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Abstract There is a correspondence between flow in
a reservoir and large scale permeability trends. This
correspondence can be derived by constraining reser-
voir models using observed production data. One of the
challenges in deriving the permeability distribution of a
field using production data involves determination of
the scale of resolution of the permeability. The Adap-
tive Multiscale Estimation (AME) seeks to overcome
the problems related to choosing the resolution of the
permeability field by a dynamic parameterisation selec-
tion. The standard AME uses a gradient algorithm in
solving several optimisation problems with increasing
permeability resolution. This paper presents a hybrid
algorithm which combines a gradient search and a
stochastic algorithm to improve the robustness of the
dynamic parameterisation selection. At low dimension,
we use the stochastic algorithm to generate several
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optimised models. We use information from all these
produced models to find new optimal refinements,
and start out new optimisations with several unequally
suggested parameterisations. At higher dimensions we
change to a gradient-type optimiser, where the initial
solution is chosen from the ensemble of models sug-
gested by the stochastic algorithm. The selection is
based on a predefined criterion. We demonstrate the
robustness of the hybrid algorithm on sample synthetic
cases, which most of them were considered insolvable
using the standard AME algorithm.

Keywords Adaptive Multiscale Estimation ·

gradient optimiser · inverse problem ·

Neighbourhood Approximation algorithm ·

permeability estimation · reservoir simulation ·

stochastic search algorithm · two-phase flow

1. Introduction

Predictions of the reservoir behaviour require esti-
mates of the reservoir property values, such as per-
meability and porosity, on a grid block scale. Even
if all available data sources are utilised this can be a
very difficult task. Large scale permeability trends, like
barriers and channels, have large impact on how the
fluids flow in the porous medium. If a channel or barrier
has not been detected by a seismic survey, and there is
no well through it, it is hardly accounted for in a model
simulating the fluid flow.

Available data types for estimation of the perme-
ability are static and dynamic well data and geological
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data. The static well data can be obtained from core
samples in the wells, and the geological data are usually
coarsened geological permeability maps. The dynamic
well data are time series of pressures and flow rates
in the wells, but they give no direct information of
the permeability field. Using the equations of fluid
flow we can use this indirect information to estimate
the permeability trends. The issue in this paper is the
inverse problem of estimating the permeability field
using pressure data from the wells.

Inverse problems are often ill-posed, and that means
that even if the uncertainties in the measurements are
small, the errors in the solution may become large.
To reduce the possibility of introducing large errors
we have to regularise the problem in a proper way.
This can be done by restricting the parameter space to
exclude non-physical solutions.

Different strategies for regularisation of the in-
verse problem described above have been suggested.
A common method is to compensate for over-
parameterisation by penalising deviations from a priori
knowledge of the permeability given by a geological
model. An example of this is Bayesian estimation, see
e.g. [1]. Another regularisation approach is to fix the
resolution a priori by using a zonation. This means
that the reservoir is divided into clusters of grid blocks,
where each cluster has a constant permeability value.
One problem with this approach is that we may choose
a too low resolution, which will not reconcile the ob-
served data. In the opposite case, with a too high resolu-
tion, the computational work will be unnecessarily high
and the produced permeability values are often clearly
out of range.

A multiscale estimation method overcomes the
problem related to manually choosing the resolution a
priori by solving a sequence of parameter estimation
problems with increasingly higher resolution. The op-
timisation is performed sequentially until a satisfactory
match between model predictions and observed data is
obtained and the inverse problem is solved.

Grimstad et al. [2] presented the inversion technique
called Adaptive Multiscale Estimation (AME). The
method starts out with a clearly too low resolution, and
seeks to increase the resolution gradually only in the
regions where it is warranted by the data. In this way
the refinements will not necessarily be the same all over
the reservoir. The goal of the process is to produce
one coarse scale solution solving the inverse problem.
If required, the solution can later be downscaled by
adding fine scale information, see e.g. [3, 4].

One of the drawbacks with the AME strategy is the
risk of getting no acceptable solution or a solution not
satisfying the coarse scale property. A way to reduce

this problem is to apply more than one parameter-
isation for each stage in the optimisation sequence.
Another related approach is to use information from
several points in the parameter space when selecting
the refinements to apply in the next stage. Because
we are dealing with an ill-conditioned, inverse problem
with no unique solution these approaches are reason-
able. Especially in the early stages it might be important
to have a spread in the way of approaching the final
parameterisation, and hence the solution. Later we are
hopefully closer to the global minima of the original
inverse problem, and at this point the suggested refine-
ments will be more reliable.

The AME algorithm is based on a dynamic parame-
terisation selection, which can be used together with
any suitable optimisation routine. In earlier studies the
Levenberg–Marquardt algorithm, which is a determin-
istic gradient method, has been used to solve the opti-
misation problem. To derive an ensemble of promising
parameterisations in each stage of the algorithm, we
can apply a stochastic search algorithm to derive several
solutions of the optimisation problem. Generating a
larger number of candidate solutions than the required
number of refinements will further stabilise the selec-
tion of refinements.

The use of several parameterisations at each stage
and the incorporation of a stochastic optimiser will
increase the computational cost of the algorithm. To get
faster convergence we can change from the stochastic
method to a gradient optimiser when the number of
parameters gets higher. For this we need a way to
combine the stochastic and the gradient approach.

In this work we have chosen to start with a sto-
chastic method, the Neighbourhood Approximation
(NA) algorithm, and change to a gradient optimiser,
Levenberg–Marquardt, when the dimension of the pa-
rameter space is above a certain level. We also apply
the gradient method if we continue with an unchanged
parameterisation in the next stage. The starting point
for the gradient optimiser will be chosen as the most
promising set of parameters from last parameterisation,
in order to decrease the objective function value.

The applied stochastic search method is in this paper
the Neighbourhood Approximation algorithm (NA)
[5]. This method starts out by randomly generating
points in the parameter space by a Uniform Monte
Carlo method [6]. It then uses the concept of Voronoi
Cells [7] to determine regions of good fit. These re-
gions are then selectively sampled to generate good
data-fit models. Thus, instead of searching for only a
single model giving the supposed global minimum, this
method is able to find an ensemble of models that fit the
data to some degree of accuracy.
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In earlier work [5, 8, 9], the method of using several
candidate solutions have been used to do uncertainty
assessments of a solution with a fixed parameterisation.
In the current work the ensemble of candidate solutions
is used to stabilise the parameterisation selection. An
uncertainty study could also in this case have been
carried out by the methodology described in this paper,
but this is beyond the scope of this work.

