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Abstract A new method to determine semi-analytical
solutions of one-dimensional contaminant transport
problem with nonlinear sorption is described. This
method is based on operator splitting approach where
the convective transport is solved exactly and the dif-
fusive transport by finite volume method. The exact
solutions for all sorption isotherms of Freundlich and
Langmuir type are presented for the case of piecewise
constant initial profile and zero diffusion. Very precise
numerical results for transport with small diffusion can
be obtained even for larger time steps (e.g., when the
Courant-Friedrichs-Lewy (CFL) condition failed).
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Simulation in Technology Center,
University of Heidelberg,
Im Neuenheimer Feld 368,
69120 Heidelberg, Germany
e-mail: peter.frolkovic@uni-hd.de

Jozef Kačur
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1. Mathematical model

The main goal of this paper is to construct precise
semi-analytical solutions of the nonlinear convection–
diffusion problem with adsorption

∂t F(u) + v(x)∂xu − ∂x(D(x)∂xu) = 0 (1)

for x ∈ (0, L), t > 0, with initial condition

u(x, 0) = U◦(x) (2)

and boundary conditions

u(0, t) = C◦(t), ∂xu(L, t) = 0 . (3)

Here,

D(x) ≥ D0 > 0, v(x) ≥ v0 > 0, F(0) = 0, F ′(s) ≥ δ,

where one can assume that δ = 1.
The mathematical models (1)–(3) can represent

contaminant transport in equilibrium mode with the
sorption isotherm 9(u) = F(u) − u (see, e.g., [9]). The
corresponding mathematical model is

∂t u + v(x)∂xu − ∂x(D(x)∂xu) + ∂t S = 0,

∂t S = k(9(u) − S),

where S = 9(u) for k → ∞. Most common forms of
(nonlinear) sorption isotherms are Freundlich

9(u) = aup, a, p > 0 (4)

and Langmuir

9(u) =
au

1 + bu
, a, b > 0 , (5)

but one can also consider isotherms of mixed type

9(u) =
aup

1 + bup . (6)
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Equation (1) can be written in the form,

F ′(u) ∂t u + v(x)∂xu − ∂x(D(x)∂xu) = 0 , (7)

where the function F ′(u) ≥ 1 can be viewed as a (non-
linear) “retardation” factor of the convective and diffu-
sive transport.

In the case of F ′(0) = ∞ [i.e., for (4) and (6) with
0 < p < 1], the solution of (1) can have a sharp front
with a finite speed of propagation [27]. Moreover, the
convective term can be dominant and thus the creation
of shocks can be expected even for smooth initial data.
Nevertheless, because of the presence of (small) dif-
fusion D0 > 0, the solution of (1)–(3) is regular and
sharp shocks (as known for hyperbolic problems) can
not develop in a finite time – see, e.g., [15].

Precise numerical solutions of (1) are required, for
instance, if one wishes to solve inverse problems (e.g.,
to determine the diffusion D and the sorption isotherm)
or to test numerical methods for this type of problems.
Most numerical methods so far are based on regularisa-
tion and/or upwinding procedures and they can produce
undesirable artefacts in numerical solutions. The main
goal of this paper is to avoid any regularisation of
F(u) and to significantly decrease numerical dispersion.
Consequently, precise numerical solutions of (1)–(3)
can be obtained even for the case of vanishing diffusion
and for very large retardation factor F ′(u).

Characteristics-based numerical discretisations of
contaminant transport with nonlinear adsorption were
described in [3, 4, 8, 15], and upwind-based discretiza-
tion methods for the same type of problems in [6, 22].
Asymptotic formulas for large-time behaviour of the
exact solution of (1) were obtained in [7, 10], but they
can not be used directly in discretization methods.

The method presented in this paper is based on oper-
ator splitting, where nonlinear transport and nonlinear
diffusion are solved separately along each time step –
see, e.g., [12]. The transport part is solved exactly for
piecewise constant initial profile and the diffusion part
by some standard finite volume method. Consequently,
our method has very weak restriction on time steps, and
the Courant number can be larger than 1. In fact, if
smaller diffusion is considered (i.e., the Peclet number
is larger), than larger time steps can be taken in numer-
ical simulations.

Analytical solutions for the purely convective case
of contaminant transport with nonlinear sorption using
simple initial and boundary data have been described
by Sheng and Smith [26]. Independently, a general case
of piecewise constant initial and boundary data was
solved by different analytical methods in [16] for the
same equation, where long-time behaviours such as
collapses of shocks were likewise considered. Our paper

summarises and extends the results presented by Kačur
and Frolkovič [16].

