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INTRODUCTION

Due to the importance of the activity-composition relations of 
garnets in petrologic calculations, the pyrope-grossular solid so-
lution, Mg3Al2Si3O12-Ca3Al2Si3O12, has been extensively studied 
in recent decades. The availability of calorimetric, volumetric, 
spectroscopic, and phase equilibrium constraints makes this solid 
solution a convenient test system for various models of mixing. 
The calorimetric studies of Newton et al. (1977), Haselton and 
Westrum (1980), and Dachs and Geiger (2006) have shown that 
both the enthalpy of mixing and the excess vibrational entropy 
deviate signifi cantly from the ideal behavior. The enthalpy of 
mixing reaches about 3 kJ at xpyr = 0.75. The excess vibrational 
entropy is of the order of 1.5 J/(K·mol) at xpyr = 0.6 (Haselton and 
Westrum 1980). Ganguly et al. (1993) and Bosenick and Geiger 
(1997) have shown that the mixing volumes are positive and 
asymmetric with a maximal value of about 0.008 J/(bar·mol) at 
xpy = 0.3. (All the excess effects are scaled here to one mole of 
the exchangeable Ca and Mg cations.) There have been many 
studies that have attempted to derive the mixing properties of 
garnets directly from phase equilibrium experiments and from 
compositions of garnets in well-characterized metamorphic 
rocks (e.g., Berman and Aranovich 1996; Ganguly et al. 1996; 
Mukhopadhyay et al. 1997). These studies have shown that the 
phase equilibrium data can be satisfactorily fi tted together with 
the volumetric and calorimetric constraints within the regular 
solution model. It was clear, however, that these modeling 

results can be applied only to garnets crystallized at relatively 
high temperatures or to samples in which Ca-Mg interactions are 
signifi cantly diluted by the presence of extra components such 
as Fe2+ and Mn2+. Only at these conditions the mixing properties 
can be approximated with the regular solution model. Bosenick 
et al. (1995, 1999) have performed 29Si NMR studies on garnets 
synthesized at high pressures and temperatures and observed 
that the frequencies of local Ca/Mg confi gurations deviate from 
the probabilities of random events. These studies suggested 
that at lower temperatures the confi gurational entropy might be 
signifi cantly decreased from the ideal mixing values due to the 
development of short-range ordering. To be able to predict the 
thermodynamic behavior of pyrope-grossular garnets in a wide 
range of temperatures, several recent studies have attempted 
atomistic simulations of mixing properties (Dove 2001; Bosenick 
et al. 2000, 2001a, 2001b; Warren et al. 2001; Vinograd 2001; 
Vinograd et al. 2004a; Sluiter et al. 2004; Lavrentiev et al. 2006). 
Although these studies have shown that modern computational 
tools permit simulation of any observable function of mixing, 
none of them has been able to demonstrate quantitative agree-
ment with all available experimental constraints. Specifi cally, 
none of the studies was able to reproduce the magnitudes of both 
the enthalpy of mixing and the excess vibrational entropy. No 
attempts have been made to explain the origin of the observed 
asymmetry of the functions of mixing. Here we show that a 
superior model can be developed along the following steps: 
(1) Development of a transferable set of empirical interatomic 
potentials. (2) Static lattice energy calculations (SLEC) and 
lattice dynamics (LD) calculations on a set of structures with * E-mail: v.vinograd@kristall.uni-frankfurt.de
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randomly varied cation confi gurations. (3) Ab initio calcula-
tions on a selected set of confi gurations used for the SLEC. (4) 
Comparing the excess energies derived from the SLEC and ab 
initio calculations and modifying the empirical potentials in the 
case of a poor agreement. (5) Cluster expanding the excess free 
energies of the simulated structures. In this procedure a prop-
erty is decomposed in terms of contributions from small fi gures 
or clusters. (6) Using the cluster expansion model to obtain 
temperature-dependent properties by Monte Carlo simulation. 
(7) Calculation of the free energies of mixing and ordering by 
thermodynamic integration of the Monte Carlo results. (8) Refi t-
ting the free energies of mixing to simple polynomial equations 
useful for phase equilibrium calculations.

SIMULATION PROCEDURE

The empirical potentials
Our set of potentials involves two-parameter Metal-Oxygen (M-O) Buck-

ingham potentials, three-body O-M-O angle-bending terms and the shell model 
for the oxygen polarizability as described by Sanders et al. (1984). The studies of 
Winkler et al. (1991), Patel et al. (1991), and Sainz-Diaz et al. (2001) have shown 
that the potentials of this type together with the assumption of formal charges on 
cations and anions permit a good description of structure and elasticity data of many 
silicates and aluminosilicates. However, low quality fi ts are usually observed for 
dense structures, such as stishovite and corundum. Vinograd et al. (2004b) have 
noted that in the dense structures it is especially diffi cult to fi t the short cation-
cation distances. Following Vinograd et al. (2004b, 2006a) we have multiplied 
formal cation and anion charges by the common factor 0.85, so that the charges 
of Mg and Ca, Al, Si, and O have been reduced to the values of 1.7, 2.55, 3.4, and 
–1.7, respectively. Such a reduction leads to a much better transferability of the 
potentials within oxide structures of variable density. The possible reason for this 
improvement is that the formal charges on cations cause too strong a cation-cation 
repulsion. The reduction of the charges by a small common factor removes this 
problem, but conveniently preserves the charge balance. The potentials have been 
developed using the relax-fi tting procedure (Gale 1996) as implemented in the 
GULP program (Gale 1997) by fi tting to structural parameters and elastic stiffness 
coeffi cients of a large set of minerals. The potentials of the Mg-Al-Si-O system 
have been described previously by Vinograd et al. (2006a). Here, we have extended 
the potentials to the Ca-Mg-Al-Si-O system. Two Ca-O potentials have been de-
veloped. The fi rst potential has been derived by fi tting to structure and elasticity 
data of a large set of Ca-bearing minerals including lime, larnite, Ca-Tschermak 
pyroxene, diopside grossular, gehlenite, and anorthite. This potential is labeled in 
Table 1 as Ca[6-8]–O to emphasize its transferability within minerals with different 
Ca coordination by oxygen. It was observed, however, that this potential predicts 
the excess enthalpy of the pyrope-grossular solid solution that is about 30% too 
large to be consistent with the calorimetric data of Newton et al. (1977) and with 
our ab initio calculations (see the following section). We then excluded lime, 
larnite and the pyroxenes from the fi t and obtained a new potential, which gave an 
improved description of the structure and elasticity data of grossular, anorthite, and 
gehlenite. The elastic constants of grossular and anorthite have been adopted from 
the compilation of Bass (1995). The structural parameters of anorthite and grossular 
have been taken from Angel et al. (1990) (sample from Somma) and Rodehorst et 
al. (2002) (synthetic sample, T = 156 K), respectively. The structural parameters 
of gehlenite were taken from Swainson et al. (1992). This potential is labeled as 
Ca[8]–O in Table 1 to emphasize its special applicability to the structures in which 
Ca occurs in higher coordination. This potential shows a much better agreement 
with our ab initio calculations and is used here for the SLEC calculations of a large 
set of structures with composition between pyrope and grossular. Our experience 
suggests (Vinograd et al. 2004a) that the ability of a model to predict the correct 
magnitude of the mixing enthalpy depends primarily on the adequate description 
of the elasticity and structure data. Therefore, in Tables 2 and 3 we compare the 
predicted structural parameters and elastic stiffness coeffi cients of pyrope and 
grossular with the available experimental data. Table 4 lists the predicted infrared 
frequencies in pyrope and grossular together with the experimental data of Boffa 
Ballaran et al. (1999). The predicted frequencies of low-energy modes are in excel-
lent agreement with experiment, while the three high-energy modes on average 
are lower than the experimental values by about 10%. This discrepancy should 

have only a minor infl uence on the calculated excess properties of garnets since 
the high-energy modes refl ect atomic motions within SiO4 tetrahedra, which play 
a passive role in the mixing process. Bosenick et al. (1996), Kolesov and Geiger 
(1998), and Dachs and Geiger (2006) suggested that the excess entropy of mixing 
arises from softening of the low-energy modes at the intermediate compositions. 
As we will show below, the magnitude of the excess vibrational entropy depends 