The aim of this paper is to strengthen the regu-
larisation of the AME approach in order to increase
the possibility to achieve an acceptable coarse scale
solution.

This paper is organised in the following way. The
model equations for the inverse problem are defined
in Section 2 and the concept of the parameter estima-
tion problem is given in Section 3. Section 4 presents
the dynamic parameterisation selection from the AME
algorithm, and in Section 5 the issue of the parameter
search, and especially a description of the NA-algo-
rithm, is treated. Further the coupling of the NA-
algorithm with the dynamic parameterisation selection
is discussed in Section 6, while numerical results are
presented in Section 7. Conclusions and remarks are
given in Sections 8 and 9, respectively.

2. Model equations

Assuming only oil and water present in a porous
medium with isotropic permeability, the conservation
equations for two-phase incompressible, immiscible,
horizontal flow are

φ(x)
∂so

∂t
− O ·

(
k(x)kro(so)

µo
Opo

)
= qo(x), (1)

φ(x)
∂sw
∂t

− O ·

(
k(x)kro(sw)

µw
Opw

)
= qw(x), (2)

where the subscripts o and w refer to the phases, water
and oil, respectively. si denotes the saturation, µi the
viscosity, pi the pressure, qi the external volumetric
flow rate and kri is the relative permeability, where
i is the fluid phase. The porosity and the absolute
permeability are given by φ(x) and k(x), respectively,
where x is the spatial position in the porous medium. In
addition we assume a completely saturated medium,

so + sw = 1, (3)

and suppose we have a function Pc defining the capil-
lary pressure,

po − pw = Pc. (4)

The quantities φ, k, kri and Pc are all dependent of the
porous medium and are not accessible through direct
measurements.

The problem treated in this paper is to find an esti-
mate of the absolute permeability, k, when φ, kri and Pc

are assumed to be known. Equations (1)–(4) define this
task as an inverse problem.

3. Parameter estimation problem

Let the permeability k(x) be given by the
parameterisation

kN(x) = k(cN, {ψi(x)}N
i=1) =

N∑
i=1

ciψi(x), (5)

where cN ∈ RN is a vector of parameter values, and
{ψi}

N
i=1 is a set of real valued piecewise constant basis

functions, spanning the space defined by k, which is to
be estimated. Further we let d ∈ RM denote the mea-
surements, in this case time series of production data,
and m(cN) ∈ RM denote the corresponding simulated
values calculated using the model equations.

To measure the misfit between the simulated and the
measured data we define an objective function (misfit
function)

J(cN) = (d − m(cN))
T D−1(d − m(cN)), (6)

where D is the covariance matrix which weights the
data according to the measurement errors.

The inverse problem is solved when the objective
function is minimised to a value which can be explained
by the measurement errors. Assuming normally distrib-
uted measurement errors with zero mean and variance
given by the diagonal elements of D, and further that
the objective function is close to linear in a region
around a minimum, J will be χ2-distributed with M −

N degrees of freedom [10]. The statistical expectation
value of J at solution of the inverse problem is there-
fore given by M − N, and the standard deviation of J
is equal to

√
2(M − N) at the same point. Based on

these assumptions we have decided to terminate the
sequence of estimation problems when

J(cN) < (M − N)+

√
2(M − N). (7)

4. Dynamic parameterisation selection

This paper uses the dynamic parameterisation selection
from the Adaptive Multiscale Estimation (AME) in the
process of reconstructing the true permeabilities in a
reservoir. This approach seeks a coarse scale solution to
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the inverse problem by applying a regularisation which
restricts the number of required parameters. We will
here present the motivation behind this regularisation
approach and describe the main ideas of the method.
For a complete description, see [2]. Related work can
also be found in [11–14].

For equations corresponding to single phase flow
a number of studies [15–18] indicate low parameter
sensitivities (high uncertainties) and large model non-
linearities related to small scale variations in the solu-
tions. The relation between low sensitivities and small
scale oscillations means there should exist a coarse scale
solution of the problem.

A correspondence between sensitivities, non-line-
arities and scales has, to our knowledge, not been veri-
fied for the more complicated two phase flow equations.
Numerical results, see e.g. [2, 4, 19, 20], though indicate
that, with sparsely distributed data, there seems to be a
similar relation for these equations as for the simpler
studied equations. The AME method seeks a coarse
scale solution of the inverse problem on the assumption
that the mentioned correspondence is true for the two-
phase flow equations.

In addition to coarse scale solutions there will ex-
ist finer scale solutions. The fine scale solutions will
normally be more expensive to calculate because they
require a higher number of parameters. More parame-
ters give possibilities for an increase in the small scale
variations, and hence the parameter uncertainties will
normally be higher. The associated high non-linearities
will in addition make these solutions more difficult
to find.

The basic idea in multiscale estimation is to start
out with a clearly too low resolution and increase the
resolution gradually. Instead of increasing the resolu-
tion by the same amount in the entire grid, which is
the case in an ordinary multiscale estimation, see e.g.
[4], the AME approach only increases the resolution
in regions where it is expected to be productive. The
way of doing refinements is in this work to split each
region into two equally sized subregions by a vertical
or horizontal line (see figure 1). The AME method has
in other studies also been used with other possible ways
of doing refinements, see e.g. [13].

For each chosen parameterisation, PN , we solve the
optimisation problem, finding

c∗

N = arg min
cN

J(PN, cN). (8)

If the optimal values do not solve the inverse problem
according to the solution criterion in Eq. (7), these val-
ues are used in the process of finding a new refinement

and eventually as a starting value for the optimiser in
the next step if the optimiser requires an initial value.

When selecting the next parameterisation we cal-
culate a predicted minimum value, J̃, of the objective
function for each new candidate refinement. To calcu-
late the value of J̃ we assume the mathematical model
is linear around the actual point in the parameter space,
and then use a linear approximation of m(c) inserted in
J. If N′ is the new dimension of the parameter space, J̃
can be expressed as (see Appendix or [2] for derivation)

J̃(PN′) = 1dT(D−1
− [D−1 AN′(AT

N′ D−1 AN′)−1)

× AT
N′ D−1

])1d, (9)

where 1d = (d − m(cI
N′)), PN′ is a refinement of PN

containing N′
≥ N parameters and AN′ = m′(cI

N′) is the
sensitivity matrix. As a starting point for the lineari-
sation we use the parameters cI

N′ producing the same
permeability field as the solution, cF

N , of the previous
optimised problem.

