the solution of the trans-
port equation is available. One may think of this as a
simulation of a linear flood in a two-phase immiscible
displacement problem. The upwinding produces some
level of numerical diffusion. However, the simple simu-
lation gives some idea of the effect of the homogeniza-
tion on a typical flow problem, albeit very simple.

3.6 Other useful features

During the development of the JHomogenizer tool, a
number of useful features have been added to the GUI.
Some of these features have been added to the JH-
omogenizer GUI, and some have been added to the
MapEditor tool. The following lists document some,
but not all, of these additional features.

1. The elliptic solver allows for the user to select
from point source forcing and a selection of sim-
ple boundary conditions. This allows the user to
visualize flow through a porous medium in several
directions.

2. Maps of appropriate dimension can be connected
together. This has been helpful in computing ho-
mogenized values in subregions and then creating
domains that connect the homogenized values in
the subregions together again. Examples that use
this feature can be found in [25].

3. For those who would like to upscale a number
of files of the same size, a batch homogenization
feature was added. Problems that require homog-
enization of a number of stochastic realizations of

the same map would certainly benefit from this
feature. All the user needs to do is to identify
the folder where the realizations reside, and the
JHomogenizer tool will do the rest.

4. The GUI allows the user to save images into files.
Currently, this is done in a PPM format. How-
ever, in the near future, a GIF89 encoding will be
included.

5. The GUI allows the user to compare up to three
different flow results at once. This allows for the
comparison of up to three homogenization meth-
ods at the same time.

6. In most cases, people will want to document re-
sults. To this end, a feature has been added to the
MapEditor tool that will write the map file data in
HTML and latex formats.

7. The MapEditor tool has a number of canned meth-
ods for generating specific maps. There are options
to create uniform, normal, log-normal, and fracture
maps with user-defined properties. In addition, op-
tions for kriging and other stochastically generated
maps are included.

It is not practical to include all details of the features
included in the JHomogenizer tool. The details can be
found in [26].

4 Numerical examples

In this section, a number of standard idealized and
realistic benchmark problems are presented to show
how the JHomogenizer tool can be used in testing
and comparing homogenization methods. Each section
describes results from a single test problem along with
the results from homogenization methods. The first
two sections contain standard periodic test problems
using a symmetric cell and the inverted-L cell (see [2])
and are included for completeness. The rest of the
sections give results for more realistic problems from
porous media flow and one example of a heat diffusion
problem wherein results related to optimal design for
an optimized heating element for a microarray.

Each section gives a selection of results associated
with using various homogenization methods on the test
problems. It is not practical to present all results for
all problems. Therefore, a set of results will be given
to demonstrate how the JHomogenizer tool can be
used to understand the use of homogenization methods.
The steps used within the JHomogenizer tool can be
found at [25]. Results found on this Web site include
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Figure 3 Two examples of
local cells used to test
homogenization methods. On
the left is a simple symmetric
cell that should produce an
isotropic homogenized
tensor. On the right is the
so-called ‘inverted-L’ pattern
and is about the simplest
example that results in an
anisotropic homogenized
tensor.

map files that can be used as input to various flow
simulators the user might want to use. A more thorough
documentation of the results presented in this paper
can also be found at [25].

Examples of the simulations of simple two-phase
flow are given for some of the example problems. The
simulations are approximations of simple flow prob-
lems using standard upwind methods. The graphics
include plots of the solution of the elliptic problems and
flow problems where appropriate. These results give
some idea of the effect of the homogenization on flow
problems in porous media.

It should be noted that all of the results presented
here can be found in [25] along with all the associated
data files and software. The instructions for how to
create and homogenize the maps to create the results in
this paper can also be found there. The JHomogenizer
User’s Guide also can be used to learn how to use the
software.