The paper is organised as follows. In section 2, we
describe the method of solution for (1)–(3) using an
operator splitting approach. In section 3 we deal in
details with purely convective transport and present
analytical formulas for solution of multiple Riemann
problems with Freundlich and Langmuir isotherms. In
section 4 the method for solving of nonlinear diffusive
transport is discussed.

Finally, section 5 presents some numerical results and
concluding discussions. The routines in Maple lan-
guage [20] that were used for the exact solutions of non-
linear convection transport and the programme in C
language for numerical solving of nonlinear convection–
diffusion transport with Freundlich isotherms (using
software library Numerical Recipes [25]) are available
by request from the first author.

2. Operator splitting method

Let τ := t j − t j−1 be a time step and u j−1 ≈ u(x, t j−1)

be an approximation of the solution u(x, t) at the time
level t j−1. The method, considered here, determines
numerical solution u j in a two-step procedure

u j = Dj (τ )T j (τ )u j−1,

where T j (τ ) represents the solution of the convection
part of (1) and Dj (τ ) represents the solution of the
diffusion part of (1).

More precisely, we start with solving the hyperbolic
problem

∂t F(φ) + v(x)∂xφ = 0, t ∈ (t j−1, t j ), (8)

with the inflow boundary condition φ(0, t) = C◦(t) and
the initial condition φ(x, t j−1) = u j−1. This first step
defines

u1/2
j := T j (τ )u j−1 ≡ φ(x, t j ) , (9)

and then we solve the problem

∂t F(φ) − ∂x(D(x)∂xφ) = 0, t ∈ (t j−1, t j ), (10)

with the boundary conditions

φ(0, t) = C◦(t), ∂xφ(L, t) = 0,

and the initial condition φ(x, t j−1) = u1/2
j . This second

step defines

u j := Dj (τ )u1/2
j ≡ φ(x, t j ).
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In our practical realisation, the transport step T j (τ )

is solved exactly for initial piecewise constant data and
for boundary conditions of the form

C◦(t) ≡ C◦

j , t ∈ (t j−1, t j ), (11)

and the diffusion step Dj (τ ) is approximated using a
finite volume method (FVM). In the case of a non-
constant velocity v(x), a transformation to a new space
variable y is used in both steps.

In general, the result of the transport step is not a
piecewise constant function with respect to the fixed
grid that shall be used in the diffusion step, and one has
to project u1/2

j to this grid. From the point of view of
mass conservation, it is important that this projection is
precise. In fact, we compute such projection exactly for
a general type of isotherms 9(u).

The output u j of the diffusion step (realised by FVM)
is again piecewise constant, so the next transport step
along t ∈ (t j , t j+1) can be realised. Thus, the projection
represents the only source of numerical dispersion that
can be controlled by a smaller space discretization and
relatively large time steps.

In general, the operator splitting method, as given
here, can be further improved in a straightforward way
to reduce time splitting error, see, e.g., descriptions and
references in [19] for Strang splitting.

3. Solution of the transport problem

Firstly, to solve (8), we use the transformation

y = G(x) =

∫ x

0

dz
v(z)

(12)

and rewrite (8) into a simpler form

∂t F(u) + ∂yu = 0, t ∈ (t j−1, t j ) , (13)

where u(y, t) = u(G(x), t) := φ(t, x). The initial condi-
tion are given by u(G(x), 0) = U◦(x) and the boundary
condition by u(0, t) = C◦(t).

The solution of (13) presented in this paper is based
on theoretical results in [5, 17, 18, 23, 24], etc., which
guarantee the existence, uniqueness and some proper-
ties of entropy solutions for hyperbolic problems.

The theoretical treatment of entropy solution has
been developed for hyperbolic equations in the form

∂tw + ∂y f (w) = 0, w(y, 0) = W◦(y) = F(U◦(x)) (14)

that can be obtained from (13) by the transformation
F(u) = w, i.e., u = f (w), where f = F−1 is an inverse
function of F . Unfortunately, in general, the function
f can not be determined in an analytical form. In

this section, we construct analytical solutions of (13)
without having an explicit form of the function f .

Our construction of the entropy solution is based
on analytical solutions of a multiple Riemann problem
[5, 12, 19], and it substantially depends on the struc-
tural properties of F . In particular, if F is concave
(or convex) and the inverse function of 1/F ′(·) can be
expressed in an analytical form, we can construct the
solution of (13) in an analytical form, too.