TABLE 1. The empirical interatomic potentials used in the present 
study with the notation [4], [6], and [8] referring to the 
coordination number of the associated species

Buckingham
Interaction A (eV) ρ (Å) C (eV Å6)
Al[4-6](core)-O(shell) 1262.2081 0.286370 0.0
Mg[6-8](core)-O(shell) 1432.8544 0.277265 0.0
Ca[8](core)-O(shell) 3285.2403 0.271592 0.0
Ca[6-8](core)-O(shell) 2707.5868 0.282660 0.0
Si[4-6](core)-O(shell) 1073.4668 0.298398 0.0
O(shell)-O(shell) 598.8996 0.314947 26.89746

Spring 
Interaction K (eV/Å2)
O(core)-O(shell) 56.5598

Three-body
Interaction kθ (eV/rad2) θ (degree)
O(shell)-Si[4]-O(shell) 0.77664 109.47
O(shell)-Si[6]-O(shell) 2.2955 90.0
O(shell)-Al[4]-O(shell) 1.2883 109.47
O(shell)-Al[6]-O(shell) 1.8807 90.0
Notes: The charges on the oxygen core and shell are 0.746527 and –2.446527, 
respectively. Cutoff  distance for the Buckingham potentials is 12 Å.

TABLE 2.  Structural parameters of pyrope and grossular as 
calculated with the SLEC and DFT GGA in comparison with 
experimental data

Grossular
Parameter XRD SLEC DFT-GGA
a (Å)  11.840*; 11.837† 11.8215 11.9668
Volume (Å3)  1659.80 *; 1658.53† 1652.013 1713.698
O 96h  x 0.0381 *; 0.0382 † 0.0372 0.0383
 y 0.0456 *; 0.0454 † 0.0464 0.0452
 z 0.6514 *; 0.6513 † 0.6510 0.6517

Pyrope
Parameter  XRD SLEC DFT-GGA
a (Å)  11.439; 11.455§ 11.446 11.5658
Volume (Å3)  1496.80‡; 1502.89§ 1499.418 1547.132
O 96h  x 0.0330‡; 0.0332§ 0.0319 0.0329
 y 0.0503‡; 0.0497§ 0.0514 0.0503
 z 0.6533‡; 0.6537§ 0.6532 0.6538
* Rodehorst et al. 2002.
† Geiger and Armbruster 1997.
‡ Pavese et al. 1995.
§ Zhang et al. 1998. 

TABLE 3.  Elastic stiff ness coeffi  cients for pyrope and grossular as 
calculated with the SLEC in comparison with experimental 
data

Grossular
Stiff ness coeffi  cient Observed (GPa) SLEC (GPa)
C11 321.7*; 318.8† 323.8
C44 104.6*; 102.9† 100.53
C12 91.4*; 92.1† 102.12
Bulk modulus 168.4* ; 167.8†; 175|| 176.03

Pyrope
Stiff ness coeffi  cient Observed (GPa) SLEC (GPa)
C11 296.2‡ ; 295.8§ 316.04
C44 91.6‡; 90.8§ 104.62
C12 111.1‡ ; 117.8§ 108.59
Bulk modulus 172.8‡; 177.0§; 171|| 177.74
* Bass 1989. 
† Isaak et al. 1992. 
‡ O’Neill et al. 1991.
§ Leitner et al. 1980.
|| Zhang et al. 1999. 
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on the relative change of the vibrational frequencies of the end-members due to the 
extension and contraction of their structures as they adjust to the common volume at 
an intermediate composition of the solid solution. In this respect it is important that 
the potentials correctly predicted the differences in the vibrational frequencies of 
the end-members and their changes as function of volume. The present set predicts 
consistently larger frequencies of pyrope relative to those of grossular. A further 
test of the accuracy of the potentials is given in the next section. 

Quantum mechanical calculations 

While calculations based on empirical potentials are compu-
tationally very effi cient, the predictive power of this approach 
requires an independent test. It is important that the potentials 
are able to predict correct energy differences between structures 
with different arrangements of the exchangeable cations. Here 
we compare SLEC results for a selected set of structures with 
parameter-free quantum mechanical calculations based on the 
density functional theory (DFT) (Hohenberg and Kohn 1964; 
Kohn and Sham 1965; Parr and Yang 1989; Jones and Gun-
narsson 1989). We used the generalized gradient approximation 
(GGA), in the form suggested by Perdew et al. (1996). To avoid 
explicit description of tightly bound core electrons, the approach 
employs “ultrasoft” pseudopotentials (Vanderbilt 1990; Kresse 
and Hafner 1994). In the present study we have used the VASP 
code (Kresse and Furthmüller 1996). The cut-off energy for the 
plane wave expansion was 400 eV. Calculations were performed 
for a unit cell consisting of 160 atoms (24 exchangeable cations) 
and integrations in reciprocal space utilized the Γ-point only. In 
all calculations, all symmetry independent structural parameters 
were varied simultaneously in the search for the ground state 
geometry. The parameters of the “relaxed” (optimized) struc-
tures of pyrope and grossular are given in Table 2, where they 
are compared to experimental values and to the results of the 
calculations based on empirical potentials. We also computed 
several structures with mixed Ca-Mg distributions. The composi-
tion of these structures and their excess energies relative to the 
mechanical mixture of pyrope and grossular are given in Table 
5. Sluiter et al. (2004) reported the excess energies of some of 
these structures previously. The majority of these structures were 
constructed from pure grossular and pyrope by substituting one 
or two atoms with atoms of the other sort. The structures with 
two Ca atoms in the pyrope matrix and with two Mg atoms in 
the grossular matrix differ in relative positions of the impuri-
ties. The structures numbered 1, 2, 3, and 4 correspond to the 
location of the impurity pair at the fi rst, second, third, and fourth 
nearest-neighbor distances, respectively. The notations 4a and 4b 
are used to distinguish two symmetrically different structures. 
In fact, there are two symmetrically different pairs of the fourth-
nearest neighbors: the pair 4b contains an Al atom exactly in the 
middle of the two dodecahedral sites, while the 4a vector does 
not cross any other atom (Fig. 1). (The existence of the two types 
of pairs of the fourth-nearest neighbors was missed in all previ-
ous studies. Here we show that distinguishing these pairs has an 
important implication for the predicted ground state structure.) 
We have also calculated the ab initio total energy of an ordered 
structure with the 50/50 composition. This structure with I4122 
symmetry has been manually constructed by maximizing num-
bers of dissimilar (Ca-Mg) contacts at the third and the fourth 
“b” distances (Figs. 1a and 1b). The ab initio calculations have 
confi rmed that this structure has the lowest total energy among 

the tested mixed confi gurations. Table 5 shows that the results 
of the empirical and ab initio calculations are in good agreement 
with each other. This permits us to apply the computationally 
effi cient SLEC approach to several other structures.