4.1 Simple periodic examples

In testing any homogenization method, it pays to make
sure that the method is behaving correctly. For exam-
ple, any computational method must be able to return
the constant input map value if the heterogeneous
map value is constant. As another simple test, any
method should produce the harmonic average of the
heterogeneous parameter in one dimension. In two
(or more) dimensions, any method should also pro-
duce a diagonal tensor for stratified maps with the
diagonal entries associated with directions parallel to
the stratification being equal to the arithmetic average
and the diagonal entries associated with coordinate
directions perpendicular to the stratification equal to
the harmonic average. One such case is documented in
[25]. Moving to more complex problems, one should
make sure that simple periodically repeated patterns
are being averaged correctly. This section describes the

Figure 4 Two examples of
idealized fractures. On the
left is a rectangular model of
a fracture where the fracture
zone around the border is 5%
of the total size of the cell.
The figure on the right is an
idealization with a fracture
width of 10% of total cell size.
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Table 2 Effective permeability values computed by the different
upscaling methods for the symmetric cell example with coeffi-
cient ratio of 10:1.

Computational method Kxx Kxy Kyy

Arithmetic average 7.75 0.00 7.75
LBC homogenization CFE 7.29 0.00 7.29
LBC homogenization MFE 7.28 0.00 7.28
Periodic homogenization CFE 6.52 0.00 6.52
Confined boundary conditions CFE 6.48 0.00 6.48
Confined boundary conditions MFE 6.47 0.00 6.47
Geometric average 5.62 0.00 5.62
Harmonic average 3.08 0.00 3.08

homogenization of two simple examples: one that is
geometrically symmetric and another example that is
not geometrically symmetric.

4.1.1 Periodic symmetric cell

The symmetric cell is depicted in figure 3 (left). This
problem provides a sanity test for any homogenization
method including those implemented in the applica-
tion. One can easily compute the arithmetic and har-
monic averages for the symmetric cell and use these
as upper and lower bounds, respectively, for the ho-
mogenization results. In addition, the output tensor for
the symmetric cell should be a diagonal tensor, unlike
the inverted-L cell discussed next and also shown in
figure 3. The reader should note that the cells depicted
in figure 3 are assumed to be periodically repeated
many times in the domain defining the porous medium.
In fact, the assumption is that the size of the cell con-
taining the symmetric pattern shown in figure 3 is much
smaller than the size of the domain of interest.

Ratios of the coefficient values of 10:1, 100:1, and
1,000:1 were chosen with the larger coefficient value
in the border region of the cell and the lower value in
the interior region. The results for the various homoge-
nization methods for the 10:1 ratio are given in table 2.
These results and the results for the other ratios can be
found in [2]. It is not practical to include all the results
here. Instead, we refer the reader to [25] for a more
thorough set of results. We note CFE (MFE) when the
conforming (mixed) finite element method is used to
solve local problems.

4.1.2 Periodic inverted-L cell

The inverted-L pattern shown in figure 3 (right) is
about the simplest nonsymmetric test problem one
can think of. The reader should note that the cell is
repeated periodically with the cell in figure 3 much

Table 3 Effective permeability values computed by the different
upscaling methods for the inverted-L example with coefficient
ratio of 10:1.

Computational method Kxx Kxy Kyy

Arithmetic average 7.750 0.000 7.750
LBC homogenization CFE 5.752 -0.343 6.834
LBC homogenization MFE 5.733 -0.343 6.817
Periodic homogenization CFE 5.332 -0.286 6.761
Confined boundary conditions CFE 4.888 0.000 6.792
Confined boundary conditions MFE 4.876 0.000 6.777
Geometric average 5.620 0.000 5.620
Harmonic average 3.077 0.000 3.077

smaller than the domain of interest. The homogeniza-
tion methods are applied to the local problem on a
single cell. In this case, the output of homogenization
may produce a symmetric tensor with nonzero entries
off the main diagonal (see table 3). As in the symmetric
cell example discussed previously, results are presented
only for the 10:1 ratio. The coefficient value in the
inverted-L-shaped region is lower than in the rest of
the cell.

The results of the various homogenization methods
are given in table 3. As can be seen, several methods
produce tensors with nonzero entries off the diagonal.
More results can be found in [25].

4.2 Fracture model cell

The MapEditor tool available in the JHomogenizer in-
terface allows users to set up some specialized maps
such as maps with uniformly distributed values. One
of the specialized maps involves a model of a fracture
via a rectangular region. This looks similar to the pe-
riodic symmetric cell previously discussed. However,
the difference is that the width of the border around
the interior can be varied. The border region models a
fracture, whereas the interior region models the matrix.
Some of the homogenization methods will produce
more reliable results than the others.