In the following remark, we list some properties of
the solution of multiple Riemann problem which are
sufficient for the construction of solution for (14) in an
analytical form.

Remark 1. If F is concave (i.e., f is convex), then a jump
in W◦(y) at y = y∗ is called an acceptable shock, if

W◦(y∗
−) := lim

y↗y∗
W◦(y) > W◦(y∗

+) := lim
y↘y∗

W◦(y).

In that case, the shock at y = y∗ will move in time in y-
direction with the Rankine–Hugoniot speed v,

v =
f (W◦(y∗

−)) − f (W◦(y∗
+))

W◦(y∗
−) − W◦(y∗

+)
.

If W◦(y∗
−) < W◦(y∗

+), then a jump at y = y∗ is called not
acceptable shock and is replaced in time by a rarefaction
wave w∗, which is a smooth function of the form

w∗
(
y − y∗, t

)
= ( f ′)−1

(
y − y∗

t

)
, (15)

that is defined for t > 0 and

y∗
+ f ′(W◦(y∗

−)) t < y < y∗
+ f ′(W◦(y∗

+)) t .

This construction is valid until no “collision” between
shocks and rarefaction waves appears.

To construct the rarefaction wave function w∗ in
(15), one needs to find the inverse function of f ′(·). If
the inverse function of 9 ′(·) is known in an analytical
form, this can be realised as we describe now.

Denoting v := f ′(w) and using

v = f ′(w) =
1

F ′(u)
=

1

1 + 9 ′(u)
, (16)

one obtains

u =
(
9 ′
)−1

(
1 − v

v

)
. (17)

Using (16), (17) and w = F(u), one finally gets

( f ′)−1(v) = w = F
(

(9 ′)−1
(

1 − v

v

))
. (18)

If an analytical form of (9 ′)−1 is not known, one
can compute (17) for some particular values of v

numerically.
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If f is concave (i.e., when F is convex), then the role
of acceptable and not acceptable shocks is exchanged.
In particular, if W◦(y∗

−) > W◦(y∗
+), then the shock is not

acceptable and it develops into the rarefaction wave w∗.
Again, the function w∗ is generated by (15), but it has a
different shape now.

Summarising, the solution w of (14) for a piecewise
constant initial function W◦ consists (for some time) of
constants and rarefaction waves w∗ generated by (15).
Next, we describe the construction of w in details.

3.1. Analytical solution of multiple Riemann problem

Firstly, we simplify the treatment of boundary condi-
tions by considering only the case C◦(t) ≡ W(0)

≥ 0 in
(3). Our description can be extended for the case when
C◦(t) is a piecewise constant function in time, like in
(11), but we skip details here.

Let the initial function W◦ have a piecewise constant
profile, i.e.,

W◦(y) =

{
W(i), for yi−1 < y ≤ yi , i = 1, ..., M ,

W(0), for y ≤ y0.
(19)

If Wi 6= Wi+1, the point yi is a shock. To distinguish be-
tween acceptable and not acceptable shocks, we use the
notation y(a)

i , resp. y(na)
i . The development of shocks in

time will be described by yi (t) = yi + vi t , where

vi =

{
f ′
(
W(i)

)
, if yi = y(na)

i
f
(
W(i+1)

)
− f

(
W(i))

W(i+1)−W(i) , if yi = y(a)
i

.

For completeness, we define v0 = 0.
Clearly, for some time interval (0, t1) there is no col-

lision of two shocks, i.e., yi−1(t) < yi (t), i = 1, . . . , M,
and the solution w(y, t) can be defined for each space
interval (yi−1(t), yi (t)) following Remark 1.

In particular, if yi−1 = y(a)
i−1, then

w(y, t) = W(i) , yi−1(t) < y < yi (t) , (20)

and if yi−1 = y(na)
i−1 , then

w(y, t)=
{

w∗(y−yi−1, t) yi−1(t) < y < yi−1 + f ′
(
W(i)

)
t ,

W(i) yi−1 + f ′
(
W(i)

)
t < y < yi (t) .

(21)

To define the time t1 precisely, we now discuss pos-
sible collisions of yi (t) with yi−1(t). To do so, we first
assume that f is convex. Note that in such a case, due
to Remark 1, two moving shocks yi−1(t) and yi (t) can
never meet if yi−1 = y(na)

i−1 and yi = y(na)
i .