To select the new parameterisation we go through
two steps. First we find the lowest J̃ for all possible PN′

for each N′
= N, N + 1, N + 2, .... In the next step we

determine which dimension to use by deciding whether
the reduction of J̃ will be significant in comparison
with the increase in N′. We consider an reduction in
J̃ significant if

J̃(PN′)+ σ̃ ( J̃(PN′)) ≤ J̃(PN′−1), (10)

where N′ > N and σ̃ is an approximation of the stan-
dard deviation. This approximation is based on the
assumption that the expectation value of J̃ is equal to
J̃, and σ̃ is given by (see Appendix or [2])

σ̃ ( J̃(PN′)) =

√
4 J̃(PN′)− 2(M − N′). (11)

The purpose of this methodology is to keep the
number of parameters as low as possible, but introduce
new parameters if it seems to make a considerable de-
crease in the misfit function. This will at the end of the
sequence hopefully produce a coarse scale solution. In
practice, undesirable refinements are sometimes cho-
sen. If an undesirable refinement is introduced in one
stage, this results in a higher total number of parame-
ters required to produce a low misfit value.

It turns out that the refinement with the lowest J̃ is
not necessarily the optimal refinement for producing a
coarse scale solution of the inverse problem. Figure 2
shows an example where the AME process is capable
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Figure 1 Allowed sub-
divisions. For each step it is
allowed to divide a region
into two equally sized
subregions by either a
horizontal or a vertical
line. From the initial
parameterisation with one
parameter there are two
possible refinements. In the
next step there is a large
number of allowed
refinements. Three of
them are presented here.

of introducing a number of reasonable refinements in
order to reproduce the true permeability field. The
sequence also introduces a few extra unnecessary pa-
rameters, but the most important refinements are per-
formed at an early stage. Figure 3 presents another
example where the same true permeability field is ap-
plied, but the positions of two of the wells (marked
with white dots in the figures) are slightly changed. In
this particular example the AME sequence chooses an
undesirable parameterisation for the second estimation
(figure 3c). This results in problems finding the nec-
essary refinements later on, and in this example the
final result is not reproducing the structures of the true
field. A large number of parameters, most unnecessary
compared with the true field, is introduced in order to
decrease J below the solution criterion. The resulting
permeability field also contains more small scale varia-
tions than the solution in the first example.

A contribution to the AME method in this work is
to strengthen the regularisation such that unnecessary
parameters, judged on the ability to produce a coarse
scale field, are less often introduced.

5. Parameter search

The optimisation problem, finding

c∗

N = arg min
cN

J(PN, cN), (12)

where J is defined in Eq. (6), can be solved by either
a gradient method or by a stochastic optimisation ap-
proach. The gradient methods use information from the
gradients of the mathematical model with respect to the
parameters to find the optimal set of parameters. These
methods have fast convergence rates. The drawback
is that gradient algorithms in some cases can fail to
converge or converge to a local minimum, depending
on the shape of the misfit function and the initial in-
put value. The stochastic methods do not require any
gradients to derive the search of the minimum, but
have generally much slower convergence rates than the
gradient methods. Many of the stochastic methods, for
instance simulated annealing and genetic algorithms,
are theoretically classified as global methods, though

Figure 2 The left figure shows the true permeability field we want to reproduce. The three first stages and the final estimate of the AME
sequence are shown.
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Figure 3 In this example we have an identical permeability field
(a) as in the previous example, but the positions of two of the
wells are slightly changed. The estimates between the third and
the final estimate are not shown here. The parameterisation

applied in the second estimate (c) is not the preferred refinement
according to the true permeability field. This results in a final
estimate which contains large small scale oscillations and is far
from the desired solution.

in practice also these methods may converge to a local
minimum of the objective function [5].

One of the advantages with the AME method is
that the initial point, given to the gradient optimiser,
is gradually improved through the stages of increasing
dimension of the parameter space. In this way the risk
of converging to a minimum which is not the global one
decrease. As discussed earlier, the process though may
fail in some cases.

The main purpose of applying a stochastic method
in this work is its possibility to derive several candidate
solutions to each optimisation problem. This gives more
information of which new parameterisation to apply
and larger possibilities to keep on with several refine-
ments for each stage.

In this paper we use the stochastic search algo-
rithm Neighbourhood Approximation (NA) for the pa-
rameter optimisation when the number of parameters
is low. On the other hand, with higher dimension
of the parameter space or if we want to continue
with an unchanged parameterisation, we apply the
Levenberg–Marquardt (LM) algorithm, which is a gra-
dient type optimiser. Details about theory and im-
plementation of the LM optimiser can be found
in [21].

5.1. Neighbourhood Approximation (NA)

The Neighbourhood Approximation (NA) algorithm
was originally developed by Sambridge for solving non-
linear inverse problems in seismology [22–24]. In petro-
leum engineering the same algorithm has successfully
been applied by Subbey and co-workers [5, 8, 9].

The algorithm is a stochastic search algorithm which
searches the parameter space in order to find good
fitting models. It uses Voronoi cells to discretise the
parameter space. In the following it is important not to
confuse the division of the parameter space, achieved
by the Voronoi Cells, and the refinements of the reser-

voir, which is performed by divisions of rectangular
regions and used in the multiscale parameterisation.
We will now define the Voronoi cells and describe how
the NA algorithm works in practice.

For N parameters we specify a region� ⊂ RN within
which to sample. For the defined space � ⊂ RN , let φ
denote a set of ns points in �. A Voronoi cell V(cα) is
defined as the nearest neighbour region around a point
cα ∈ φ compared to the other points in φ. Mathemati-
cally this can be expressed as

V(cα) = {c ∈ � : ‖ c − cα ‖≤‖ c − cβ ‖ for

β 6= α (α, β = 1, 2, ...,ns)},

where the norm ‖ · ‖ is the Euclidean distance.
The Voronoi cells give us a way of dividing a real

space of any dimension into a number of unique N-
dimensional convex polygons. The points on the edges
of the polygons will be equidistant from exactly two
sampling points, and the points on the vertices are
equidistant from at least three. The regions fill the space
and each region will have size inversely proportional to
the sampling density of the points in φ.