The SLEC and lattice dynamics calculations 

The fully relaxed SLEC calculations have been performed 
with GULP in the 160-atom primitive unit cell on a set of ran-
domly modifi ed structures (confi gurations) with x = 0 (1), x = 
0.04167 (1), x = 0.0833 (8) x = 0.25 (25), x = 0.5 (50), x = 0.75 
(25), x = 0.9167 (8), x = 0.95833 (1), and x = 1 (1) compositions. 
Here x denotes the mole fraction of pyrope. The numbers of 
the sampled structures with the same composition are given in 
parentheses. We have also performed the SLEC for 4 confi gura-
tions with x = 0.5 composition, which have been produced by 
manual disordering of the I4122 structure. The I4122 structure 
has the lowest static energy at the 50/50 composition. Subse-
quently, this result was confi rmed by Monte Carlo simulations 
(see below). Results from the fi rst set of calculations, at zero K 
and zero pressure, are displayed in Figure 2 where the excess 
static energies are plotted. Some of these energies also appear 
in Table 5. The other sets of calculations were performed at 300 
and 1000 K and at 0 and 3 GPa with the ZSISA (Zero Static 
Internal Stress Approximation, Allan et al. 1996) as implemented 

TABLE 4.  The comparison between the observed and predicted 
frequencies of infrared-active modes

Peak Grossular Pyrope
 Observed Predicted Observed Predicted
R 155 148  149
Q 180 176 150 158
P 205 199  195
N 240 223 210 218
O 300 284 260 253
M 355 354  314
L  371 350 353
K 400 395 390 376
J  419 420 410
I 455 441 465 444
H 475 450 490 468
G 520 467 540 516
F 540 518 580 564
E 615 578  622
D 840 767 875 788
C 860 789 910 812
B 910 858 980 899
Notes: Values are in cm–1. The experimental data and the nomenclature of the 
IR bands are from Boff a Ballaran et al. (1999).

TABLE 5.  The comparison between empirically and ab-initio calcu-
lated excess lattice energies of selected confi gurations

Structure Empirical potentials Ab initio
Ca23Mg1 0.5117 0.5096
Ca22Mg2 (1) 0.9322 1.0042
Ca22Mg2 (2) 0.9200 0.9142
Ca22Mg2 (3) 1.6123 1.6834
Ca22Mg2 (4a) 0.8403 0.9355
Ca22Mg2 (4b) 0.9992 1.0765
Ca2Mg22 (1) 1.0610 1.1990
Ca2Mg22 (2) 1.0787 1.1656
Ca2Mg22 (3) 1.7346 1.8188
Ca2Mg22 (4a) 1.0356 1.1781
Ca2Mg22 (4b) 1.2047 1.4275
Ca1Mg23 0.5886 0.6640
Ca12Mg12 (I4122) 0.1361 0.0579
Notes: Values are in kJ/mol of exchangeable atoms. All values are scaled to the 
mixture of pyrope and grossular in equivalent fractions.
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in GULP. In these calculations the Gibbs free energy (see a 
comment below) is minimized. The Gibbs free energy includes 
the static energy, the vibrational free energy and the PV term. 
The ZSISA was preferred over the conventional free energy 
minimization because it is more stable at high temperatures. The 
problem is that in the conventional free energy minimization 
the frequencies are calculated at a point where the forces are 
not zero (the frequencies are obtained from the second deriva-
tives of the internal energy, while the fractional coordinates and 
unit-cell parameters correspond to the free energy minimum). 

Therefore the harmonic approximation is violated. In ZSISA the 
internal degrees of freedom are minimized with respect to the 
internal energy, which guarantees zero force at the point of the 
frequency calculation. Therefore, ZSISA is consistent with the 
quasi-harmonic approximation; however, the calculated property 
is not exactly the Gibbs free energy, because only the external 
degrees of freedom are minimized with respect to the pressure 
and temperature dependent terms. Figures 3a and 3b show the 
excess Gibbs free energies of the sampled confi gurations at 300 
and 1000 K, respectively. Figures 4a, 4b, 5a, and 5b show the 
excess volumes and the excess vibrational entropies, respectively, 
calculated at zero pressure. The increase in pressure up to 3 
GPa leads only to a slight increase in the excess free energies, 
which amounts to about 0.5 kJ/mol at 1000 K at the intermedi-
ate composition. 

The SLEC and lattice dynamics calculations show that the 
type and degree of asymmetry in the excess mixing properties 
with respect to 50/50 composition is strongly dependent on the 
property under consideration. The maximum of the excess static 
energy is shifted in the direction of the smaller component, while 
the maximum of the excess vibrational entropy is displaced in 
the direction of the larger component. It is also evident that there 
is a strong positive correlation between the excess volumes and 
entropies, which we believe to be responsible for the similarity 
in the asymmetry of these properties. This correlation is illus-
trated in Figure 6.

Virtual crystal calculations

The predicted asymmetry of the mixing functions can be well 
understood within the virtual crystal approximation. Following 
Ferreira et al. (1988) we assume that the actual mixing process can 
be split into two stages: (1) the volume deformation (the lattices of 
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FIGURE 2. The excess static lattice energies of the studied structures. 
(The energies are scaled relative to the weighted sum of the energies of 
grossular and pyrope.) Circles are the GULP results, the crosses are the 
results of the cluster expansion. 

FIGURE 1. Arrangement of cations in the ordered garnet with the 
I4122 symmetry.  The sticks show the interactions between the third (a) 
and fourth (b) neighbors. White and black spheres correspond to Mg and 
Ca atoms, respectively. The gray spheres denote either Si (a) or Al (b). 
The 4b interactions can be distinguished from the 4a interactions by the 
presence of an Al atom exactly at the mid-point between the neighboring 
dodecahedral sites.
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the end-members are homogeneously deformed, i.e. expanded or 
contracted, until their cell dimensions and volumes equalize) and 
(2) the actual mixing via cation diffusion on the already deformed 
lattice with the subsequent local relaxation of the structure. The 
virtual crystal calculations are concerned with the energetic and 
entropic effects that occur at the fi rst stage. We assume for sim-
plicity that the volume changes linearly with the composition of 
the mixture. This permits us to calculate the increase in the static 
energy of pyrope, ∆E1, when its volume is linearly expanded to 
the volume of grossular, and the increase in the static energy of 
grossular, ∆E2, when its volume is linearly contracted to the volume 
of pyrope. The results of these calculations together with the total 
effect are plotted in Figure 7. The total volume deformation energy 
is calculated with the equation:

EVD = x1∆E1 + x2∆E2      (1)

where x1 and x2 are mole fractions of grossular and pyrope, 
respectively. Since the contraction of grossular requires more 
energy than the expansion of pyrope, the maximum of the total 
energy is shifted in the direction of pyrope. Calorimetric data 
of Newton et al. (1977) exhibit a similar asymmetry with the 
maximum shifted in the direction of pyrope. The magnitude of 
the volume deformation energy greatly exceeds the measured 
calorimetric effect, however. This, as we will confi rm later, 
suggests that the energy effect of the second mixing stage is 
negative. Similar calculations reveal the origin of the asym-
metry of the excess entropy. We have calculated the increase in 
the vibrational entropy of pyrope at 300 K when its volume is 
linearly expanded to the volume of grossular and the decrease 
in the entropy of grossular, when its volume is contracted to the 