We must discuss two particular cases. Firstly, if yi−1 =

y(na)
i−1 and yi = y(a)

i , then f ′
(
W(i)

)
> vi , and the rarefac-

tion wave (from left) will meet the shock (from right) at

a time t∗i (see also figure 7 later). The time t∗i is given by
the equation yi−1(t∗i ) = yi (t∗i ), i.e.,

t∗i =
yi − yi−1

f ′
(
W(i)

)
− vi

.

Secondly, if yi−1 = y(a)
i−1 and yi = y(a)

i , then the shocks
yi−1(t) and yi (t) can meet only if vi−1 > vi , and, in such
a case, it happens at time t∗∗

i ,

t∗∗

i =
yi − yi−1

vi−1 − vi
.

Summarising, the general solution (20)–(21) is valid
for 0 < t < t1, where t1 is the time at which the first
collision of shocks appears, i.e.,

t1 = min
i

{t∗i , t∗∗

i }.

To extend the description of w for t > t1, we restrict
to a special form of initial functions W◦.

Definition 1. We call the function W◦(y) in (19) to be
concave if the values W(i) are non-decreasing for 1 ≤

j ≤ i0 < M and non-increasing for i0 ≤ j ≤ M.

To extend the description (20) and (21) for t > t1, we
must discuss two possible cases – collisions of several
acceptable shocks and a time development of the shock
after collision of acceptable and not acceptable shocks.
We still concentrate on case f being a convex function,
i.e., one has yi0−1 = y(na)

i0−1 and yi0 = y(a)
i0

, if W(i0−1)
6=

W(i0) 6= W(i0+1).
Firstly, if yi−1 and yi are acceptable shocks that met

at t = t1, then for t > t1 one has to “remove” the value
W(i) and to identify yi−1(t1) with yi (t1), i.e., for t > t1
one has z(t) := yi−1(t) ≡ yi (t), where the new shock
z(t) will move with the velocity

v =
f
(
W(i+1)

)
− f

(
W(i−1)

)
W(i+1) − W(i−1)

.

Following Remark 1, one can now define the analyt-
ical solution of (13) for t ∈ (0, t2), t2 > t1, where time t2
corresponds to the collision of a rarefaction wave from
the left (starting from yi0−1) with the moving acceptable
shock z(t).

In fact, z(t) can represent a shock obtained after
several collisions in a “decreasing leading front” of
W◦(y), i.e.,

z(t) = yi0(t) = ... = yi0+k−1(t) (22)

with the last “accumulated” velocity

v =
f
(
W(i0)

)
− f

(
W(i0+k)

)
W(i0) − W(i0+k)

.
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In such a case, time t2 can be determined from the
equation for t

yi0−1 + f ′(W(i0))t = yi0 +

∫ t

0
v(s)ds, (23)

where v(s) is the shock velocity of yi0 that is changing by
jumps after each collision. In general, there is no partic-
ular order of the collisions of neighbouring acceptable
shocks yk−1 and yk for different k with k ≥ i0.

Finally, to construct the solution of (13) for t > t2,
one has to describe the movement of the shock at
the front of rarefaction wave. The point s(t2) = yi0−1

+ f ′(W(i0)) t2 represents the acceptable shock at t = t2
that will move further for t > t2 with the Rankine–
Hugoniot velocity ṡ(t) that is governed by the Ordinary
Differential Equation (ODE)

ṡ(t) =
f
(
w?(s(t) − yi0−1, t)

)
− f

(
W(i0+k)

)
w?(s(t) − yi0−1, t) − W(i0+k)

(24)

and the initial condition

s(t2) = yi0−1 + f ′
(
W(i0)

)
t2 . (25)

Equation (24) is valid up to the next collision with
acceptable shock or up to the moment when w?(s(t) −

yi0−1, t) = W(i0+k), which is a singular point for (24).
Nevertheless, in both cases, we are in a situation which
was described before.

The case of f being a concave function can be treated
analogously.

Next, we describe in detail the application of our
construction for the case of Freundlich and Langmuir
type of isotherms.

3.2. Freundlich isotherms

In this case, F(u) = u + aup with p > 0. If p < 1, then
F is concave, and, consequently, f is convex. For p > 1,
f is concave, so the type of shocks in W◦ is different.
Therefore, we consider each case separately.

3.2.1. Case p ∈ (0, 1)

Generally, one can not express f in an analytical form.
Nevertheless, we can construct the rarefaction wave by
using (18),

w = ( f ′)−1(v) = F

((
1 − v

p av

) 1
p−1
)

.