A Voronoi diagram can be used to approximate
the values of a scalar function J(c), where c ∈ RN .
Given a set of points {cα} ∈ φ dividing the space RN

into Voronoi cells V(cα), we can construct a Voronoi
diagram by setting the value in cell V(cα) constant and
equal to the function value J(cα) for each sampling
point cα ∈ φ. The resulting diagram will then be a non-
smooth, piecewise constant interpolation of the func-
tion J. The Neighbourhood Approximation algorithm
uses the information from the Voronoi diagram and
refines the sampling density in the cells with lowest
J-values. For our problem J is the misfit function de-
fined in Eq. (6).

The search starts out by generating n′
s points in the

parameter space by a uniform Monte Carlo method.
The next step is to select the nr models producing



Comput Geosci (2006) 10: 321–342 327

the lowest misfits. In the Voronoi cells of these nr

parameter values we generate totally new ns models
by a uniform random walk, which is accomplished by
a Gibbs sampler, see [9] for details. Thereafter all the
generated models are collected and we return to the
step where we select the new nr best fitting models.
Schematically this will be:

Generate initial n′
s reservoir models uniformly in the

parameter space and evaluate the misfit.

1. Select the nr models giving the lowest misfit.
2. Generate new ns/nr models randomly in each of

the nr chosen cells, and evaluate the misfit.
3. Go to 1.

The main input-parameters controlling the algorithm
are nr an ns. These numbers will determine how explor-
ative the algorithm will be [23]. The larger the ratio
ns/nr is, the less explorative the sampling of the pa-
rameter space will be. If this ratio is large the algorithm
will give less weight to the previous models and the con-
vergence will be fast. In the opposite case, using a small
ratio, the sampling will be spread over more cells (less
local) and the possibility of finding a local minimum is
smaller. A general increase of both numbers without
changing the ratio, will also give slower convergence
and a more explorative algorithm.

Both the search direction used in the algorithm, and
the size and shape of the neighbourhoods are deter-
mined without any external influence. The search is
guided by the introduction of models in the good fitting
areas, and this requires only the relative fit to the data.
In regions which have the lowest misfit the algorithm
will increase the resolution and in the regions with
larger misfit, the resolution will stay coarse.

6. Coupling of the dynamic parameterisation selection
with the neighbourhood approximation search

In this work we try to take advantage of the spread
in candidate solutions from the Neighbourhood Al-
gorithm in order to stabilise the AME process of re-
producing a coarse scale permeability field. The main
difference between the approach in this paper and
the standard AME approach is that the NA algorithm
gives us more information of how to choose the next
refinements and extended possibilities to select several
candidate refinements at each stage of the dynamic
parameterisation selection procedure. In cases where
we find it advantageous to start new optimisations with
more than one of the suggested parameterisations we
get a ramification of the algorithm and several ways
to approach the solution. Especially early in the AME

sequence, when we may not be very close to the solu-
tion of the inverse problem, this can give large improve-
ments in order to make the approach more robust. The
ramifications will of course make the method compu-
tationally more expensive, but restricting this option to
the first stages, and using a low number of branches,
limits the expenses.

The strategy with producing several candidate mod-
els is also a common way to do uncertainty assessments
of a produced solution [5, 8, 9]. In that case, which is not
carried out here, we have to keep on with the suggested
parameterisations for the chosen ensemble of solutions
until the end of the estimation.

We will in the following denote the new combination
algorithm as AME–NA to distinguish this from the
standard AME method.

6.1. Selection of candidate models

When selecting the candidate solutions from the NA
algorithm we want to select an ensemble of reservoir
models which fits the observed data to some degree
of accuracy. In addition it is important that the cor-
responding points in the parameter space are not too
close. If this is the case, we will probably not get the
desired improvement in the reliability of the J̃-values
because we linearise the mathematical model around
approximately the same point. The result is that the
suggested new refinements probably will be equal or
similar. This will not be in accordance with the ramifica-
tion idea behind this work, which is to generate several
candidate solutions which hopefully will include at least
one reasonable new parameterisation.

We will here explain the method we have applied
to select the candidate solutions of the optimisation
problems. There are several ways to do this selection.
We have chosen one which seems to be working satis-
factorily for our problem.

The selection is based on the misfit value for each
generated reservoir model. Two typical plots of the
models and their misfit values are shown in figure 4.
In the left figure the models are not sorted (the last
generated models have the highest index number on the
x-axis), and in the right one they are sorted by decreas-
ing misfit. As we can see from these plots, we typically
generate a large number of models with approximately
the same misfit (relative to the complete range of misfit
values). All these models have a relatively low misfit
and experiments have shown that they often will be
very close in parameter space.

To pick out a number of models which differs in
parameter space and still have a relatively low misfit
value, we therefore first check where the absolute value
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Figure 4 The left plot shows the generated reservoir models from
the NA algorithm on the x-axis with the objective function value
on the y-axis. The right plot contains the same models sorted

by decreasing misfit. In both cases we have omitted the models
giving objective function values greater than 5 · 105 (in this case
there were misfit values as high as 1 · 1010).

of the gradient of the right curve in figure 4 is below
some threshold. We then only consider models among
those who have lower misfit than the model at this
point. To prevent getting several models from the area
with approximately equal misfits, we divide the range
of the misfit in the selected area into equal intervals and
select one model from each interval. In this way we will
keep the model with the lowest misfit, and still get a
reasonable spread of the other models in the ensemble.

In the standard AME approach the optimisation is
stopped at each stage when J either reaches the actual
value of J̃ or if the gradient optimiser converges be-
fore J ≤ J̃. In the NA algorithm there is no stopping
criterion based on the value of the minimum misfit
value. The algorithm has to be run to a fixed number of
iterations, and then the candidate models are selected.
In the way we are selecting models we will always
continue using models which have misfit higher than J̃,
and if the NA search produces models with misfit lower
than J̃, one or more of these values will be selected
as well.

6.2. Global selection of refinements

For each optimisation stage in the AME–NA approach
we use one or several candidate solutions produced
by the optimiser and calculate J̃ for all possible new
refinements. Using the suggested refinements from all
candidate solutions will rapidly include a large number
of branches and the number of required optimisations

for each iteration will increase very quickly. To keep
the number of applied refinements low, we have intro-
duced a global selection of new candidate refinements
such that only the most promising solutions are kept.