Table 4 Effective permeability values computed by the different
upscaling methods for the fracture on the left with coefficient
ratio of 10:1.

Computational method Kxx Kxy Kyy

Arithmetic average 2.710 0.000 2.710
LBC homogenization 2.031 0.000 2.031
Periodic homogenization 2.021 0.000 2.021
Geometric average 1.549 0.000 1.549
Harmonic average 1.206 0.000 1.206
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Figure 5 Permeability distribution for a more realistic fractured
medium. The vertical band models a fracture zone bounded on
the left and right by two lower permeability regions.

Homogenized tensors are presented in table 4 for
some of the homogenization methods available in the
JHomogenizer tool. The results show a large variation
in tensor values.

4.3 A realistic fractured porous media example

In this section, results for a problem developed by
Alain Bourgeat (http://www.gdrmomas.org/pageperso/
Bourgeat/index.htm) are presented. The original ab-
solute permeability map is shown in figure 5. It is
easy to see that a fracture runs vertically through the
middle of the region. The regions to the left and right
of the fracture have absolute permeability of order 1,
and the values in the fracture zone are of order 103.
Thus, there is a significant contrast between the three

regions. In addition, the three regions themselves are
heterogeneous.

Part of the problem here is to determine reasonable
strategies for computing homogenized coefficient val-
ues. One could compute a single coefficient defined on
the entire domain. However, the results are disastrous.
Saturation contours are shown for the heterogeneous
and homogenized maps in figure 6. It is easy to see
that the effect of the fracture has been dramatically
washed out in the process. All of the local influence of
the fracture is lost.

To illustrate a more reasonable approach, homoge-
nization can be performed in the three subregions of
the original heterogeneous map. The process divides
the original region into three subregions: the fracture
region, a region to the left of the fracture, and a region
to the right of the fracture. A homogenization method
is applied to each of the three regions separately to
find a single coefficient value in each region. Finally,
the three homogenizer regions are connected back to-
gether. Homogenized values for these regions are given
in table 5 for various methods. Two saturation contours
corresponding to two different types of boundary con-
ditions for homogenization are shown in figure 7. They
are almost identical.

An extension of this process is to treat the problem
a bit like a boundary layer problem. The idea suggested
by A. Bourgeat is to expand the fracture zone to in-
clude one (or more) map value(s) from the matrix. In
figure 5, the fracture zone includes two grid blocks
in the horizontal direction. The grid dimension of the
original fracture zone is 2 × 50. By including one ad-
ditional grid block to the left and right of the original
fracture zone, the modified fractured zone now has a
grid dimension of 4 × 50. Using the modified regions,
the left and right matrices can be homogenized while

Figure 6 Left: Saturation
contours for a two-phase flow
with a permeability map
shown in figure 5. Right:
Saturation contours obtained
with the homogenized map.
In this case, the entire map
was homogenized using
periodic homogenization.
The influence of the fracture
is lost in the homogenization.

http://www.gdrmomas.org/pageperso/Bourgeat/index.htm
http://www.gdrmomas.org/pageperso/Bourgeat/index.htm
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Table 5 Homogenization
results for the three regions in
a realistic fracture example.

Region homogenized Homogenization method Homogenization tensor

Entire region

Arithmetic average
[

41.4974 0.0000
0.0000 41.4974

]

Harmonic average
[

2.1267 0.0000
0.0000 2.1267

]

Periodic homogenization
[

2.4707 0.0134
0.0134 40.8541

]

Linear BC homogenization
[

3.5035 0.0059
0.0059 40.9342

]

Left region

Arithmetic average
[

3.3827 0.0000
0.0000 3.3827

]

Harmonic average
[

2.0822 0.0000
0.0000 2.0822

]

Periodic homogenization
[

2.5898 0.0089
0.0089 2.4213

]

Linear BC homogenization
[

2.7398 0.0209
0.0209 2.4798

]

Fracture zone

Arithmetic average
[

1001.18 0.0000
0.0000 1001.18

]

Harmonic average
[

1001.18 0.0000
0.0000 1001.18

]