Following (15), the corresponding rarefaction wave for
(14) is of the form

w∗(y, t) = F

((
t − y
p ay

) 1
p−1
)

, 0 < y < t. (26)

Consequently, the corresponding rarefaction wave for
(13) is

u∗(y, t) =

(
t − y
p ay

) 1
p−1

, 0 < y < t. (27)

Concerning the evolution of initial profile W◦, the
solution w(y, t) takes the form (21) for all yi−1 = y(na)

i−1 ,

i < i0, and the form (20) otherwise, i.e., for all yi =

y(a)
i , i ≥ i0. The pictures in figure 1 illustrate the con-

struction (20) and (21) to determine u using a single
rarefaction wave function u∗ defined by (27).

This construction is valid until the rarefaction wave
does not meet a shock (see section 3.1 for details). The
governing equation for the shock propagation after the
rarefaction wave meets the acceptable shock z(t) from
(22) is governed by the ODE (24) for t > t2, i.e.,

ṡ(t) =
A(s(t), t) − f

(
W(i0+k)

)
F(A(s(t), t)) − W(i0+k)

,

s(t2) = yi0−1 + f ′
(
W(i0)

)
t2 , (28)

where

A(s(t), t) :=

(
t − s(t) + yi0−1

p a(s(t) − yi0−1)

) 1
p−1

.

Figure 1 Left: the exact
solution of ∂t (u + u1/2) +

∂yu = 0 for t = 0 (i.e.,
the initial function U◦),
and for t = 7.04. Right:
the corresponding rarefaction
wave u∗(y, 7.04) defined
in (27).
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Figure 2 Solutions
of ∂t (u + up) + ∂yu = 0
for p = 3/4, 1/2, 1/4 (from
right to left: gray, dash and
solid lines) and for three
different times t = 3, 16, 40.
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In general, this ODE must be solved numerically. For
some particular values of p, the function s(t) can be
obtained by solving a nonlinear algebraic equation (see
[16] for some examples).

To characterise the solutions of the transport equa-
tion with Freundlich isotherm, we present a represen-
tative example of (13). Particularly, we consider the
zero inflow concentration C◦(t) ≡ 0 and the piecewise
constant initial impulse U◦(y) = 1 for y ∈ (0, 1) and
U◦(y) = 0 otherwise. The following figures were pro-
duced using the software Maple [20], and the corre-
sponding Maple routines are available by request from
the first author.

Figure 2 shows the time development of solutions
of the equation ∂t (u + up) + ∂yu = 0 for three different
values of parameter p ∈ (0, 1). In each case, the rarefac-
tion wave starts at the point y = y0 = 0 (in fact, y0(t) ≡

0), and the tailing part of a rarefaction wave appears
behind the acceptable shock that has started initially
at y = 1. For smaller values of p, the rarefaction wave
reaches sooner the shock at the front of curves and the
decrease in shock value afterwards is faster. Naturally,

with smaller values of p the “retardation” of transport
(7) is larger, and, consequently, the movement of fronts
(or acceptable shocks) is slower.

Figure 3 shows the curves F(u), i.e., the solution w

of (14), for the same data. Note that the solutions w =

F(u) are “mass conservative”.

3.2.2. Case p > 1

The governing equations are the same as in the case of
p < 1. Particularly, the rarefaction waves w∗(y, t) and
u∗(y, t) are given by the same formulas (26) and (27).

Opposite to the previous case, one has f ′
(
W(i−1)

)
≥

f ′
(
W(i)

)
, and acceptable shocks appear on the trailing

part of solution curves (i.e., at the points yi , i < i0),
whereas the rarefaction waves appear on the leading
front of initial concave profile W◦ (i.e., at the points
yi , i ≥ i0, see Definition 1).

Also, the governing equation for the movement of
shock after its collision with the rarefaction wave is
given by an analogous ODE to (28), where one has only

Figure 3 The curves
w = u + up for solutions
of ∂t (u + up) + ∂yu = 0
for p = 3/4, 1/2, 1/4 (from
right to left: gray, dash and
solid lines) and for three
different times t = 3, 16, 40.
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Figure 4 Solutions
of ∂t (u + up) + ∂yu = 0
for p = 7/4, 3/2, 5/4 (from
left to right: gray, dash
and solid line) for three
different times t = 4, 18, 40.
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to replace k by −k, since the shocks can accumulate on
the trailing part of wave.

The solution of equation ∂t (u + up) + ∂yu = 0 with
the same initial and boundary conditions as in the case
p < 1 are presented in the next figures. Figure 4 shows
u for three different values of p ∈ (1, 2) where the (con-
vex) shape of curves is analogous to the case p ∈ (0, 1).
Of course, the tailing part of rarefaction waves appears
at the front of shocks. For p ∈ [2, 4], the behaviour is
analogous, but the shape of curves becomes concave
(see figure 5).