The NA optimiser produces several candidate solu-
tions of the parameter estimation problem (Eq. (12)).
For a given iteration in the dynamic parameter selec-
tion of AME–NA, we may have a number of solutions
from several optimisation problems with unequal pa-
rameterisations {Pr}. The dimension of these spaces
may not always be equal. In the following we denote
the candidate solutions from one iteration as ci where
i = 1, 2, ...,k and k is the total number of candidate
solutions for all the optimisations at this iteration.

For each produced candidate solution we apply the
same selection criterion as described in Section 4 to
choose a new refinement. That is, given a candidate ci

for the optimal parameters of a parameterisation Pr we
define the selected new parameterisation as

Pi
= optimal j J̃(Prj, cI

i ), (13)

where Prj are possible new refinements of Pr, and cI
i

are the initial parameter values in the new parameteri-
sation (the values we linearises around) corresponding
to the solution for the previous optimisation using Pr.
The notation optimal means that we select the parame-
terisation which produces the lowest J̃, but fulfilling the
restriction that the dimension of the parameter space
is increased only if J̃ will be significantly lower. That
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Figure 5 An example of the selection of refinements in one itera-
tion of the dynamic parameterisation process. The optimisation
problem is solved for two unequal parameterisations P1 and

P2, and the optimiser produces ten candidate solutions for each
parameterisation. The global selection produces two new para-
meterisations, P7 and P14, which is passed to the next iteration.

is, the dimension should only be increased from N′

1
to N′

2 if

J̃(PN′

2
)+ σ̃ ( J̃(PN′

2
)) ≤ J̃(PN′

1
), (14)

where N′

2 > N′

1 ≥ N, and PN′

i
, i = 1, 2, are parameter-

isations with N′

i parameters. This is a slightly more
general statement than in Eq. (10). The modification of
Eq. (10) is done because we in the following may not
have all dimensions of parameter spaces present in the

actual ensemble of parameterisations, that is, we may
have N′

2 − N′

1 > 1. For all ci the selection in Eq. (13)
gives us a set of parameterisations {Pi

}
k
i=1.

In figure 5 we show an example where the optimisa-
tion problem is solved for two unequal parameterisa-
tions P1 and P2. The stochastic optimiser is used and
we have selected ten candidate solutions, ci, for each
case. Totally, we then have a set of 20 candidate pa-
rameter vectors and correspondingly 20 new suggested
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Figure 6 One iteration
of the AME–NA algorithm.
When N is greater or equal
to a fixed dimension,
Nlim, we change to the
gradient optimiser
(Levenberg–Marquardt).
Pold,r is the parameterisation
from last iteration producing
the new parameterisation Pr .

parameterisations {Pi
}

20
i=1 (not all unequal) produced by

Eq. (13).
In order to find the most promising parameterisation

of the previously suggested refinements {Pi
}

k
i=1 we de-

fine a new selection based on the same principles as
the first one. The new global optimal refinement for this
iteration is denoted by P∗1 and is given by

P∗1 = optimalP∈U1
J̃(P) where U1 = {Pi

}
k
i=1. (15)

In the example in figure 5 there are four different
new parameterisations among the set {Pi

}
20
i=1, and it is

assumed that Eq. (15) gives P∗1 = P14.
Often we want to start a new iteration with several

new refinements in order to make the dynamic param-
eterisation selection more robust. This is achieved by
eliminating all the parameterisations which are equal
to one of the earlier produced P∗s in the ensemble
of refinements {Pi

}
k
i=1, and go through a new selection

as in Eq. (15). In the special case where this result-
ing set of available refinement should be empty, we
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choose new refinements among all the possible new pa-
rameterisations, {Prj}, provided they are different from
the already selected ones. For the next selection that
will be

P∗2 = optimalP∈U2
J̃(P), (16)

where U2 =

{
U2

′
= {all Pi unequal P∗1} if U2

′
6= 8

U2
′′

= {all Prj unequal P∗1} else.

In the example in figure 5 this means that we eliminate
P11, .., P18 when searching for the second most promis-
ing refinement. In this case we still have more unique
suggested parameterisations produced by Eq. (13) and
U2 = U2

′.
The process can then, if wanted, be continued until

there are no more unique parameterisations left in
the set {Prj}. A more compact notation for the global
selection, indexing the global optimal refinements
by q, is

P∗q = optimalP∈Uq
J̃(P), (17)

where Uq =


Uq

′
= {Pi

: Pi
6= P∗g

∀ i,∀ g=1,...,q−1} if Uq
′
6=8

Uq
′′

= {Pr, j : Prj 6= P∗g

∀ r, ∀ j, ∀ g=1, ...,q−1} else.

The set of chosen new parameterisations, {P∗q}, will be
applied in the next stage, and new candidate solutions
will be found by the optimiser. In the example the
parameterisations passed to the next iteration are P7

and P14.
Another way of doing the selection of the refine-

ments, which is notationally easier and in practice
slightly different from this one, is to collect all Prj for
all ci, and apply Eq. (17) directly with Uq = Uq". This
approach will not, in contrast to the approach presented
in this paper, force the algorithm to choose parameteri-
sations based on different points in the parameter space
if this is possible.

6.3. Ramification

The number of applied parameterisations for each
stage does not have to be constant throughout the
AME–NA sequence. In the beginning it can be ad-
vantageous to have several candidate refinements, but
later, when the algorithm is approaching the solution, it
may be sufficient to apply less parameterisations. This is
due to the fact that in cases where the standard dynamic
parameterisation selection fails, it is most likely that it
has chosen an undesirable refinement at an early stage.
This may lead to a higher number of parameters to

Table 1 Properties for the simulations.