0 0.2 0.4 0.6 0.8 1
Mole fraction of pyrope

0

1

2

3

4

5

6
E

xc
es

s 
fr

ee
 e

ne
rg

y,
 k

J/
m

ol

300 K

Gr Pyr

a

0 0.2 0.4 0.6 0.8 1
Mole fraction of pyrope

0

1

2

3

4

5

6

E
xc

es
s 

fr
ee

 e
ne

rg
y,

 k
J/

m
ol

1000 K

Gr Pyr

b

FIGURE 3. The excess Gibbs free energy calculated with ZSISA (zero 
static internal stress approximation) at 300 K (a) and 1000 K (b). Symbols 
are the same as in Figure 1. The excess quantity is defi ned relative to the 
weighted sum of the Gibbs free energies of grossular and pyrope. 
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standard volume of pyrope. Since the increase in the entropy 
of pyrope exceeds the decrease of the entropy of grossular, the 
total change in the vibrational entropy of the mixture is positive 
with the maximum shifted prominently in the direction of the 
end-member with the largest volume (Fig. 8). The above varia-
tion in the vibrational entropy of pyrope and grossular can be 
rationalized if one considers the change in the force constants 
associated with the vibrations of Mg and Ca in the dodecahedral 
cages. Sluiter et al. (2004, Table II) using the DFT GGA have 
calculated the differences of the force constants of Mg and Ca 
in the two contrasting cases. The fi rst case corresponds to the 
vibration of an atom in the cell of the end-member composition 
(Mg24Al16Si24O96 or Ca24Al16Si24O96), the second case corresponds 
to the situation when Mg or Ca is an impurity (MgCa23Al16Si24O96 
or CaMg23Al16Si24O96). These calculations have shown that the 
force constants of Mg in the impurity state are smaller than those 

in the end-member state, while the force constants of Ca are larger 
in the impurity state. These effects are well understood consider-
ing that the size of the polyhedron centered on Mg increases in 
the impurity case, while the size of the polyhedron centered on 
Ca decreases in the impurity state. The nontrivial observation is 
that the decrease in the force constants of Mg is greater than the 
increase in the force constants of Ca. This is consistent with the 
much stronger increase in the entropy of pyrope on extension. 
An additional factor is that the relative volume change of pyrope, 
∆V/VPyr = 0.102, is larger than that of grossular, ∆V/VGr = 0.093. 
The positive correlation between the excess volumes and the 
excess entropies (Fig. 6) explains the experimentally observed 
asymmetry of the excess volume. The correlation has the same 
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FIGURE 5. The excess vibrational entropy calculated with ZSISA 
at 300 K (a) and 1000 K (b). The excess quantity is defi ned with 
respect to the weighted sum of the vibrational entropies of grossular 
and pyrope at the given temperature.

0 0.2 0.4 0.6 0.8 1
Mole fraction of pyrope

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
xc

es
s 

vi
br

at
io

na
l e

nt
ro

py
, J

/m
ol

/K

1000 Kb

Gr Pyr

0 0.005 0.01 0.015 0.02
Excess volume, J/mol/bar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
xc

es
s 

vi
br

at
io

na
l e

nt
ro

py
, J

/m
ol

/K

1000 K

FIGURE 6. Correlation between the excess vibrational entropy and 
the excess volume at 1000 K and zero pressure.

FIGURE 7. The equations of state (energy vs. volume) of pyrope 
and grossular and the total volume deformation energy plotted vs. the 
mole fraction of pyrope. It is assumed that volume changes linearly vs. 
the composition.
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origin as the thermal expansion. An increase in volume leads 
to a decrease in vibrational frequencies and consequently to an 
increase in the vibrational entropy. Due to the positive excess en-
tropy, the increase in volume becomes particularly advantageous 
at intermediate compositions, where the TSexcess term is larger. 
For the same reason the excess volume becomes larger at high 
temperatures. The higher excess volume at higher temperature 
causes a further increase in the excess entropy.

The above analysis suggests that a signifi cant part of the 
mixing energy, the excess entropy and the excess volume have 
a non-confi gurational origin. In fact, the calculated volume 
deformation energy and the excess entropy are the properties 
of the mixture of pyrope and grossular deformed to a common 
volume. Obviously, any property that relates to the mixture of 
the end-members does not depend on the arrangement of atoms 
within the solid solution. (Here we avoid saying “a mechanical 
mixture” because this term usually is applied to mixtures with 
properties that vary linearly with the composition. The more 
appropriate term is “a strained mixture.”) 

Cluster expansion of the SLEC results

The aim of the cluster expansion is to fi nd a simple equa-
tion, which fi ts the energies of all simulated confi gurations and, 
hopefully, predicts the energy of any other possible confi gura-
tion. One popular form for such an expansion is known as the 
J values formalism (e.g., Dove 2001; Vinograd 2001 and refer-
ences therein)

E z P J +Ei
(n)

(n) n
n

≈ ∑1 2
AB 0/  (2)

where z(n), P
AB

(n), and Jn are the coordination numbers, fractions 
of AB-type pairs and effective cluster interactions for pairs of the 
order n. Jn corresponds to the energy of the exchange reaction AA 

+ BB = 2AB between atoms A (Mg) and B (Ca) located at the n-th 
distance. When this equation is applied to the excess energies, E0 
absorbs the non-confi gurational effects, while the sum of the J 
values describes all effects of relaxation due to the formation of 
the solid solution. The main effect of the solid solution formation 
is the production of AB pairs from AA and BB pairs. When the 
energy of the strained mechanical mixture is separated out as the 
E0 term, the J values permit clear physical interpretation: These 
are the energies that are released when AA and BB pairs, forced 
to match the average interatomic distance at a composition x, are 
allowed to exchange atoms and make pairs of AB and BA types 
matching the same interatomic distance. The energy is released 
(usually) as it is easier to match the interatomic distance at an 
intermediate composition with two atoms of different size as 
opposed to the same atoms. The pairs of the same atoms will be 
either too large or too small with respect to the average distance. 
Since the energy of the strained mechanical mixture can be well 
approximated with a two-parameter polynomial (e.g., Vinograd 
et al. 2004a), it is convenient to expand the E0 term as follows:

E0 = x1x2(x1A12 + x2A21) (3)

To determine the set of the J values for each of the 125 
structures, we have calculated the fractions (frequencies of occur-
rence) of pairs of dissimilar atoms at 7 distances, as specifi ed in 
Table 6. Since there are two symmetrically different pairs at the 
4th distance, each confi guration i is characterized by 8 frequen-
cies, Pn [the factor 1/2z(n) is included in the frequency value], and 
by a value of the relaxed excess energy Ei, where the excess value 
is defi ned relative to the weighted sum of the relaxed energies 
of pyrope and grossular. The whole set of confi gurations is thus 
characterized by the 125 × 8 frequency matrix P and with the 
125-element vector E. With each dissimilar pair we associate 
a constant Jn. The 8-element vector J is traditionally found by 
solving the matrix equation J=P–1E using a least squares method. 
Since E0 is a confi guration-independent term, its value must not 
be mapped onto the J values expansion. Therefore, the J vector 
is found from J=P–1E', where the vector E' is obtained from the 
vector E by subtracting the value of E0 from each element. We 
calculate also the vector E', which represents the approximation 
to E' predicted with the J values expansion. Finally, we search for 
the values of A12 and A21, which result in the best fi t. Because of 

FIGURE 8. The entropic equations of state (entropy vs. volume) of 
pyrope and grossular and the total excess entropy plotted vs. the mole 
fraction of pyrope. The vibrational entropy is calculated at 300 K. It is 
assumed that volume changes linearly with composition.