3.2.3. Case p = 1

In this case, all shocks of initial profile are acceptable
and the construction of the analytical solution is trivial.

3.3. Langmuir isotherm

In this case, the function F(s) = as/(1 + bs) is concave,
and, consequently, f is convex. One can express f
directly in the analytical form

f (w) =
1

2

(
w −

a + 1

b
+

1

b

√
(bw + 1 − a)2 + 4a

)
,

and

( f ′)−1(v) =
1

b

(
a − 1 + 2

√
a

2v − 1√
1 − (2v − 1)2

)
.

Thus, the rarefaction wave w∗ is of the form

w∗(y, t) =
1

b

(
a − 1 + 2

√
a

2y − t√
t2 − (2y − t)2

)
, (29)

and, consequently,

u∗(y, t) =
1

b

(
−1 +

√
a

2y√
t2 − (2y − t)2

)
. (30)

The construction of analytical solution for concave
initial profile W◦ is analogous to Case I of Freundlich
isotherm with p < 1. Of course, opposite to the
Freundlich case, one has F ′(0) = 1 + a < ∞. In particu-
lar, the velocity speed of rarefaction wave between y0(t)
up to the shock y1(t) (provided C◦(t) ≡ 0) is f ′(0) =

(1 + a)−1 > 0, opposite to the Freundlich case p < 1,
where y0(t) ≡ 0. Consequently, the trailing part of con-
centration profile is shorter for the Langmuir case.

Figure 5 Solutions
of ∂t (u + up) + ∂yu = 0
for p = 2, 3, 4 (from left to
right: solid, dash and gray
line) for three different times
t = 3, 9, 18.
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When the rarefaction wave meets the shock in front,
i.e., at t = t2, the governing equation for the shock
movement is identical to (28), where one has to use
A(s(t), t) := u∗(s(t) − yi0−1, t).

For the initial profile W◦(y) of the form W◦(y) ≡

W◦, y ∈ (0, L), and W◦(y) ≡ 0 otherwise, one can find
an explicit formula for the front movement,

Figure 6 Solutions of
∂t (u + au/(1 + u)) + ∂yu = 0
for a = 2.83, 6, 10 (from left
to right: solid, dash and gray
line) and for three different
times t = 5.83, 25, 80.
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s(t) =
1

2(a + 1)2

(
14ta + 2Pb(a − 1) − 4t

√
a

√(
1 +

Pb
t

)(
a −

Pb
t

))

for

t > t1 =
P

f ′(W◦)W◦ − f (W◦)
,

where P = W◦L.
The solutions of equation ∂t (u + au/(1 + u)) + ∂yu

= 0 for three different values of a, with the identical
boundary and initial conditions as before, are presented
in figure 6.

3.4. General concave and convex isotherms 9

For a general case of an isotherm 9 that is either convex
or concave, the inverse function of 9 ′ needs not be
known in an analytical form. Nevertheless, one can nu-
merically construct the rarefaction wave for some finite
set of points by solving a nonlinear algebraic equation.

In particular, to obtain u∗(y − y∗, t), one can follow
the approach in (17) and solve the following nonlinear
scalar algebraic equation

9 ′
(
u∗
(
y − y∗, t

))
=

t − y + y∗

y − y∗
.

with respect to u∗ by means of, for instance, an iterative
Newton method.

In the case when an isotherm is neither convex nor
concave, one can numerically compute the rarefaction
waves following Osher’s solution (see, e.g., [19] for
details).

4. Solution of the nonlinear diffusion problem

In the previous section, we derived analytical formulas
for the solution of nonlinear convection equation (13)
with piecewise constant initial function that was de-
fined on some grid 0 = y0 < y1 < . . . < yM = G(L). It
is more convenient to transform the nonlinear diffusion
equation (10) to y, too. It means that in the second step
of the operator splitting method, we have to solve the
equation

∂t F(u) − a(y)∂y(b(y, t)∂yu) = 0, (31)

with the boundary condition

u(0, t) = C◦(t), ∂yu(G(L), t) = 0 , (32)

and the initial condition

u(y, t j−1) = u1/2
j (y) , (33)
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where the coefficients a and b are given by

a(y) :=
1

v
(
G−1(x)

) , b(y) :=
D
(
G−1(x)

)
v
(
G−1(x)

) .