Reservoir dimensions 1, 600 × 1, 600 × 20 m
Simulation grid 32 × 32 × 1 cells
Porosity 0.3
Viscosity µw = 1.0 · 10−3 Pa · s

µo = 1.3 · 10−3 Pa · s
Relative permeability functions krw = Sw

kro = 1 − Sw
Initial saturation Sw = 0

So = 1
Capillary pressure function Pc(Sw) ≡ 0 kPa
Total injection rate per well 1, 000 m3/day
Production rate Constant BHP = 100.0 barsa
Number of observations per well npw = 400
Observation times t = i1t 1t = 20 days,

i=1, ..,npw

Noise level 1 barsa

obtain a parameterisation which will decrease the value
of J. In some cases we will not be able to reduce J
below the solution criterion, but for other cases the
solution criterion will be reached with a (much) higher
number of parameters than strictly required. Numerical
experiments have shown that for both these cases the
permeability values can sometimes be completely out
of the expected range. See for example figures 14 and
15, where the solution criterion is fulfilled for the AME
method, and figure 16, where it is not.

These circumstances make it advantageous to use
more resources to avoid wrong selections of refine-
ments in the first stages where it is most critical to make
the right choices, and then constrict the possibilities of
ramification when the number of parameters is higher.

Figure 7 Base case (upper right horizontal barrier). The wells are
marked with white dots.
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Table 2 Input parameters for the NA algorithm.

N 1 2 4 5 6
K 3 4 6 8 10

ns is chosen equal to K · N where K is an integer value, depen-
dent of N, given in the table.
nr = ns/2 for all dimensions except for N = 1. In this case nr =

1. Parameterisations where N is equal to 3 has, because the
parameterisation selection never chose this dimension, not been
required to optimise in this study.

Also, the optimisations becomes heavier and more time
consuming the more parameters we use.

6.4. Change to gradient optimiser

The reasons given in Section 6.3 also make it reasonable
to change to a gradient optimiser when the number
of parameters is above some level. This is because
the convergence is much faster for a gradient opti-
miser. If the selection of new refinements described in
Section 6.2 suggests to retain a parameterisation we
have also in this case, independent of the number of
parameters, the gradient method is applied for (only)
the next optimisation independent of the number of
parameters. Figure 6 shows a schematic diagram of
the stages in one iteration of the AME–NA algorithm.
When we change to the gradient optimiser we apply
the selection criterion from Section 6.2 to decide the

starting, initial value, cI
i , given to the optimiser. This

means we will not necessarily apply the parameters ci

giving the lowest value of J(Pr), but those giving the
lowest value of J̃(P∗q). The J̃-values are based on a
linear approximation and it therefore makes sense to
apply the parameters predicting the lowest misfit as the
initial point in a gradient optimiser.

7. Numerical results

In this section we will present some examples where
we study the performance of the AME–NA approach,
and compare with results achieved by the original AME
method. We present results based on a synthetic reser-
voir field. The test reservoir is square and horizontal
with constant thickness and no-flow outer boundaries.
Except for the permeability, the fluid and rock prop-
erties are held fixed throughout the simulations. The
properties for the simulations are listed in table 1.

To obtain pressure data observations we have run
the simulator with a known true permeability field, and
then added uncorrelated normally distributed noise to
the logged pressure values. The noise level is repre-
sented by the standard deviation, σ , of the noise dis-
tribution, given in table 1.

For the studied examples we have either printed
the resulting permeability field from all (or most of)
the iterations or in some cases only the final result.

Figure 8 Example 1: Upper
right horizontal barrier (base
case). Results using the AME
method. Seven parameters
are required to solve the
inverse problem.
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Figure 9 Example 1: Upper right horizontal barrier (base case)
using AME–NA. From the first estimate both the allowed re-
finements are suggested as new parameterisations. These two
cases are optimised independently of each other, and referred
to as 2ndest(a) and 2ndest(b). In the next step, estimate 3, one
refinement from each of the parameterisations in estimate 2 are
selected as the most promising ones. From estimate 3 till estimate
4 we get a case where both new parameterisations are refine-
ments of 3rdest(a). This means that no refinement of 3rdest(b) is

applied, and the branch giving this parameterisation is eliminated
in the further process. When starting step 5 we restrict the ramifi-
cation such that we only select one optimal new parameterisation,
which in this case is a refinement of estimate 4thest(b). In the 6th

estimate no refinement of the last parameterisation is done, and
that means we apply the gradient optimiser in this case. With six
parameters the value of J is below the solution criterion and the
inverse problem is solved.

Figure 10 Example 2: Right
lower vertical barrier
(otherwise equal properties
as in the base case).
Results using AME.
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Figure 11 Example 2: Right lower vertical barrier (otherwise equal properties as in the base case). Results using AME–NA.

Under each plot the iteration number in the sequential
parameterisation selection (est), number of parameters
(par) and the actual value of the objective function (J)
is given.

The chosen examples have a focus on cases where
the AME method is clearly unsuccessful, but will also
include successful AME sequences. We start out with
a field referred to as the base case (figure 7). A wide
range of the other studied examples are perturbations
of this field. The base case has four wells, marked with
white dots, positioned in the corners of the reservoir.
The well in the upper right corner is a production well,
and the remaining three are used for injection. In the
field there are three discrete values of the permeability,
which are equal to 50 mD (dark blue), 100 mD (light

blue) and 200 mD (green). Unless otherwise stated, the
properties for the studied fields will be identical to the
properties for the base case.

In the studies we select ten candidate solutions from
each NA optimisation and have chosen to change to the
gradient optimiser when the dimension of the parame-
ter space, N, is greater or equal to 7 (that is, Nlim = 7
in figure 6). The ramification is limited to two possible
parameterisations up till the fourth iteration, and from
the fifth one we optimise for only one parameterisation
in each AME–NA stage (see figure 9 for an example).

The input values for the Neighbourhood Approxi-
mation search, n′

s, ns and nr, are chosen dependently of
the dimension of the parameter space. An explanation
of how ns and nr are chosen is given under table 2. To

Figure 12 Example 3: Left lower vertical barrier (otherwise equal
properties as in the base case). Results for both methods. The so-
lution criterion is not reached when applying the AME method.

AME–NA produces two different solutions (because of the ram-
ification), both solving the inverse problem.
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Figure 13 In this example the two lowest wells (marked with
white dots) are moved up compared to the base case.

make the search more robust the algorithm is run twice
with a slightly different number of initial samples for
the two cases. The initial sampling, n′

s, is equal to or
slightly lower than ns for all dimensions.

The widest range of the applied true permeability
fields is values from 10 to 200 mD. In the Neighbour-
hood Approximation the sampling is done for param-
eters corresponding to permeability values between
0 and 400 mD, which are also the range used in the

coloured plots. In the plots dark blue colour corre-
sponds to low values while dark red is high values of
the permeability.