Periodic homogenization
[

1001.18 0.0000
0.0000 1001.18

]

Linear BC homogenization
[

1001.18 0.0000
0.0000 1001.18

]

Right region

Arithmetic average
[

2.6072 0.0000
0.0000 2.6072

]

Harmonic average
[

2.2112 0.0000
0.0000 2.2112

]

Periodic homogenization
[

2.3185 -0.0109
-0.0109 2.1502

]

Linear BC homogenization
[

2.3555 -0.0109
-0.0109 2.1803

]

Figure 7 Saturation contours
obtained with a homogenized
map such that the three
subregions are homogenized
separately and connected
back together. The figure on
the left shows results when
periodic homogenization
method was used, and the
figure on the right shows
results when the linear
boundary condition
homogenization method
was used.
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Figure 8 Left: Saturation
contours for a two-phase flow
with the heterogeneous
permeability map shown in
figure 5. Right: Saturation
contours obtained with a
homogenized map where the
three subregions are
homogenized separately and
connected back together.

leaving the fracture zone heterogeneous. The benefit
is that the important heterogeneities are maintained,
whereas the heterogeneities of lesser importance in the
left and right regions are averaged.

Figure 8 shows the flow using this approach for
homogenizing the domain. The figure showing the flow
through the porous medium resulting from the homog-
enization shows the grid associated with the modified
fracture zone. The advantage of this approach is that a
single value can be used in the modified matrix zones
leading to a simpler linear algebra problem.

The reader should understand that all of the steps
described in the section can easily be performed in
the JHomogenizer tool. In addition, the steps for do-
ing this work are outlined in [25]. The JHomogenizer
tool allows the user to extract subregions, homoge-
nize these subregions, create appropriate homogenized
maps from the homogenization results, and then con-
nect the pieces back together. The output from the
various homogenization techniques can be found at the
Web site [25].

4.4 Total data example

Total, Pau, France provided the data for the permeabil-
ity map shown in figure 9 for testing the effect of ho-
mogenization in a realistic situation. The map contains
three distinct coefficient values of 1.0 (darkest shaded
regions), 10.0, and 100.0 (lightest shaded regions) and
has higher permeability paths through the domain that
influence the flow of fluids in the porous medium.
The map is highly heterogeneous. In this test problem,
the original heterogeneous map is defined on 30 × 30
grids. The test involves obtaining a coarser grid map
defined on 6 × 6 grids. The JHomogenizer tool allows
the user to set the homogenized or coarse grid size in

the interface. This results in the solution with a 6 × 6
grid of local problems.

As an example of the output, one might expect
from the JHomogenizer tool, table 6 shows the results
from applying periodic homogenization to the 6 × 6
grid of subregions defined in the problem. The 36 local
problems are solved with periodic boundary conditions.
These and other results are documented with more
details in [25].

To visualize the effect of the homogenization
method on the porous medium, a simulation of two-
phase displacement was performed. These simulations

Figure 9 The fine-scale permeability field. The structure is
defined on a 30 × 30 grid of blocks. The homogenized values use
5 × 5 blocks to end up with a 6 × 6 coarse scale permeability field.
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Table 6 Equivalent
permeability values
computed for the periodic
homogenization method
using the conformal finite
element method on 5 × 5
blocks of cells in the
heterogeneous field. The
values for the tensor are Kxx,
Kxy = Kyx, and Kyy, from
top to bottom, respectively,
for the appropriate cell.