The function u1/2
j (y) in (33) is an output of the first

transport step in the operator splitting procedure (9)
(see section 2).

Following a standard FVM strategy to approximate
(31), one obtains

hi F
(

u j
i

)
−

∫ yi

yi−1

F(u(y, t j−1)) dy

− τai

(
bi

u j
i+1 − u j

i
hi+1+hi

2

− bi−1
u j

i − u j
i−1

hi +hi−1
2

)
= 0 (34)

for i = 1, ..., M, where hi = yi − yi−1 and ai := a(yi −

hi/2) and bi =b(yi ). Note that u j
i ≈u(yi − hi/2, t j ). Due

to the boundary conditions, we complete u j
0 = C◦(t j )

and u j
M+1 = u j

M.
The resulting nonlinear algebraic system can be

solved by a standard Newton iterative method using an-
alytical linearisation. Another possibility is to use lin-
earisation by a relaxation scheme that was developed
in [13, 14] and has been justified in [1, 2, 11, 21], etc.
(see [16] for more details).

The crucial point in the finite volume discretization
method of (31) (that represents, in a discrete form,

the mass balance property of the original analytical
equation) is the evaluation of the integral in (34). We
now show how to compute such integrals exactly.

The function u(x, t j−1) in (34) is given by (33), so one
has to compute∫ yi

yi−1

F(u1/2
j (y)) dy. (35)

The function u1/2
j consists of constants and rarefac-

tion waves. The constant parts, although they do not fit
to computational grids, make no difficulties in compu-
tations of (35). In the case of rarefaction waves (that
are, in general, not available in an analytical form), an
application of numerical quadrature for integral in (35)
can lead to mass balance violations and solution errors.

To avoid such errors, we propose a procedure to
evaluate the integral in (35) exactly by evaluating the
rarefaction waves only in some finite number of discrete
points.

Note that w = F(u). Let us denote

J (α, β; t0) :=

∫ β

α

w∗(y, t0) dy . (36)

The function w∗ in (36) represents the rarefaction
wave that starts at t = 0 as a constant function with not
acceptable shock y(na)

0 located at time t = 0 at the ori-
gin, i.e., y(na)

0 (0) = 0. The position of this shock at t = t0
will be denoted by ξ := y(na)

0 (t0) and is given for iso-
therms (4)–(6) by

ξ =


0 p < 1 (Freundlich and the mixed type of isotherm),
t0 p > 1 (Freundlich and the mixed type of isotherm),

1
1+a t0 Langmuir type of isotherm.

We consider first the case ξ < α < β, the case α <

β < ξ (that occurs for Freundlich isotherms with p > 1)
will be treated afterwards.

To evaluate J (α, β; t0), one can first compute the
values J (ξ, α; t0) and J (ξ, β; t0) and then use

J (α, β; t0) = J (ξ, β; t0) − J (ξ, α; t0) .

To compute J (ξ, β; t0), we track the acceptable shock
y(a)

1 (t0) = β backward in time until t = 0, and we de-
note its initial (not yet known) position by h := y(a)

1 (0).
Clearly, a constant function w(y, 0) that has the nonzero
value w(y, 0) ≡ A := w∗(β, t0) only in interval (0, h) will
be transported to w∗(y, t0) at t = t0 (see figure 7 for an
illustration). As the variable w is mass conservative, one
obtains J (ξ, β; t0) = Ah.

To determine the value Ah, one can use the fact that
the rarefaction wave meets the front shock at t = t0, i.e.,

t0 f ′(A) = β, t0
f (A)

A
= β − h . (37)

From (37), one obtains that

Ah = A(β − (β − h))

= t0(Af ′(A) − f (A))

= β
(

A−
f (A)
f ′(A)

)
.

Hence

J (ξ, β; t0) = β
(
F(u∗(β, t0)) − u∗(β, t0)F ′(u∗(β, t0))

)
.

(38)
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Figure 7 Constant function
of value A= 2 at t = 0
with h = 1 that develops
to rarefaction wave w∗(β, t0)
at t0 = 6 with ξ = 0 and β = 4
for the case of Freundlich
isotherm with p = 1/2.
Both areas are identical.
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Finally, for the case that β < ξ , we have to evaluate
J (β, ξ ; t0) (see also the figure 8). One has, instead of
(37),

t0 f ′(A) = β, t0
f (A)

A
= β + h , (39)

and one obtains

Ah= A(β+h−β)= t0( f (A)− Af ′(A))=β

(
f (A)

f ′(A)
− A

)
.