TABLE 6. The fi nal parameters of the fi tted cluster expansion. 
Pairwise energies 

n Distance (Å) 0 K  300 K 1000 K 300 K 1000 K
  0 GPa 0 GPa 0 GPa  3 GPa 3 GPa
1 3.051 –0.4270 –0.6810 –1.4659 –0.4325 –1.0432
2 5.355 –0.4229 –0.5294 –0.7916 –0.3580 –0.5978
3 5.725 –8.4223 –8.2859 –7.7208 –8.2204 –7.9874
4a 6.400 0.5213 0.4722 0.4386 0.5002 0.4170
4b 6.400 –1.6159 –1.4713 –1.1275 –1.6680 –1.3334
5 6.713 –2.9661 –2.8426 –2.4448 –2.8149 –2.5370
6 7.840 0.1377 0.0875 –0.1034 0.0944 –0.0310
7 8.096 –0.0192 –0.0091 0.0494 0.0182 0.0132

The elastic term
Parameter 0 K 300 K 1000 K 300 K 1000 K
  0 GPa 0 GPa  3 GPa 3 GPa
A12 33.429 33.602 34.485 33.608 34.300
A21 30.541 30.478 30.075 30.372 30.200
Note: The values are in kJ per mole of dodecahedral cations. 
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a strong correlation between the Jn and Aij parameters, we have 
introduced an additional constraint in the fi t requiring A12 and A21 

parameters to stay within the interval of 25–45 kJ/mol. Values 
of this order of magnitude would match the volume deformation 
energy (Fig. 7). The results of the fi t are shown in Table 6. 

The J values calculated in the way described above exclude 
the effect of the vibrational entropy. To include the effect of 
vibrations, we directly expanded the excess Gibbs free energies. 
The only difference between the expansion of the static energy 
and the expansion of the Gibbs energy, φ, is that the Ei values 
in Equation 2 are replaced with φi and the E0 value is replaced 
with φ0, where φ0  includes both the volume deformation and 
the excess vibrational free energy of the strained mechanical 
mixture. It is assumed that φ0 can be approximated with the 
same equation as the E0. The results of these calculations are 
displayed in Table 6. The same analysis has been applied to the 
excess Gibbs free energies, which correspond to the calculations 
at nonzero pressure. The J values then absorb both the –TSvib 
and PVex terms. These J values are also listed in Table 6. Figure 
9 illustrates the accuracy of the cluster expansion of the Gibbs 
free energy calculated at 1000 K. An even better accuracy is 
observed in the cluster expansion results corresponding to the 
0 and 300 K sets. Evidently, the high accuracy of the cluster 
expansion makes it feasible to effi ciently simulate a Boltzmann 
probability distribution of the dodecahedrally coordinated Mg/Ca 
atoms with the Monte Carlo method.

Monte Carlo simulations

Monte Carlo simulations have been performed using a 4 × 4 
× 4 supercell with periodic boundary conditions (1536 dodeca-
hedral sites) with our own code. The swapping of sites has been 
performed according to the Metropolis algorithm (Metropolis et 
al. 1953). The energy differences between the subsequent steps 
have been calculated using Equation 2. The temperature depen-

dent properties have been calculated on a grid of 25 different 
compositions across the pyrope-grossular binary in the interval 
of 300–1500 K with a step of 100 K. Each point in T-X space 
was equilibrated for 500 000 Monte Carlo steps and additional 
500 000 steps were used for the calculation of the averages. The 
fi rst set of calculations employed temperature independent (T-I) 
J values, refl ecting the effect of the static lattice energy only. 
The second set employed temperature dependent (T-D) J values, 
which incorporated the effect of the excess vibrational energy. 
These J values have been linearly interpolated between the values 
corresponding to 300 and 1000 K and linearly extrapolated to 
1500 K. The averaging over the Monte Carlo results constrained 
with the temperature independent J values gives the isotherms 
of the excess static lattice energy. These isotherms are compared 
with the experimentally measured enthalpies in Figure 10. The 
high-temperature isotherms are in reasonable agreement with 
the calorimetric measurements of Newton et al. (1977), which 
have been performed on samples with a relatively disordered 
cation distribution. (The samples were synthesized at 1400 °C 
and 30 kbar.) Figure 11 shows the isotherms of the excess Gibbs 
free energy, which have been calculated from the Monte Carlo 
simulations constrained with the T-D J values. These values 
are consistently smaller than the excess enthalpies due to the 
vibrational free energy. Note that the excess Gibbs free energy 
is defi ned here with respect to the mechanical mixture of the 
end-members, but not with respect to the free energy of mixing 
of an ideal solid solution. The confi gurational entropy is not 
yet included in the Gibbs free energy values. At temperatures 
below 600 K both the excess enthalpy and the excess Gibbs free 
energy signifi cantly decrease at the intermediate composition. 
The region where the isotherms decrease rapidly corresponds to 
the development of LRO associated with the cubic/tetragonal, 
Ia3–d/I4122 transition. The LRO parameter variation across the 
transition was investigated in special Monte Carlo runs both with 

FIGURE 9. Correlation between the cluster expanded and the original 
(GULP) values of the excess Gibbs free energies of the 125 structures 
at 1000 K and zero pressure.

FIGURE 10. The enthalpy of mixing calculated from the Monte Carlo 
simulations performed with the temperature independent J values. The 
squares show the experimental data of Newton et al. (1977).
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the T-I and T-D J values at the 50/50 composition (Fig. 12). The 
LRO parameter has been defi ned as follows

Q =
P P

P +Pod
A A

A A

α β

α β

−
 (4)

 

where PAα and PAβ are the probabilities of fi nding an A atom (e.g., 
Mg) in two dissimilar dodecahedral sites. These two sites become 
structurally distinct in the tetragonal phase. However, these 
probabilities (frequencies) cannot be directly determined from 
the site occupancies derived from the Monte Carlo simulations 
because the LRO fl uctuates between the three equally probable 
orientations. Therefore, we have calculated the LRO parameter 
indirectly from the probabilities of AA pairs. The pair prob-
abilities are much less affected by the spontaneous changes in 
the LRO orientation. Statistical theories of LRO (e.g., Vinograd 
and Putnis 1999) suggest that at short distances the pair prob-
abilities are functions of both short-range order (SRO) and LRO 
parameters. However, the SRO correlations rapidly vanish with 
distance and by measuring the AA probability at the maximum 
separation in the Monte Carlo supercell one can be fairly sure 
that the SRO contribution is insignifi cant. (This distance was 
equal to 22.89 Å in our simulations.) 

Using Equation 4, the fractional occupancies of the sites can 
be written as functions of the LRO parameter. Therefore

PAαAβ = PAαPAβ = PA
2(1 + Qod)(1 – Qod) = (1 – Qod

2)/4        (5)

where PA is the probability of fi nding an A atom in the whole 
lattice (PA = 1/2 at the intermediate composition). From Equa-
tion 5 one can easily recalculate Qod (Fig. 12). It is clear that the 
SRO/LRO transition occurs in pyrope-grossular garnets at about 
600 K. The nonzero values of the LRO parameter at the higher 
temperatures are due to the relatively small size of the simulation 
cell. Including the effect of vibrations has only a minor effect on 

the temperature of the onset of the LRO. The predicted LRO in 
the pyrope-grossular garnets disagrees with the earlier result of 
Bosenick et al. (2000) and Vinograd et al. (2004) who observed 
at the 50/50 composition the development of short-range order 
only. This new result is due to the different treatment of the 
ordering interactions between the fourth-nearest neighbors. In 
the previous studies J4a and J4b have been treated as the same J4 
interaction. We show here that J4a and J4b have different signs: 
J4b favors ordering and J4a favors clustering. Accordingly, in the 
ordered I4122 compound the 4b and 4a neighbors are occupied 
by dissimilar and similar pairs of cations, respectively (Fig. 1). 
Assigning the same negative ordering energy to all pairs of the 
fourth neighbors, as was done in the earlier studies, destabilized 
the ordered phase. 