7.1. Location of barriers

In the first three examples we will study the perfor-
mance of recovering a field with a simple barrier. We
will test the base case and two similar fields where the
barrier is rotated relative to the wells.

7.1.1. Example 1: Upper right horizontal barrier
(base case)

This is an example where the AME method approxi-
mately identifies the true permeability (figure 8), and
the AME–NA algorithm is giving an almost equal result
using one parameter less (figure 9). Be aware that the
optimisations are stopped when reaching the solution
criterion in Eq. (7), and that the optimiser is not nec-
essarily run till convergence. Because of this, it may be
incidental that the result from the AME–NA method
is slightly better looking than the result from the AME
approach.

Figure 14 Example 4: Lower wells moved up (compared to the base case). Results from the AME approach.
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Figure 15 Example 4: Lower wells moved up (compared to the base case). Results from the AME–NA approach.

7.1.2. Example 2: Right lower vertical barrier

Also in this case the inverse problem is solved with both
methods and with one less parameter for the AME–NA
algorithm. The resulting permeability field produced by
AME (figure 10) gives one parameter completely out of
range compared to the true field applied to produce the
measurements. In the real case, when the true field is
unknown, it had been non-trivial to determine which
solution is the best one (figure 11).

7.1.3. Example 3: Left lower vertical barrier

In this example the solution criterion (which is equal
to 1,243 for six parameters) is not completely fulfilled
using the AME method, but for the new approach
we have two different solutions solving the inverse
problem. The reason for two suggested solutions from

the AME–NA method is that one of them is produced
at an early stage before we restrict the amount of
ramifications to allow only one branch (figure 12).

7.2. Displacement of wells

We will present one example where we have applied an
equal permeability field as in the base case, but changed
the position of two of the wells.

7.2.1. Example 4: Lower wells moved up

In this example the two lowest wells in the field are
moved up such that they are not that close to the
corners any more, see figures 13 and 14. The AME–NA
algorithm (figure 15) produces a solution close to the
true field, while the result from the AME approach
(figure 14) gives a completely different estimate. Even

Figure 16 Example 5: Lower
right channel (wells as in the
base case). Results for both
methods. Only the AME–NA
method solves the inverse
problem.
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Figure 17 Example 6a and
6b: Long barrier with
different permeability
contrasts (wells as in the
base case).

if the AME result is far from the expected solution
it is able to solve the inverse problem, but it requires
a larger number of parameters and there are large
oscillations on small scales for this solution.

In Section 4 we discussed the desired properties
of the solution using the dynamic parameterisation
technique. Because the information in the data may
notbe suitable for reproducing small scale variations,
the applied methods seek a solution which reproduces
the coarse structures of the field. Results like this sub-
stantiate the hypothesis that the uncertainties are high
when there is a large number of small scale parameters
in the estimate.

7.3. High permeable channel

We have tested one example where we have applied a
simple channel with higher permeability than the rest of
the reservoir. The permeability values in the true field
are 200 mD for the channel and 50 mD for the rest of
the field.

7.3.1. Example 5: Lower right channel

In this case we got completely different results using
the two methods (figure 16). The AME estimation
introduces a large number of parameters and the op-
timisation problems become difficult to solve with the

current starting values. This results in producing a local
minimum of J which is much higher than the solution
criterion. The AME–NA algorithm is able to reduce the
misfit value, and gets a permeability estimate which is
close to a high permeable channel in the same area as
the true field.

7.4. Permeability contrasts

In the next examples we have tested the performance
of the two algorithms on two different fields where we
vary the permeability contrasts between the barrier and
the rest of the field.

7.4.1. Example 6a and 6b: Different contrast on fields
with a longer barrier

In Example 6a (figure 17a.1–a.3) and 6b (figure 17b.1–
b.3) we have a long horizontal barrier across the com-
plete field, and have used different contrast between
the two discrete permeability values. Both methods
solve the inverse problem for the two test fields, but
the result from the AME method in example 6a (fig-
ure 17a.2) is not a coarse scale estimate and contains
small scale variations. In this case a parameterisation
which is clearly able to reproduce the true field is
obtained, but the found minimum of J is not corre-
sponding to a field close to the true permeability.
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Figure 18 Example 7a–7c:
Short barrier with different
permeability contrasts (wells
as in the base case).

7.4.2. Example 7a–7c: Different contrasts on fields
with a short barrier

The next three examples are also a study where we have
varied the contrast between two permeability values. In
this case a shorter barrier is used. None of the results
from the AME method solves the inverse problem ac-
cording to our solution criterion, even though they are
close. The AME–NA algorithm also fails in the middle
case (figure 18b.3), and has in this case introduced a
large number of unnecessary parameters.

7.5. Continuous fields

The last two examples are fields with more continuously
varying permeability. Neither AME nor AME–NA
should be expected to reproduce a field like this exactly,
but if the algorithm is successful a coarse scale approx-
imation could be obtained.

7.5.1. Example 8a and 8b: Continuous fields

For these examples it is discussable which method
is giving the preferable result. In the first example
(figure 19a.1–a.3) both methods solve the inverse prob-
lem with approximately equal number of parameters.
The AME result is though slightly better looking. The
last example (figure 19b.1–b.3) gives permeability plots
which are approximately equally close to the true field,
but in this case the AME method is not completely
reducing J to the limit for solving the problem.

8. Conclusion

We have demonstrated a methodology for improving
the robustness in deriving coarse scale permeability
fields using the Adaptive Multiscale Estimation al-
gorithm. The methodology uses the Neighbourhood
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Figure 19 Example 8a and
8b: Continuous field with
barriers (wells as in the
base case).

Approximation algorithm to generate several candi-
date solutions. The spread in the candidate solutions
from the NA algorithm results in:

• more reliable suggestions of the next refinement.
• larger possibilities for ramifications, which give sev-

eral ways to approach the solution.

Our results show that while it is possible to solve
the optimisation problem at low dimensions, this be-
comes CPU-intensive for higher dimensions. For higher
dimensions the gradient algorithm ensures faster
convergence.

The same selection criterion which is applied to
find optimal refinements, is also used to select starting
values for the gradient optimiser. This gives us a way
of combining the stochastic and gradient optimiser in
order to take advantage of strong parts from both
methods.