As J (β, ξ ; t0) = −J (ξ, β; t0), (38) is also valid for
this case.

Summarising, to compute the integral in (35) exactly,
one needs to determine the values of rarefaction waves
only for some finite set of points β and to apply (38).

If no analytical form of rarefaction wave is known,
one can find the values A= w∗(β, t0) = F(u∗(β, t0)) by

 

2

1

0–2 2 4 6
y

8 10

1.5

0.5

Figure 8 Constant function of value A= 2 at t = 0 with h = 1
that develops to rarefaction wave w∗(β, t0) at t0 = 10 with β = 4
and ξ = 10 for the case of Freundlich isotherm with p = 3/2. Both
areas are identical.

solving the equation f ′(A) = β/t0 with respect to A
numerically (see also section 3.4).

5. Numerical experiments

In this section we describe numerical experiments that
confirm the applicability of the methods described
above for transport problems with nonlinear sorption.

First, the exact solutions for the equation (if d = 0)

∂t F(u) + ∂xu − d ∂xxu = 0, (40)

u(0, x) = 1, x ∈ (0, 1), u(0, x) = 0, x /∈ (0, 1),

u(t, 0) = 0, t > 0

for F given by (4) and (5) were implemented using
the package Maple 7.0 [20] (see figures 1–8 in previous
sections).

Such solutions can be directly constructed using de-
finitions (17) if t ∈ (0, t1), where t1 is a time when a
rarefaction wave meets the shock in front. For the case
when the speed of shock must be determined by solving
ODE (24), built-in Maple procedures can be used to
obtain very precise numerical solutions.

Finally, to solve the general form of (40) with d 6= 0
numerically, the operator splitting method was imple-
mented as described in section 2. The transport part was
solved in section 3 and the discretisation of diffusive
part with an analytical linearisation used in Newton’s
method in section 4.

Extensive tests were done for the most interesting
(and the most complicated case) of Freundlich isotherm
with p < 1. As F ′(0) = ∞, a modification of the ana-
lytical linearisation used in Newton’s method must be
done.

We avoided a modification (a “regularisation”) of
the function F itself. To modify F ′(u) only, a small
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Figure 9 Numerical solutions of ∂t
(
u + u3/4

)
+ ∂xu − d∂xxu = 0 for d = 10−2, 10−3, 10−4 at t = 3 (from left to right) that are compared

with the exact solution for d = 0.

parameter ε (to be set by the user) was chosen and F ′(u)

was replaced by F̃ ′(u), where

F̃ ′(u) :=

{
F ′(u) , if u ≥ ε

F ′(ε) , if u < ε .
(41)

The implementation of iterative procedure for Newton
method was realised using C-language procedures of
Numerical Recipes [25].

To illustrate that the method described in this paper
can be applied for d ≈ 0 in (40), the following examples
were realised. The grid step in all examples was chosen
to be uniform hi ≡ h = 0.05.

Firstly, system (40)–(41) was computed for a smaller
time (t =3) before the rarefaction wave meets the shock
in front. These computation were realised for d = 10−2,
10−3 and 10−4, see figure 9, where the numerical solu-
tion is compared with the exact solution for d = 0 to
judge the influence of nonzero physical diffusion. All
computations were realised using only two time steps,
i.e., τ =1.5, and the Courant number was approximately
17. Clearly, the method produces for different d differ-
ent results, which is not the case for many numerical
methods when solving (40) with very small diffusion.

Secondly, analogous tests were carried out for larger
times with rarefaction wave behind the shock in front.
Again (figure 10), the method can produce clearly dif-
ferent results for different small diffusion coefficients.
In all computations, τ = 1.5 with the Courant numbers
varying around the value 17.

6. Conclusions

In this paper semi-analytical solutions for one-dimen-
sional problems of contaminant transport with nonlin-
ear adsorption were constructed. The method is based
on operator splitting where the convective transport is
solved exactly for a piecewise constant initial condition,
and the diffusive transport is solved by a finite volume
method. For small diffusion coefficients, the advantage
of this method is that very large time steps can be used
to obtain precise numerical results.

Such semi-analytical solutions can be utilised as
benchmark examples for numerical packages. More-
over, the solution procedure presented here can be used
for inverse problems that deal with the determination of
soil properties.
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Figure 10 Numerical solutions of ∂t (u + u3/4) + ∂xu − d∂xxu = 0 for d = 10−2 ,10−3 ,10−4 att = 15 (from left to right) that are com-
pared with the exact solution ford = 0 .
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