THERMODYNAMIC INTEGRATION

It has been shown (Myers et al. 1998; Myers 1999; Dove 
2001) that the free energy of mixing can be calculated from 
Monte Carlo averaged excess energies using the method of 
λ-integration:

F = F E d0
0

+ ∫ λ

λ

λ  (6)

In this equation F0 corresponds to the free energy of mixing 
of the solid solution with zero ordering energy, which can be 
calculated exactly with:

F0 = RT(xMg lnxMg + xCa lnxCa)  (7)

The integral describes the contribution to the free energy from 
the excess energy, when its value changes from the state of the 
complete disorder,

 
〈E〉λ=0, to the equilibrium state of the order at 

FIGURE 11. The excess Gibbs free energy of mixing calculated from 
the Monte Carlo simulations performed with the temperature dependent 
J values.

FIGURE 12. The temperature dependence of the long-range order 
parameter as calculated from Monte Carlo simulations at zero pressure. 
Open and fi lled circles correspond to the calculations performed with 
the temperature-independent and temperature-dependent J values, 
respectively. 
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a given temperature. To simulate energy states with intermediate 
states of order one performs additional Monte Carlo simulations 
with scaled values of the J values: 

J Jn n
λ λ=  (8)

where λ varies between 0 and 1. Effectively, the scaling means 
that the probabilities of microstates become more random than 
in the non-scaled case. The 〈E〉λ is calculated by averaging the 
energies of the Monte Carlo states using Equation 2 with nominal 
(not scaled) values of J values. In our simulations, λ was gradu-
ally increased from 0 to 1 with a step of 0.025. The integral was 

calculated using Simpson’s method. Figure 13a shows the free 
energy of mixing calculated from Monte Carlo results obtained 
with the T-I J values. These free energies of mixing ignore the 
effect of the excess vibrational free energy and the excess vol-
ume. However, at equilibrium the microstates with high excess 
vibrational entropy will occur more frequently than the low 
entropy states, particularly so at high temperatures. Thus the 
excess vibrational entropy has an effect on the confi gurational 
entropy. This effect is taken into account, when the thermody-
namic integration analysis is applied to Monte Carlo averaged 
excess Gibbs free energies 〈ϕ〉λ. The averaged excess Gibbs ener-
gies should simply substitute the averaged excess enthalpies in 
Equation 6. Figure 13b shows the results of the thermodynamic 
integration analysis of the Monte Carlo results obtained with the 
temperature dependent J values, which correspond to 0 GPa. The 
isotherms in Figure13b include the effects of the confi gurational 
entropy and the excess vibrational free energy. The pure excess 
vibrational free energy is plotted in Figure 14. This function was 
calculated by subtracting the free energy of mixing obtained 
from the simulations with T-D J values, from the free energy of 
mixing obtained from the simulations with the T-I J values. The 
excess vibrational entropy can be approximately calculated from 
Figure 14 dividing the excess energies by –T.

The confi gurational entropy was calculated with the equation.

S = (F – 〈ϕ〉)/T (9)

where F is the total Gibbs free energy of mixing obtained using 
Equation 6 and 〈ϕ〉 is the Monte Carlo averaged excess Gibbs 
free energy at zero pressure. Figure 15 shows the confi gurational 
entropy in the interval of 300–1500 K. A very similar result is 
obtained by applying the thermodynamic integration analysis 
to the averaged excess Gibbs free energies calculated at 3 GPa. 
The confi gurational entropy refl ects the effects of SRO and LRO. 

FIGURE 13. Gibbs free energy of mixing derived from the 
thermodynamic integration analysis of the Monte Carlo results. The cases 
a and b correspond to the simulations with the temperature-independent 
J values and temperature-dependent J values, respectively. 
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FIGURE 14. The excess vibrational free energy calculated as the 
difference between the free energies calculated with the temperature-
dependent and temperature-independent J values.
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The development of LRO is manifested by the rapid decrease 
in the entropy. The excess free energies of mixing behave more 
smoothly, but also reveal the effects of the ordering. The analysis 
of the curvature of the free energies of mixing, combined with 
the calculations of the onset of the LRO (Fig. 12), permits the 
drawing of the T-X phase diagrams. Practically, we tested if the 
free energy at each point along the isotherm is lower than the 
weighted sum of the free energies of any other two points of 
the isotherm. If this test is not fulfi lled, the point is marked as 
“unstable.” The miscibility gaps are shown as smoothed curves, 
which encircle the clusters of the unstable points. The phase 
diagrams shown in Figures 16a and 16b correspond to the free 
energies that ignore and include the vibrational free energies, 
respectively. Evidently, including vibrational effects stabilizes 
the intermediate phase. Figure 16c corresponds to the free energy 
of mixing calculated by the thermodynamic integration analysis 
applied to the excess Gibbs free energies corresponding to 3 Gpa. 
It appears that the intermediate compound is destabilized with 
pressure due to the increase in the PVex term.

Polynomial fi t to the free energies of mixing

In many petrological models the free energy of mixing is 
separated into ideal and excess contributions. The excess free 
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FIGURE 15. The confi gurational entropy calculated using the method 
of thermodynamic integration. Simulations were performed with the 
temperature dependent J values at zero pressure. The dashed line shows 
the entropy of ideal mixing.

FIGURE 16. The temperature-composition phase diagrams calculated 
based on the results of Monte Carlo simulations. The cases (a) and 
(b) correspond to the simulations with the temperature-independent 
and temperature-dependent J values, respectively, performed at zero 
pressure. The difference in the topology is due to the effect of the 
excess vibrational free energy, which is included in the case b. Case c 
corresponds to the simulations with the temperature dependent J values 
calculated at 3 GPa. The difference in the topology relative to the case 
b is due to the PVex term.
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energies of mixing calculated by subtracting the –TSideal term 
from the Monte Carlo free energies are plotted in Figure 17. 
At temperatures above 600 K, the excess free energies behave 
smoothly, thereby providing a possibility for a polynomial 
description. Table 7 lists the coeffi cients of the Redlich-Kister 
polynomial (Redlich and Kister 1948, see also Ganguly 2001) of 
the 5th order, which gives a reasonably accurate fi t to the excess 
free energy in the range of 600–1500 K both at 0 and 3 GPa

G x x A TB (x x )n n
n

n=
excess 2 1

1

1

6
= − −∑ −

1 2 ( )  (10)

The excess free energy in the range of 300–600 K is very 
much perturbed due to the LRO effect. Figure 17 shows that the 
LRO causes the rapid decrease of the isotherms, which is most 
pronounced at 0.5. The part of the excess free energy, which is 
not described with the Redlich-Kister polynomial, can be fi tted 
separately using the Gaussian

G x x C TD T TF C TD xord 1( )= − − − −1 2 1 1 1 2 2 0 5( ln )exp( ) . 22
   (11) 

where x1 and x2 are mole fractions of grossular and pyrope, 
respectively. The shape of the Gaussian function is particularly 
well suited to describe the dip in the free energy associated with 
the development of LRO. The coeffi cients of this function are 
listed in Table 8. For simplicity, we assume this function to be 
pressure independent. Equations 10 and 11 together permits an 
accurate fi t to the excess free energies of mixing in the range of 
300–1500 K at 0 GPa or at 3 GPa. Figure 18 plots the activities at 
0 GPa, which are easily calculated from the excess free energies 
of mixing (e.g., Hillert 1998). The activity-composition relations 
corresponding to pressures in the range of 0–3 GPa can be cal-
culated by linearly interpolating the Redlich-Kister coeffi cients 

(Table 8) corresponding to 0 and 3 GPa, respectively. 
We have also performed the fi t with the Redlich-Kister 

polynomial of the fi rst order. This polynomial corresponds to 
a regular solid solution model with temperature- and pressure-
dependent Margules parameters. Although the quality of this fi t 
is low, it allows us to compare the present results with models 
constrained with phase equilibrium data. Table 9 lists our results 
together with the results of the three models, which are widely 
used in petrological calculations. 