1 2 3 4 5 6

6
10.0000
0.0000

10.0000

6.1073
-0.0001
7.2762

0.1753
0.0110
0.1391

0.1000
0.0000
0.1000

0.4497
-0.0416
0.4496

3.4402
0.0000
7.4172

5
3.8292
0.1912
2.7202

5.8735
0.3386
7.8420

0.1000
0.0000
0.1000

0.1000
0.0000
0.1000

0.1092
0.0000
0.1092

4.7480
0.1795
6.9637

4
1.0000
0.0000
1.0000

2.5889
-0.0787
5.7037

0.2432
-0.0101
2.3542

0.1000
0.0000
0.1000

0.2015
0.0120
3.0033

0.2179
0.0001
4.3325

3
1.0000
0.0000
1.0000

0.6353
0.0064
2.5881

5.2078
-0.2286
7.1734

0.2080
-0.0032
0.2126

5.8155
0.4584
7.2970

0.1230
0.0000
0.2463

2
0.9347
0.0000
0.9346

0.2081
0.0140
0.2735

8.3336
0.0000
8.9698

10.0000
0.0000

10.0000

5.8156
0.4585
7.2969

0.1000
0.0000
0.1000

1
0.2060
0.0047
0.1466

0.7137
0.0000
0.8640

2.5058
-0.0754
5.3132

10.0000
0.0000

10.0000

1.6822
0.0479
3.9697

0.1597
-0.0101
0.1597

Figure 10 Saturation
contours for the Total map
data with the original
heterogeneous map (upper
left-hand corner) and with
the medium homogenized
using three methods: confined
upscaling (upper right),
periodic homogenization
(lower left), and linearly
boundary condition (lower
right).



Comput Geosci (2006) 10:343–359 357

Figure 11 The map data above show the contrasts in the thermal
diffusivity in a single microarray cell that might be used in the
replication of DNA collected for a variety of applications.

were performed using the simple simulation features
in the JHomogenizer. In figure 10, a comparison of
the simulations for the original heterogeneous map
and homogenized maps are shown. It is clear that
the results are not exactly the same, but the general
configuration of the saturation contours is the same.
There are differences, and the JHomogenizer tool gives
users the opportunity to investigate these differences by
analyzing data in localized regions.

4.5 Heating element design example

The original purpose for developing the JHomogenizer
tool was to test various homogenization methods re-
lated to porous media flow simulation. However, the
methodology is applicable to any elliptic problem with
a heterogeneous coefficient. To demonstrate this, we
consider the design of a heating element for a microar-
ray used in DNA replication given (figure 11).

Polymerase chain reaction is a process whereby small
amounts of DNA can be duplicated through a series of
heating and cooling cycles. A tray of samples is created

Figure 12 An approximation
of the solution of the elliptic
problem for the hetero-
geneous map defined on a
128 × 128 grid and homo-
genized maps using periodic
homogenization with 16 × 16
(lower left) and 8 × 8 (lower
right) coarse grids.



358 Comput Geosci (2006) 10:343–359

in the lab. In turn, the tray is placed in a device that
heats the samples within the tray. The heating process
should ensure that all samples are heated uniformly and
each of the samples in the tray is heated in exactly the
same manner. The heat source is contained as a circuit
located beneath the sample tray. The heating element
only contacts a subset of the lower surface of the sample
tray.

One way to proceed would be to define the heat
equation on a domain that includes the tray of samples
and the device housing the samples during the heating
process. This is certainly a heterogeneous media where
various parts of the device and tray have different coef-
ficients of thermal diffusivity. To design an appropriate
heating element, an optimization problem was defined
for the heating process. The criterion to minimize mea-
sures the deviation from a mean temperature measured
at the center of each sample. The optimization problem
necessitated multiple solutions of the heat equation to
find an optimal design. If a fine computational mesh
were used, the computational effort would be enor-
mous. In addition, finding a solution in the “ball park”
would suffice for the company (Idaho Technology, Salt
Lake City, UT). Thus, homogenization became a rea-
sonable mean to reduce the computational cost in this
project.

Results, extracted from Daniel Balls’ PhD thesis
[9] and obtained with JHomogenizer, are shown in
figure 12. On top of this figure, we show the solution
calculated on the original map, the left that on a 16 × 16
homogenized map, and the right that on a 8 × 8 homog-
enized map. Clearly, this last grid is not sufficient for a
reasonable calculation.

5 Concluding remarks

In this paper, we presented the program JHomogenizer
for numerical homogenization and several examples of
problems solved with it. Its open architecture facilitates
further developments for specific needs. Moreover, the
proposed user interface has proved to be very friendly
and flexible. The platform still needs to be improved
in several areas such as upscaling permeability for frac-
tured reservoirs, upscaling relative permeabilities and
capillary pressure (cf. [13]), and upscaling dispersion
in saturated porous media (cf. [15]). Efforts addressing
both of these important issues are currently underway.
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