The numerical results presented in this paper in-
volve mostly pathological cases for the standard AME
method. The AME–NA algorithm considerably re-
duced the number of such cases.

The new algorithm usually introduces fewer param-
eters to solve the inverse problem than the case
for the AME method. In this way the risk of over-
parameterisation is reduced and the problem is better

conditioned. Totally we have a more robust way of
solving the inverse problem.

9. Remarks and future work

The ramification part of this work could have been
achieved by using a gradient optimiser producing one
solution for each optimisation through the complete
process. The same selection of refinement as described
in this paper could then have been applied to get a
limited ramification. In some cases this might have im-
proved the final estimates compared to standard AME.
An investigation of this approach, and comparison of
the robustness with AME and AME–NA have not been
performed.

The methodology from this paper can be applied to
do uncertainty assessments of a solution by keeping
several solutions from each stage and optimise for each
suggested parameterisation. To get reliable uncertainty
estimates we need a wider ramification than used in this
work.

A more explicit study of the uncertainty related to
fine scale variations of the permeability is also desirable
to improve our knowledge of different kinds of solu-
tions of the inverse problem studied in this paper.

In this work we have focused on producing a coarse
scale estimate of the permeability. There is a demand
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for combining this type of estimate with geostatistical
information. In the literature there have been pro-
posed different approaches for including geostatistical
information in the optimisation process related to this
problem, see, for example, [25–28]. It could be interest-
ing to combine these types of methodologies with the
presented method.
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Appendix

In this appendix we will for completeness reproduce the
derivation of formulas (9) and (10), as was performed
in [2].

Assume that we want to evaluate refinements to the
parameterisation after terminating the estimation with
PN at some parameter value cF

N . An approximation
of the minimum of J (see Eq. (6)) for an extended
parameterisation PN′ can be found by linearisation of
m(cI

N′),

m(cN′) ≈ m(cI
N′)+ AN′1cN′ , (18)

where AN′ = m′(cI
N′) and cN′ = cI

N′ +1cN′ , for some
1cN′ .

Recall that1d=d−m(cI
N′). Substituting (18) into (6)

gives

J(cN′) ≈
[
1d − AN′1cN′

]T
D−1

[
1d − AN′1cN′

]
. (19)

Using this approximation of J(cN′) it follows (by com-
puting its minimum) that Eq. (9),

J̃(PN′)=1dT (
D−1

−
[
D−1 AN′(AT

N′ D−1 AN′)−1

× AT
N′ D−1

])
1d, (20)

may be used as a measure for the objective function
value attainable with the parameterisation PN′ .

In the following part we will derive an uncertainty
estimate for J̃ which motivates Eq. (10). We assume
that the model is correct for the unknown true set of
parameters c∗, i.e., that we can write

d = m(c∗)+ e, (21)

with normally distributed measurement errors e with
expectation zero and covariance D, e ∼ NM(0, D).
Then, at a stage in the estimation sequence, with pa-
rameters cN′ we have a model error (also unknown)

zN′ = m(c∗)− m(cN′). (22)

Using this notation, we can write the data misfit
vector as a sum of the two unknowns:

1d = d − m(cN′) = m(c∗)+ e − m(cN′) = zN′ + e. (23)

Since a covariance matrix is symmetric, we can find a
matrix V so that D−1

= VT V. This enables us to write
the expression for J̃ as

J̃(PN′) = 1dT VT
(

IM−V AN′

(
(V AN′)T(V AN′)

)−1

×(V AN′)T
)

V1d

= (V1d)T (IM − PV A) (V1d), (24)

where IM is the M × M identity matrix, and PV A is
a projection matrix into the subspace spanned by the
columns of V AN′ . Because of the measurement errors
e, the predicted attainable objective function value is a
random variable. Since e ∼ NM(0, D), we have, using
the definition (23):

V1d = VzN′ + Ve ∼ NM(VzN′ ,V D−1VT)

= NM(VzN′ , IM). (25)

It follows (using Theorem B.4 in [10]) that J̃ will have a
non-central χ2 distribution with tr(IM − PV A) degrees
of freedom and non-centrality parameter zT

N′ VT(IM −

PV A)VzN′ :

J̃(PN′) ∼ χ2
tr(I−PV A)

(zT
N′ VT(IM − PV A)VzN′). (26)

If there are no redundant parameters, tr(PV A) = N′,
and the expectation of J̃ is simply

E( J̃(PN′)) = zT
N′ VT(IM − PV A)VzN′ + (M − N′), (27)

although this expression cannot be used to calculate
E( J̃(PN′)) since zN′ is unknown.
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To calculate the variance of J̃, we use the result
Var(εT Bε) = 2tr(B2), valid when ε ∼ Nn(0, In) (Ap-
pendix A12 in [29]), and (IM − PV A)

2
= (IM − PV A),

valid for all projection matrices. We have

Var( J̃(cI
N′))=Var

[
(VzN′+Ve)T{IM−PV A}(VzN′+Ve)

]
=Var

[
(VzN′)T(IM−PV A)(VzN′)+2(VzN′)T

× (IM−PV A)(Ve)+(Ve)T(IM−PV A)(Ve)
]

=Var[2(VzN′)T(IM−PV A)(Ve)]+Var[(Ve)T

× (IM−PV A)(Ve)]=4(VzN′)T(IM−PV A)
T

× Cov(Ve)(IM−PV A)(VzN′)

+ 2tr((IM−PV A)
2)=4(VzN′)T(IM−PV A)

× (VzN′)+2tr(IM−PV A)=4(E( J̃(PN′))

− (M − N′))+2(M− N′)

=4E( J̃(PN′))−2(M−N′). (28)

To obtain the third equality, we have utilised that
Cov(vT Bε, εT Bε) = 0 when ε ∼ N(0, IN).

As in (27), the expression for E( J̃) contains the
unknown model error, so the variance may not be
calculated directly. Instead, by assuming that the actual
predicted attainable objective function value does not
differ too much from its expectation, we perform the
substitution E( J̃) ≈ J̃ in (28), and get the approximate
expression for the variance:

Var( J̃(PN′)) ≈ 4 J̃(PN′)− 2(M − N′). (29)

From this we get our estimate for the uncertainty
in J̃:

σ̃ ( J̃(PN′)) =

√
4 J̃(PN′)− 2(M − N′), (30)

which is given in Eq. (11).
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