DISCUSSION

Our model of mixing differs from previously reported models 
of pyrope-grossular garnets in several aspects. First of all, it is 
an atomistic model, which includes the effects of ordering and 
lattice vibrations and predicts their magnitudes as functions of 
the temperature. It permits consistent explanation of the origin 
of the asymmetry of the mixing functions. The advanced feature 
of the model is the inclusion of quasi-harmonic lattice dynamics 
instead of relying exclusively on static lattice energy calculations. 
Previous simulation studies, with the exception of the recent work 
of Lavrentiev et al. (2006), are based on the SLEC only. Treating 
thermal expansion has also permitted us to reproduce the correct 
magnitude of the excess vibrational entropy. The average excess 
entropy at the intermediate composition is about 0.8 J/(mol·K) 
at 300 K and 1.1 J/(mol·K) at 1000 K (Figs. 5a and 5b), which 
is close to the value (1.17 J/mol/K) calculated by Lavrentiev et 
al. (2006) for a single confi guration of xpyr = 0.5 using a similar 
free energy minimization technique. Our estimates are of the 
same order of magnitude as that (1.5 J/mol/K) measured by 
Haselton and Westrum (1980) for their sample with xpyr = 0.6. 
This is the main improvement over the study of Vinograd et 
al. (2004b), where much smaller excess entropies have been 
predicted. The other important feature of the model is the use 
of well-constrained interatomic potentials. Before starting the 
large-scale Monte Carlo simulations we have demonstrated a 
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FIGURE 17. The excess free energy of mixing calculated by 
subtracting TSid term from the total free energy of mixing. (The Monte 
Carlo calculations were performed with the temperature-dependent J 
values at zero pressure.) The solid dots are the Monte Carlo results and 
the solid lines are the results of the fi t with the Redlich-Kister polynomial 
of the 5th order. 

TABLE 7.  Coeffi  cients of the Redlich-Kister polynomial for the excess 
free energy in the grossular-pyrope solid solution 

N An (J/mol) Bn (J/mol·K) An (J/mol) Bn (J/mol·K)
 0 GPa 0 GPa  3 GPa 3 GPa
1 11953.7 2.1318 12656.2 1.6605
2 1237.4 –0.2627 1363.8 –0.2131
3 3783.6 2.1771 4100.1 2.3268
4 1505.3 1.2199 1321.8 1.1152
5 –1350.9 –0.9663 –1582.3 –1.0913
6 –1449.2 –1.1684 –1406.4 –1.1898

TABLE 8.  Coeffi  cients of the Gaussian for the description of the LRO 
eff ect on the excess free energy of mixing

N Cn (J/mol) Dn (J/mol·K) Fn (J/mol/K/lnK)
1 –15145.7 –145.9 19.0
2 –22493.3 –17.3

TABLE 9.  Coeffi  cients of the subregular model for the excess free 
energy in the grossular-pyrope solid solution [values are in 
J/mol, J/(K·mol), and J/(bar·mol) of exchangeable atoms]

Source WH
CaMg WH

MgCa  WS
CaMg  WS

MgCa  WV
CaMg  WV

MgCa 
Ganguly et al. (1996) 21627 9834 5.780 5.780 0.012 0.058
Mukhopadhyay  21721 4769 6.940 0.830 0.017 0.047
et al. (1997)
Berman and  22760 11157 6.263 6.263 0.012 0.058
Aranovich (1996)
This study 13468 10038 1.948 1.704 0.043 0.041
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nearly perfect correspondence between the empirically based 
and ab initio calculated excess energies of a set of structures 
with different Ca/Mg ratios and different ordering states. This 
determines the near quantitative agreement of the present model 
with the calorimetric data of Newton et al. (1977). The previous 
simulation studies of Bosenick et al. (2001) and Lavrentiev et 
al. (2006) predicted signifi cantly larger excess enthalpies. The 
excess volumes (Figs. 4a and 4b) have the same magnitude 
and the same type of asymmetry as the experimental data of 
Bosenick and Geiger (1997). However, the calculated proper-
ties cannot be directly compared to the experimental ones. The 
volume measurements of Bosenick and Geiger (1997) were done 
between 20 and 300 K, while the samples have been prepared 
by high temperature synthesis. Our calculations at 1000 K are 
more consistent with the measured volumes. It is possible that 
the measured volumes refl ected the asymmetry quenched at the 
temperature of the synthesis. Here we assume that the quenched 
excess volume is determined by the atomic confi gurations, which 
have been in equilibrium at the temperature of the synthesis. 
At the synthesis temperature the confi gurations with large (and 
asymmetric) volumes and entropies would be favored. Presum-
ably, the effect of the lattice contraction due to the decrease of 
the temperature is nearly the same for all the confi gurations and 
thus the asymmetry of the excess property can be quenched. A 
similar diffi culty prevents the direct comparison of the measured 
and calculated excess vibrational entropies. The measurements 
of Haselton and Westrum (1980) have been performed in the 
range of 10–350 K, while the sample has been synthesized at 
1623 K. The direct comparison would require a calculation of 
excess heat capacities and excess entropies in the range of 10–350 
K for a large set of confi gurations, followed by confi gurational 
averaging at the temperature of the synthesis and application of 
Boltzmann weights to the results obtained for the low-tempera-

ture excess heat capacities or the excess entropies of the sampled 
confi gurations. We did not perform these calculations because 
we could not construct an accurate cluster expansion separately 
for the vibrational entropy. Using the free energy minimization 
for 125 different cation arrangements in the garnet unit cell we 
could show only that the excess volumes and the excess entropies 
substantially increase with the temperature (Figs. 4a, 4b, 5a, 
and 5b). The autocorrelation between the excess volumes and 
the entropies suggests that at the temperature of the synthesis 
the confi gurations, which have larger excess volumes and larger 
excess entropies, will be sampled with higher probabilities. It 
is thus possible that the excess entropy measured by Haselton 
and Westrum (1980) samples the atomic confi gurations, which 
have relatively high excess vibrational entropies. The entropies 
of these confi gurations remain relatively high even at the low 
temperatures at which the calorimetric measurements are made. 
The decrease of the excess entropy with the decrease in the tem-
perature, observed in our calculations, suggests that real excess 
vibrational entropies, which affect garnet phase equilibria might 
be slightly lower than those which could be inferred from the 
result of Haselton and Westrum (1980). Therefore, our excess 
values plotted in Figure 5a are probably not signifi cantly lower 
than the real ones. The results obtained from the confi gurational 
averaging of the excess free energies and from the regular model 
fi t to the averaged free energies of mixing show that both the 
excess enthalpic and entropic Margules terms are lower than 
those suggested by models fi tted to phase-equilibrium data (Table 
9). These terms include both the vibrational and confi gurational 
effects. Our smaller value of the excess entropy term not only 
refl ects the smaller excess vibrational entropy, but also the nega-
tive excess confi gurational entropy—the effect of the short-range 
order. The consistently lower magnitudes of the enthalpic and 
entropic terms (Table 9) do not imply that the predicted mixing 
properties differ signifi cantly from those derived from phase 
equilibrium data. The effects of the excess enthalpy and entropy 
balance each other due to the relation ∆G = ∆H – T∆S. Therefore, 
models with very different Margules parameters could have 
nearly the same free energies of mixing. From the values of the 
excess terms given in Table 9 one can deduce that the excess free 
energy of our model will be nearly equal to that of the model of 
Berman and Aranovich (1996) at about 800–900 °C, i.e., at the 
typical conditions of phase equilibrium experiments. Therefore, 
our model is consistent with phase equilibrium data at least in 
this temperature interval. 

The main diffi culty of the present model is its inconsistency 
with the recent experimental results of Dachs and Geiger (2006) 
on the low-temperature excess heat capacity in the pyrope-gros-
sular solid solution. In fact, the results of Dachs and Geiger 
(2006) show that the maximum of the excess vibrational entropy 
at 300 K occurs at pyrope-rich compositions, in contradiction to 
our prediction. It follows then that our speculations on the origin 
of the excess entropy and its asymmetry based on the virtual 
crystal model could be wrong. The other possibility is that the 
inconsistency arises due to large experimental errors inherent 
in the method of the heat pulse calorimetry (HPC) used in the 
study of Dachs and Geiger (2006). Dachs and Geiger (2006) 
admit that the HPC, despite its many advantages (e.g., a smaller 
sample size), still has a lower accuracy than adiabatic calorimetry. 
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FIGURE 18. The activity-composition relations in the range of 
500–1500 K at zero pressure in pyrope-grossular garnets calculated 
using the Redlich-Kister polynomial of the 5th order and the Gaussian 
function for the energy of ordering.
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Dachs and Geiger (2006) were able to reproduce the result of 
Haselton and Westrum (1980) for the excess heat capacity of 
Pyr60 (the same sample was used in both studies) only in the 
low-temperature (5–40 K) interval. The measurements at higher 
temperatures predicted negative heat capacities that have resulted 
in signifi cantly lower total excess entropy at 300 K. The S300 
value of Dachs and Geiger (2006) amounts to about 0.35 of the 
value of Haselton and Westrum (1980). Dachs and Geiger (2006) 
in their Figures 4a and 4b show that the errors in the calculated 
heat capacities become increasingly large at high-temperatures. 
This observation suggests that the HPC results are reliable only 
at relatively low temperatures. The excess heat capacities col-
lected by Dachs and Geiger (2006) in the interval of 5–30 K show 
the pronounced asymmetry with the maximum at grossular-rich 
compositions in good agreement with our results. 

It is clear, however, that new measurements are needed to 
resolve the contradiction between the results of Haselton and 
Westrum (1980) and Dachs and Geiger (2006). The results of 
the HPC and the adiabatic calorimetry should be compared for 
samples with different compositions. It is also necessary to test 
the predictions of the present study related to the asymmetry 
of the mixing functions on different systems with comparable 
size mismatch between the exchangeable cations.

Our study has permitted not only to simulate the excess mix-
ing, but also to understand the driving forces of cation ordering. 
We have observed that the magnitudes of the ordering interac-
tions, the J values, can be explained on structural grounds. This 
has become particularly obvious, when we have distinguished 
the local pair-wise ordering constants not merely based on the 
distances, but based more correctly on the symmetry of the pairs. 
We have shown that the pairs 4a and 4b, despite their equal 
length (Fig. 1b), reveal contrasting ordering behavior. Appar-
ently, the much stronger ordering tendency along the 4b pair is 
related to the presence of Al atom exactly in the middle of the 
two dodecahedral cations: The rigid AlO6 polyhedron restricts 
signifi cantly the space available for the bond-distance relaxation 
and, therefore, at the intermediate composition the two differently 
sized dodecahedral cations have a stronger tendency to alternate. 
Although similar arguments have been used already to explain the 
very strong ordering tendency at the third near-neighbor distance 
(Bosenick et al. 2000; Vinograd et al. 2004a), it is now clear that 
this is a widely occurring phenomenon. The strong interactions 
are related to the presence of extra cations such as Si (in the case 
of J3) or Al (in the case of J4b). Interestingly, the cluster expansion 
analysis of the Ca-Mg interactions in carbonates (Vinograd et 
al. 2006b) shows that the strongest ordering interaction occurs 
there at the fourth near-neighbor distance. The fourth neighbors 
interact across the rigid CO3 group. 

The arguments given above do not explain, however, the 
relatively strong interaction along the 5th near-neighbor pair 
and the absence of signifi cant ordering at the fi rst and second 
distances. Apparently, there are other factors infl uencing the 
strength of local ordering. The absence of strong ordering within 
the fi rst neighbors can be related to the frustration phenomenon. 
The fi rst neighbors make a frame of triangular clusters. Perfect 
alternation is impossible within such a framework and this is 
consistent with the near zero value of J1. The same argument is 
probably valid for J2 interactions. The second neighbors form 

frustrated triangular clusters together with the fi rst neighbors. The 
strong interaction at the 5th distance can be attributed to the fact 
that J3 and J4b interactions together with J5 form a non-frustrated 
three-dimensional framework, which can be perfectly ordered. In 
fact, the ordered I4122 structure implies the maximum number 
of dissimilar, Ca-Mg, pairs at these three distances. The large 
negative value of J5 might simply refl ect the general tendency 
to I4122 ordering, which is driven by J3 and J4b. 

The ability to distinguish 4a and 4b interactions has allowed 
us to predict that the I4122 structure is the most stable intermedi-
ate compound. Our SLEC and ab initio calculations both show 
that the excess energy of this structure is only slightly above 
the energy of a mixture of equal amounts of pyrope and gros-
sular. The Monte Carlo analysis suggests that this structure, not 
being the ground state, becomes stable in a certain temperature 
interval due to the excess negative vibrational free energy. This 
shows that the analysis of vibrations could be very important for 
determining the topology of phase diagrams of silicate systems 
with size mismatch. The predicted phase diagram with two nearly 
symmetric miscibility gaps offers a different explanation to the 
immiscibility in pyrope- and grossular-rich garnet described by 
Wang et al. (2000). The unmixing could have occurred due to 
a low-temperature dissolution/reprecipitation process triggered 
by a fl uid phase. The near equality of the energy of the 50/50 
compound to the equal mixture of the end-members is probably a 
common phenomenon in solid solutions with size-mismatch. The 
ordering energy arises due to the relaxation of the elastic energy 
of the strained mixture of the end-members, which becomes pos-
sible due to the formation of pairs of cations of dissimilar size. 
In the 50/50 compound the proportion of the strained AA- and 
BB-type pairs can be minimized due to the formation of the less 
strained AB-type pairs. In the case of the garnet structure not 
all AA and BB pairs can be avoided because of the frustration. 
However, the avoidance of the most unfavorable 3rd, 4th, and 5th 
AA and BB pairs becomes possible in the I4122 structure. This 
explains the nearly zero excess energy of this compound. 

The present analysis of the origin of the effects of mixing 
and ordering in pyrope-grossular garnets suggests that the total 
enthalpy of mixing is caused by the global strain, which is 
caused by the size mismatch between Ca and Mg and that is ac-
cumulated within CaCa and MgMg pairs. This strain is locally 
released via the formation of CaMg pairs. This conclusion is in 
accord with the results of the recent synchrotron X-ray powder 
diffraction study of Dapiaggi et al. (2005), which suggested 
that the enthalpy of mixing in pyrope-grossular garnets may be 
related to the microscopic strain measured as a function of the 
average fl uctuations in the interplanar distances about their ideal 
values. According to our model, the residual strain is accumulated 
within MgMg and CaCa pairs, which are too short or too long, 
respectively, to fi t the ideal interatomic distances at intermediate 
compositions. Assuming that the mean d-spacing fl uctuation cor-
relates with the number of MgMg and CaCa pairs at the distance 
d (these pairs should deviate stronger than CaMg pairs from the 
ideal spacing), the same correlation should exist between the d-
spacing fl uctuation and the enthalpy of mixing. This speculation 
supports the current belief that the peak-broadening correlates 
with the excess enthalpy. It is also conceivable that mixing effects 
in the other binaries of (Ca,Mg,Fe,Mn)3Al2Si3O12 garnets should 
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scale with the size difference of the cations. This correlation has 
been already described in the reviews by Geiger (1999, 2001). 
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